1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény"

Átírás

1 Palácz Béla - Soft Computig Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére, azaz modelljére va szükség. Gyakra ezek az összefüggések az általáos természeti törvéyek alapjá, elméleti alapo levezethetők. Vaak azoba olya esetek is, amikor ilye összefüggések közvetleül em, vagy csak részbe ismertek. Ilyekor közvetle, tapasztalati ismeretekre kell támaszkoduk. A tapasztalati ismeretekből törtéő iformáció kiyerésével és eek alapjá törtéő modell alkotással a mesterséges taulás elmélete foglakozik. Ide tartozik a mitáko törtéő taulás módszerével törtő modellalkotás, az az eset amikor agyszámú mérési vagy egyéb tapasztalati adat áll redelkezésükre és eze adatok közötti kapcsolatokat kell modell formájába meghatározi. A keresett modellt egy függvéyel reprezetáljuk. A függvéy típusát, formáját felvesszük, kiválasztjuk, majd a függvéybe szereplő paramétereket úgy határozzuk meg az adatok alapjá, hogy azok legjobb közelítését kapjuk. 1-1 A közelítő függvéy Matematikailag a taulás problémáját úgy fogalmazhatjuk meg, hogy keresük egy olya, a valóságos modellt közelítő f függvéyt, amely f : X Ø Y ahol redelkezésükre állak a felállítadó modell bemeeti-kimeeti változóira voatkozó adatok {x HiL, y HiL }, i = 1,...,m és x HiL œx és y HiL œy. Mivel a valódi modell, azaz a közelítedő függvéy ismeretle, az f közelítő függvéyek olyaak kell leie, hogy bármilye függvéyt, bármilye mértékbe -másszóval tetszőlegese kicsiy hibával -képes legye közelítei. Azt modjuk, hogy a közelítő függvéyek uiverzális approximátorak kell leie. A legismertebb ilye függvéy típus a poliom. A klasszikus Weierstrass- tétel szerit az összes poliomok [a, b] itervallumo értelmezett halmaza p HxL = w i x i alakú algebrai poliomok sűrűek az [a, b] itervallumo folytoos függvéyek C[a, b] halmazá. Más szóval egy adott f œ C[a, b] függvéy és egy e > érték eseté létezik egy poliom pœ úgy, hogy i = p (x) - f (x) < e

2 Adatok_közelítése_1_11.b mide x œ [a, b] eseté. Vaak azoba más függvéy típusok is, amelyek szité uiverzális approximátorok. A későbbiekbe a eurális hálózatok megismerése sorá ezekre látuk majd példákat. A modell típusáak megválasztása utá a modell paramétereit kell meghatározuk a redelkezésre álló adatok alapjá. 1- A közelítés mértéke Figyelembevéve, hogy a mérési adatok hibával terheltek, em kívájuk meg, hogy f Ix HiL M - y HiL = legye, hisze em akarjuk megtaítai a modellek a mérési hibákat (túltaulás jelesége), de megkívájuk, hogy f Ix HiL M º y HiL azaz a modell jól közelítse a mérési adatokat. A közelítés miőségéek kvatitatív jellemzésére a külöböző ormákat alkalmazhatuk. Többváltozós függvéy eseté azaz ha pl. Y Õ legáltaláosabb az ú. Hölder- vagy p- orma, amely alapjá a közelítés hibája: f j - y j p j=1 1 p ahol a j idex a vektorok j-edik kompoesére utal. A leggyakrabba alkalmazott az Euklideszi orma, azaz p =, f j - y j j=1 Ha a mérési potokba ezekek a hibákak a számtai átlaga, az ú. rezidium (maradék) kicsi akkor a függvéy jól közelít a mérési potokba. 1-3 A közelítés általáosítása A keresett f függvéyek azoba még egy másik agyo fotos tulajdosággal is redelkezie kell. Nevezetese, jó közelítést váruk el tőle olya xœx potokba is, amelyek em mérési potok, azaz ahol x x HiL egyetle i-re sem. Ez persze természetes, hisze éppe ebből a célból alkalmazuk közelítő függvéyt. Mikét elleőrizzük a függvéy eze tulajdoságát, amikor ebbe az esetbe em redelkezük adatokkal?! A megoldás az, hogy a redelkezésre álló adatok halmazát két részhalmazra botjuk, agyjából /3-1/3 aráyba. A agyobb részhalmazt tauló halmazak evezzük és eek segítségével határozzuk meg a paramétereket, majd az így előállított közelítő függvéyt elleőrizzük a kisebb ú. validációs halmazo. Abba az esetbe, ha a hiba (rezidium) a tauló és a validációs halmazo közelítőe megegyezik, akkor a közelítő függvéy jó geeralizácós (általáosító) képességgel redelkezik. Nézzük egy egyszerű poliomiális közelítést Példa Ebbe az esetbe a fokszám övelésével csökkethetjük a hibát a tauló halmazo (szélső esetbe iterpolációvá alakul a közelítés). Azoba ezzel egyidejűleg ő a közelítés hibája a validációs halmazo. Az alábbi ábrák az alultaulás, a megfelelő taulás és a túltaulás esetét szemléltetik.

3 Adatok_közelítése_1_11.b ábra A tauló () és a validációs () halmaz potjai Lieáris közelítés y = x ábra Alul taulás esete. A rezidium a tauló halmazo (), Q T = 1.36, a validációs halmazo ( ), Q V =.79 Másodfokú közelítés y = x x

4 4 Adatok_közelítése_1_11.b ábra Megfelelő taulás esete. A rezidium a tauló halmazo (o), Q T = 1.16, a validációs halmazo ( ), Q V =.97 Harmadfokú közelítés y = x x x ábra Túltaulás esete. A rezidium a tauló halmazo (), Q T = 1.6, a validációs halmazo ( ), Q V = 1.97 Megjegyzés A feti példáál a függvéy a keresett paraméterekbe lieáris volt, azaz például másodredű közelítést tekitve, y HxL = w x + w 1 x + w ahol a w i paramétereket direkt módo meghatározhatjuk, hisze eek érdekébe egy túlhatározott lieáris egyeletredszert kell csak megoldauk, y 1 = w x 1 + w 1 x 1 + w y i = w x i + w 1 x i + w y = w x + w 1 x + w ahol (x i, y i ) az i-edik adatpár. Vagyis az együtthatókra voatkozó lieáris egyeletredszer,

5 Adatok_közelítése_1_11.b 5 A w w 1 w ahol A egy 3 méretű mátrix és y egy elemű vektor. A direkt megoldás azt jeleti, hogy a keresett együtthatókat véges számú aritmetikai művelettel - a kerekítési hibáktól eltekitve- potosa meghatározhatjuk. = y 1-4 A paraméterek meghatározása, mit globális optimalizáció Mit láttuk, a függvéy típusáak megválasztása utá, aak paramétereit úgy kell meghatározi, hogy a közelítés hibája, azaz a rezidiuma kicsi legye. Ez egy optimalizációs feladat megoldását jeleti. Abba az esetbe ha a paraméterekbe (w i L a függvéy lieáris, f HxL = w i g i HxL j=1 ahol a g i (x) ú. bázisfüggvéyek akár emlieárisak - a feladat egy lieáris regresszióra egyszerűsödik, amely direkt módo megoldható (lásd korábbi Megjegyzés). Azoba ha a közelítő függvéy a paramétereket emlieáris formába tartalmazza, a feladat, mit emlieáris optimalizáció csak iterációval oldható meg, közelítő potossággal. Ezzel kapcsolatba a probléma kettős. Egyrészt általába em ismerjük az iteráció megfelelő kezdőértékeit, így az iterációs eljárás esetleg em lesz koverges. Másrészt, mivel több lokális miimum is lehetséges, még kovergecia eseté sem biztosított, hogy a globális miimumot találtuk meg. 1.. Példa Tekitsük az f (x) =.5 si (1.5 x) függvéyt. Állítsuk elő zajos "mérési" potokat az xœ[, 8] itervallumba! ábra A függvéy és a "zajos mérési adatok" Keressük a közelítő függvéyt az alábbi alakba, f (x) = a si (b x) A paraméterek meghatározása a közelítő függvéy és a mérési adatok közötti eltérés miimalizációjá alapul. Az

6 6 Adatok_közelítése_1_11.b A paraméterek meghatározása a közelítő függvéy és a mérési adatok közötti eltérés miimalizációjá alapul. Az eltérés agyságáak meghatározása, mit láttuk külöböző mértékek alkalmazásával lehetséges: a) a legkisebb égyzetek módszere értelmébe, azaz G Ha, bl = H f i - a si Hb x i LL i=1 Ezt p ormáak evezik és akkor célszerű alkalmazi, ha a hibák eloszlása ormális HGaussL eloszlást követ. b) az abszolút értékek összege alapjá, G Ha, bl = H f i - a si Hb x i LL Ezt p 1 ormáak evezik és akkor célszerű alkalmazi, ha kieső, hibás méréseik vaak HlehetekL. c) a legagyobb eltérés alapjá Ezt p ormáak HCsebisevL evezik. G Ha, bl = i=1 max H f i - a si Hb x i LL iœ1,..., Ha a hibák eloszlása egyeletes eloszlást követ, akkor ezt célszerű haszáli Hmi- max feladatl. Alkalmazzuk most a legkisebb égyzetek módszerét. Ekkor a miimalizáladó függvéy, G Ha, bl = H f i - a si Hb x i LL i=1 1.6 ábra A miimalizáladó hibafüggvéy az p orma eseté A szitvoalas ábrázolási módba jól kivetők a lokális miimumok helyei,

7 Adatok_közelítése_1_11.b 7 Látjuk, hogy több lokális miimum is va! 1.7 ábra A hibafüggvéy lokális miimumai 1.1 Táblázat Kezdő érték 8a, b < Miimumhely 8a, b< A hibafüggvéyértéke f Ha, bl 81.,.5< ,.55785< ,.5< ,.4137< , 1.5< , <.1497 Attól függőe más-más miimumot kapuk, hogy hoa idult a lokális miimumkereső módszer iterációja!

8 8 Adatok_közelítése_1_11.b A globális miimum helye a = és b = ábra A hibafüggvéy globális miimuma (æ) A globális miimum meghatározása ehéz feladat! A következőkbe olya globális optimalizációs módszereket ismertetük, amelyek algoritmusai maguk is valamilye mesterséges taulási módszerre vezethetők vissza és hatékoya alkalmazhatók még agyszámú paraméter eseté is aélkül, hogy igéyelék a paraméterek közelítő értékeit, mit kezdeti értéket.

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

3.3 Fogaskerékhajtások

3.3 Fogaskerékhajtások PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

Tranziens káosz nyitott biliárdasztalokon

Tranziens káosz nyitott biliárdasztalokon Eötvös Lorád Tudomáyegyetem Természettudomáyi kar Vicze Gergely Trazies káosz yitott biliárdasztaloko Msc szakdolgozat Témavezető: Tél Tamás, egyetemi taár Elméleti Fizikai Taszék Budapest, 2012 1 Tartalom

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Hosszmérés finomtapintóval 2.

Hosszmérés finomtapintóval 2. Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

A logaritmus függvény bevezetése és alkalmazásai

A logaritmus függvény bevezetése és alkalmazásai Eötvös Loád Tudomáyegyetem Temészettudomáyi Ka A logaitmus függvéy bevezetése és alkalmazásai Szakdolgozat Készítette: Témavezető: Lebaov Dóa Mezei Istvá Adjuktus Matematika Bs Alkalmazott Aalízis és Matematikai

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

6. MÉRÉS ASZINKRON GÉPEK

6. MÉRÉS ASZINKRON GÉPEK 6. MÉRÉS ASZINKRON GÉPEK A techikai fejlettég mai zívoalá az azikro motor a legelterjedtebb villamo gép, amely a villamo eergiából mechaikai eergiát (forgó mozgát) állít elő. Térhódítáát a háromfáziú váltakozó

Részletesebben

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t.

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t. Ászpóke csapat Kalló Beát, Nagy Baló Adás Nagy Jáos, éges Máto Fazekas tábo 008. Igaz-e, hogy ha az f, g: Q Q függvéyek szigoúa ooto őek és étékkészletük a teljes Q, akko az f g függvéy étékkészlete is

Részletesebben

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója

Részletesebben

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Készítette: Dr. Ábrahám István A játékelmélet a 2. század közepén alakult ki. (Neumann J., O. Morgenstern). Gyakran

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Az Európai Unió Tanácsa Brüsszel, 2016. március 30. (OR. en)

Az Európai Unió Tanácsa Brüsszel, 2016. március 30. (OR. en) Az Európai Uió Taácsa Brüsszel, 2016. március 30. (OR. e) 7383/16 ADD 1 ENER 97 FEDŐLAP Küldi: az Európai Bizottság Az átvétel dátuma: 2016. március 22. Címzett: Biz. dok. sz.: Tárgy: a Taács Főtitkársága

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR

VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR védőeryő az ismeretleek záporába VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR www.matektaitas.hu www.matektaitas.hu ifo@matektaitas.hu 1 védőeryő az ismeretleek záporába Kombiatorika Permutáció Ismétlés élküli permutáció

Részletesebben

Statisztikai programcsomagok

Statisztikai programcsomagok Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés

Részletesebben

Az új építőipari termelőiár-index részletes módszertani leírása

Az új építőipari termelőiár-index részletes módszertani leírása Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Mérések, hibák. 11. mérés. 1. Bevezető

Mérések, hibák. 11. mérés. 1. Bevezető 11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i

Részletesebben

Mátrixaritmetika. Tartalom:

Mátrixaritmetika. Tartalom: Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

Walltherm rendszer. Magyar termék. 5 év rendszergaranciával. Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés

Walltherm rendszer. Magyar termék. 5 év rendszergaranciával. Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés Walltherm redszer 5 év redszergaraciával Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés Magyar termék WALLTHERM felületfûtés-hûtési redszer Egy fûtési- (hûtési) redszer kialakítása elôtt számtala

Részletesebben

Ingatlanok értékelése hozamszámítással 1-2. 1

Ingatlanok értékelése hozamszámítással 1-2. 1 Piaci érték: Igatlaok értékelése hozamszámítással 1-2. 1 Elıadás Igatlavagyo-értékelı és közvetítı Szakképzés, Igatlakezelı Szakképzés A-. modul Az az ár, amelyért az igatla méltá- yosa,, magájogi szerzıdés

Részletesebben

DIGITÁLIS DOMBORZATMODELLEK ELŐÁLLÍTÁSI TECHNOLÓGIÁI ÉS MINŐSÉGI PARAMÉTEREI

DIGITÁLIS DOMBORZATMODELLEK ELŐÁLLÍTÁSI TECHNOLÓGIÁI ÉS MINŐSÉGI PARAMÉTEREI Koós Tamás Zríyi Miklós Nemzetvédelmi Egyetem koos.tamas@zme.hu DIGITÁLIS DOMBORZATMODELLEK ELŐÁLLÍTÁSI TECHNOLÓGIÁI ÉS MINŐSÉGI PARAMÉTEREI Absztrakt A tériformatikai szoftverek egyre szélesebb köre képes

Részletesebben

VI.Kombinatorika. Permutációk, variációk, kombinációk

VI.Kombinatorika. Permutációk, variációk, kombinációk VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti

Részletesebben

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2.1. Az iformációs társadalom és gazdaság fogalmáak külöbözô értelmezései 2.1.1. Az iformációs társadalom Bármely iformációs

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

ANALÓG-DIGITÁLIS ÉS DIGITÁLIS-ANALÓG ÁTALAKÍTÓK

ANALÓG-DIGITÁLIS ÉS DIGITÁLIS-ANALÓG ÁTALAKÍTÓK F3 Bev. az elektroikába E, Kísérleti Fizika Taszék ANALÓG-IGITÁLIS ÉS IGITÁLIS-ANALÓG ÁTALAKÍTÓK Az A és A átalakítók feladata az aalóg és digitális áramkörök közötti kapcsolat megvalósítása. A folytoos

Részletesebben

Sorbanállási modellek

Sorbanállási modellek VIII. előadás Sorbaállási modellek Sorbaállás: A sorbaállás, a várakozás általáos probléma közlekedés, vásárlás, takolás, étterem, javításra várás, stb. Eze feladatok elmélete és gyakorlata a matematikai

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris

Részletesebben

TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel

TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorgaizmusok számáak meghatározása telepszámlálásos módszerrel A telepszámlálásos módszerek esetébe a teyésztést szilárd táptalajo végezzük, így - szembe

Részletesebben

Gráfokkal megoldható hétköznapi problémák

Gráfokkal megoldható hétköznapi problémák Eötvös Loránd Tudományegyetem Természettudományi Kar Gráfokkal megoldható hétköznapi problémák Szakdolgozat Készítette Vincze Ágnes Melitta Konzulens Héger Tamás Budapest, 2015 Tartalomjegyzék Bevezetés

Részletesebben

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise Nagyméretű emlieáris közúti közlekedési hálózatok speciális aalízise Dr. Péter Tamás* *Budapesti Műszaki és Gazdaságtudomáyi Egyetem Közlekedéautomatikai Taszék (tel.: +36--46303; e-mail: peter.tamas@mail.bme.hu

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben

2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával.

2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. 2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. A MÉRÉS CÉLJA Az elterjedten alkalmazott hőmérséklet-érzékelők (ellenállás-hőmérő, termisztor, termoelem) megismerése,

Részletesebben

A HŐMÉRSÉKLETI SUGÁRZÁS

A HŐMÉRSÉKLETI SUGÁRZÁS A HŐMÉRSÉKLETI SUGÁRZÁS 1. Törtéeti összefoglaló A tizekilecedik század végé a fizikát lezárt tudomáyak tartották. A sikeres Newto-i mechaika és gravitációs elmélet alapjá a Napredszer bolygóiak mozgása

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

8. előadás EGYÉNI KERESLET

8. előadás EGYÉNI KERESLET 8. előadás EGYÉNI KERESLET Kertesi Gábor Varian 6. fejezete, enyhe változtatásokkal 8. Bevezető megjegyzések Az elmúlt héten az optimális egyéni döntést elemeztük grafikus és algebrai eszközökkel: a preferenciatérkép

Részletesebben

A.26. Hagyományos és korszerű tervezési eljárások

A.26. Hagyományos és korszerű tervezési eljárások A.26. Hagyományos és korszerű tervezési eljárások A.26.1. Hagyományos tervezési eljárások A.26.1.1. Csuklós és merev kapcsolatú keretek tervezése Napjainkig a magasépítési tartószerkezetek tervezése a

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

Aronic Főkönyv kettős könyvviteli programrendszer

Aronic Főkönyv kettős könyvviteli programrendszer 6085 Fülöpszállás, Kiskunság tér 4. Internet: www.cin.hu E-mail: software@cin.hu Tel: 78/435-081, 30/9-573-673, 30/9-593-167 kettős könyvviteli programrendszer v2.0 Szoftverdokumentáció Önnek is jár egy

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

Tervezett erdőgazdálkodási tevékenységek bejelentése

Tervezett erdőgazdálkodási tevékenységek bejelentése Tervezett erdőgazdálkodási tevékenységek bejelentése ERDŐGAZDÁLKODÁSI HATÓSÁGI BEJELENTÉSEK/ TERVEZETT ERDŐGAZDÁLKODÁSI TEV. BEJELENTÉSE A Tervezett erdőgazdálkodási tevékenységek bejelentése a fakitermelési

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Kevei Péter. 2013. november 22.

Kevei Péter. 2013. november 22. Valószíűségelmélet feladatok Kevei Péter 2013. ovember 22. 1 Tartalomjegyzék 1. Mérhetőség 4 2. 0 1 törvéyek 12 3. Vektorváltozók 18 4. Véletle változók traszformáltjai 28 5. Várható érték 33 6. Karakterisztikus

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

ASPEKTUS ÉS ESEMÉNYSZERKEZET A MAGYARBAN

ASPEKTUS ÉS ESEMÉNYSZERKEZET A MAGYARBAN ASPEKTUS ÉS ESEMÉNYSZERKEZET A MAGYARBAN OHNMACHT MAGDOLNA 1. Bevezetés Célom elkülöníteni az aspektust az eseményszerkezett l, valamint megadni egy eseményszerkezeti osztályozást a magyarra vonatkozóan,

Részletesebben

Csapágyak üzem közbeni vizsgálata a csavarhúzótól a REBAM 1 -ig 2

Csapágyak üzem közbeni vizsgálata a csavarhúzótól a REBAM 1 -ig 2 ÜZEMFENNTARTÁSI TEVÉKENYSÉGEK 3.9 Csapágyak üzem közbei vizsgálata a csavarhúzótól a REBAM 1 -ig 2 Gergely Mihály okl. gépészmérök, Acceleratio Bt. Budapest Tóbis Zsolt doktoradusz, Miskolci Egyetem Gépelemek

Részletesebben

ELŐZETES TÁJÉKOZTATÁSI DOKUMENTÁCIÓ [314/2012. (XI.8.) Korm.r. 37. szerinti teljes eljárás előzetes tájékoztatási szakaszhoz]

ELŐZETES TÁJÉKOZTATÁSI DOKUMENTÁCIÓ [314/2012. (XI.8.) Korm.r. 37. szerinti teljes eljárás előzetes tájékoztatási szakaszhoz] ELŐZETES TÁJÉKOZTATÁSI DOKUMENTÁCIÓ [314/2012. (XI.8.) Korm.r. 37. szerinti teljes eljárás előzetes tájékoztatási szakaszhoz] Egyek Nagyközség településszerkezeti terv és leírás, helyi építési szabályzat

Részletesebben

MAGYARORSZÁG NYUGDÍJRENDSZERE (1997-2013) 2013. Október 5-7.

MAGYARORSZÁG NYUGDÍJRENDSZERE (1997-2013) 2013. Október 5-7. MAGYARORSZÁG NYUGDÍJRENDSZERE (1997-2013) 2013. Október 5-7. 1 TARTALOM: I. Előzmény 1997-(röviden) 1. MAGÁNNYUGDÍJ RENDSZER II. NYUGDÍJREFORM FOLYAMATOK MAGYARORSZÁGON 2009-2013 1. KORHATÁREMELÉS 2. MAGÁNNYUGDÍJ

Részletesebben

Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor

Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor Topográfia 7. : Topográfiai felmérési technológiák I. Mélykúti, Gábor Lektor : Alabér, László Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. Halmazok Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x H,

Részletesebben

Távközlő hálózatok és szolgáltatások Kapcsolástechnika

Távközlő hálózatok és szolgáltatások Kapcsolástechnika Távözlő hálózato és szolgáltatáso Kapcsolástechia émeth Krisztiá BME TMIT 015. ot. 1-8. A tárgy felépítése 1. Bevezetés. IP hálózato elérése távözlő és ábel-tv hálózatoo 3. VoIP, beszédódoló 4. Kapcsolástechia

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN

EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN SZAKDOLGOZAT Készítette: Bényász Melinda Matematika Bsc Matematikai elemz szakirány Témavezet : Kósa Balázs Informatikai Kar Információs

Részletesebben

GEOMETRIAI OPTIKA - ÓRAI JEGYZET

GEOMETRIAI OPTIKA - ÓRAI JEGYZET ε ε hullámegelet: Mérökizikus szak, Optika modul, III. évolam /. élév, Optika I. tárg GEOMETRIAI OPTIKA - ÓRAI JEGYZET (Erdei Gábor, Ph.D., 6. AJÁNLOTT SZAKIRODALOM: ELMÉLETI ALAPOK Maxwell egeletek E(

Részletesebben

Mesterséges intelligencia 1 előadások

Mesterséges intelligencia 1 előadások VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5

Részletesebben

ElMe 6. labor. Helyettesítő karakterisztikák: Valódi karakterisztika 1 pontosabb számításoknál 2 közelítő számításoknál 3 ideális esetben

ElMe 6. labor. Helyettesítő karakterisztikák: Valódi karakterisztika 1 pontosabb számításoknál 2 közelítő számításoknál 3 ideális esetben ElMe 6. labor 1. Rajzolja fel az ideális és a valódi dióda feszültség-áram jelleggörbéjét! 5. Hogyan szokás közelíteni a számítások során a dióda karakterisztikáját? 4. Rajzolja fel a dióda karakterisztikáját,

Részletesebben

Klasszikus alkalmazások

Klasszikus alkalmazások Klasszikus alkalmazások Termelésoptimalizálás Hozzárendelési probléma: folytonos eset Arbitrázsárazás p. Termelésoptimalizálás A gazdasági élet és a logisztika területén gyakran találkozunk lineáris optimalizálási

Részletesebben

BESZÁMOLÓ. a hajléktalanok átmeneti szállásainak körében végzett kutatásról. 2008. március

BESZÁMOLÓ. a hajléktalanok átmeneti szállásainak körében végzett kutatásról. 2008. március BESZÁMOLÓ a hajléktalanok átmeneti szállásainak körében végzett kutatásról 2008. március A Hajléktalanokért Közalapítvány megbízásából készülő kutatás keretében a hajléktalan embereket ellátó intézmények

Részletesebben

AZ ÉPÜLETGÉPÉSZETI RENDSZEREK ENERGIA-HATÉKONYSÁGÁNAK KÉRDÉSEI

AZ ÉPÜLETGÉPÉSZETI RENDSZEREK ENERGIA-HATÉKONYSÁGÁNAK KÉRDÉSEI AZ ÉÜLETGÉÉSZETI RENDSZEREK ENERGIA-HATÉKONYSÁGÁNAK KÉRDÉSEI Szivattyúzás - rövide örös Szilárd Cetrifugál szivattyú Nyomó oldal Járókerék Járókerék lapát Járókerék él Járókerék csavar a szállított közeg

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

CIVILEK A NYOMTATOTT SAJTÓBAN ÉRDEKÉRVÉNYESÍTÉS A MÉDIÁBAN 1

CIVILEK A NYOMTATOTT SAJTÓBAN ÉRDEKÉRVÉNYESÍTÉS A MÉDIÁBAN 1 csz12 elm filosz.qxd 2007. 06. 13. 14:53 Page 111 CIVILEK A NYOMTATOTT SAJTÓBAN ÉRDEKÉRVÉNYESÍTÉS A MÉDIÁBAN 1 Beszedics Otília Bevezetõ A 2003. augusztus 1. és 2007. február 28. közötti idõszakba a GPS

Részletesebben

HITELESÍTÉSI ELŐ ÍRÁS HIDEGVÍZMÉRŐ K KOMBINÁLT VÍZMÉRŐ K HE 6/3-2004

HITELESÍTÉSI ELŐ ÍRÁS HIDEGVÍZMÉRŐ K KOMBINÁLT VÍZMÉRŐ K HE 6/3-2004 HITELESÍTÉSI ELŐ ÍRÁS HIDEGVÍZMÉRŐ K KOMBINÁLT VÍZMÉRŐ K HE 6/3-2004 FIGYELEM! Az előírás kinyomtatott formája tájékoztató jellegű. Érvényes változata Az OMH minőségirányítási rendszerének elektronikus

Részletesebben

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást

Részletesebben

MATEMATIKA. 5 8. évfolyam

MATEMATIKA. 5 8. évfolyam MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

Vényírás. 1. ábra. 1. oldal

Vényírás. 1. ábra. 1. oldal Vényírás Amennyiben sikeresen kitöltöttük és elmentettük a megvizsgált személy ápolási esetét, lehetőségünk van vény felírására, az alábbi módon; 1. ábra A gomb megnyomásával egy legördülő menü tárul elénk,

Részletesebben

KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016.

KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

Kontingencia táblák. Khi-négyzet teszt. A nullhipotézis felállítása. Kapcsolatvizsgálat kategorikus változók között.

Kontingencia táblák. Khi-négyzet teszt. A nullhipotézis felállítása. Kapcsolatvizsgálat kategorikus változók között. Kotigecia táblák. Khi-égyzet tet 1. Függetleségvizsgálat. Illekedésvizsgálat 3. Homogeitásvizsgálat Példa 1 em ő 8 75 13 Ismétlés: változók, mérési skálák típusai 48 49 97 76 14 jeles (5) jó (4) közepes

Részletesebben

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke: A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,

Részletesebben

Bánhalmi Árpád * Bakos Viktor ** MIÉRT BUKNAK MEG STATISZTIKÁBÓL A JÓ MATEKOSOK?

Bánhalmi Árpád * Bakos Viktor ** MIÉRT BUKNAK MEG STATISZTIKÁBÓL A JÓ MATEKOSOK? Bánhalmi Árpád * Bakos Viktor ** MIÉRT BUKNAK MEG STATISZTIKÁBÓL A JÓ MATEKOSOK? A BGF KKFK Nemzetközi gazdálkodás és Kereskedelem és marketing szakjain a hallgatók tanrendjében statisztikai és matematikai

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László

PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ Írta Dr. Huzsvai László Debrece 2012 Tartalomjegyzék Bevezetés...1 Viszoyszámok...1 Középértékek (átlagok)...2 Szóródási mutatók...4 Idexek...7 Furfagos kérdések...8 Bevezetés

Részletesebben