8. előadás EGYÉNI KERESLET
|
|
- Ervin Dudás
- 9 évvel ezelőtt
- Látták:
Átírás
1 8. előadás EGYÉNI KERESLET Kertesi Gábor Varian 6. fejezete, enyhe változtatásokkal
2 8. Bevezető megjegyzések Az elmúlt héten az optimális egyéni döntést elemeztük grafikus és algebrai eszközökkel: a preferenciatérkép (illetve a hasznossági függvény) által megjelenített preferenciák, adott árak és adott jövedelem mellett meghatároztuk az optimális fogyasztói kosarat. Most ezt a kérdést tesszük fel: Hogyan változik egy termék optimális fogyasztása, ha a termék saját ára, illetve a fogyasztó jövedelme változik? A kifejtés egyszerűsége kedvéért továbbra is az eddig megszokott kéttermékes modellben gondolkodunk. A kérdést két részre bontjuk. Először megvizsgáljuk, hogyan változik az optimális fogyasztás abban az esetben, ha a fogyasztó jövedelme változik, miközben a két jószág ára változatlan marad. Másodszor megvizsgáljuk, hogyan változik az optimális fogyasztás abban az esetben, ha a termék saját ára változik, miközben a másik termék ára és a fogyasztó jövedelme változatlan marad. E két kérdés vizsgálatával ennek az előadásnak a során azt korlátozott célt tűzzük magunk elé, hogy bevezessünk néhány fontos új fogalmat, melyek alapvető szerepet töltenek be a fogyasztói elméletben. Azt az átfogóbb kérdést, hogy az árak és a jövedelem változása nemcsak közvetlenül, hanem áttételeken keresztül is miként befolyásolja e kéttermékes modell termékei iránti keresletet, majd a következő órán vesszük szemügyre. Mindenekelőtt vezessünk be a fogyasztói elmélet kulcsfogalmát: a keresleti függvényt. 8.2 A keresleti függvény A fogyasztói döntés múlt heti elemzésekor a fogyasztás optimális mennyiségét ár- és jövedelemparaméterek segítségével határoztuk meg. Egy termék fogyasztását azonban az árak és a fogyasztói jövedelem mellett számos egyéb tényező is befolyásolja. A szokások, a társadalmi normák, az állami szabályozás és sok más egyéb tényező is befolyásolhatja egy adott termék optimális egyéni fogyasztását. Azt a függvényt, amely mindezen tényezők együttese és a fogyasztás mennyisége közti függvényszerű kapcsolatot megteremti, keresleti függvénynek nevezzük. A keresleti függvény a fogyasztói elmélet központi fogalma. Nevezzük gyűjtőnéven környezeti feltételeknek azokat a tényezőket (K, K 2,, K l ), amelyek az árak (p, p 2 ) és a fogyasztói jövedelem (m) mellett hatással vannak a fogyasztó által keresett mennyiségre (x i, i=,2). A korábbi jelöléseket megtartva, a kéttermékes modell keresleti függvényei legáltalánosabb esetben az alábbi fólián látható formát öltik. A félév folyamán többnyire eltekintünk az imént említett környezeti tényezőktől, és keresleti függvény argumentumértékei közé csak az árakat és a fogyasztó jövedelmét vesszük föl. Az alábbi fólia ezeket az egyszerűsített keresleti függvényeket is mutatja. 8. fólia Bizonyos esetekben (főként empirikus számítási anyagok bemutatásakor) a környezeti változók használatára is hozunk példákat a következő néhány előadás során. 2
3 A keresleti függvény szabatos elemzését a 9-. előadás során végezzük el. Hogy kellően felvértezzük magunkat erre, előbb meg kell ismerkednünk számos új fogalommal, illetve elemzési eszközzel. Ezt az előadást ennek a feladatnak szenteljük. Mint a bevezetőben igértük, első lépésben azt vizsgáljuk meg, hogyan változik az optimális fogyasztás abban az esetben, ha a fogyasztó jövedelme változik, miközben a két jószág ára változatlan marad. A JÖVEDELEMVÁLTOZÁS ELEMZÉSE 8.3 Jövedelem-ajánlati görbe és Engel-görbe Jövedelemváltozás hatására ha az árak nem változnak a költségvetési egyenes párhuzamosan eltolódik, minthogy a költségvetési egyenes meredekségét meghatározó árarány nem változik. Az alábbi ábrán nyomon követhetjük a jövedelemváltozás hatását a keresett mennyiségre. Ha az optimális jószágkosarakat reprezentáló pontokat összekötjük egymással, akkor egy görbéhez jutunk. A szóban forgó görbét jövedelem-ajánlati görbének nevezzük. 8.2 fólia A jövedelem-ajánlati görbe (JAG) a különböző jövedelmi szintekhez tartozó optimális jószágkosarakat adja meg változatlan árak mellett. A jövedelem minden egyes szintjén ( m < m < m ) mindkét termékből megkapjuk az optimális mennyiséget. Tekintsük azonban csak az egyik jószágot (mondjuk: x -et), és rajzoljuk fel e jószág különböző jövedelmi szintekhez tartozó optimális fogyasztását az (m, x ) koordinátarendszerben! 8.3 fólia Ha e koordinátarendszer tengelyeit felcseréljük, akkor egy igen fontos függvényhez jutunk. A függvény neve: Engel-görbe. 2 Az Engel-görbe megmutatja, hogy a jószág fogyasztása milyen összefüggésben áll a fogyasztó jövedelmével. A fólián látható példa szerint az x termék fogyasztása nő a fogyasztó jövedelmének növekedésével. 8.4 fólia Egy jószág fogyasztása nem feltétlenül áll pozitív összefüggésben a fogyasztói jövedelem emelkedésével. További definíciók következnek. 2 Ernst Engel (82-896) német statisztikus után nevezték el. 3
4 8.4 Normál és alsóbbrendű jószág Normál javaknak nevezzük azokat a javakat, melyeknek esetében a jövedelem és fogyasztás között pozitív összefüggés áll fenn. Normál jószág esetében az Engel-görbe pozitív emelkedésű, ami egyszerűen azt jelenti, hogy jövedelemünk növekedése esetén többet fogyasztunk a szóban forgó termékből. Erre láttunk példát az imént bemutatott ábrákon is. A normál jószág Engel-görbéje így fest: 8.5 fólia Alsóbbrendű javaknak nevezzük azokat a javakat, melyeknek esetében a jövedelem és fogyasztás között negatív összefüggés áll fenn. Alsóbbrendű jószág esetében az Engelgörbe negatív lejtésű, ami egyszerűen azt jelenti, hogy jövedelemünk növekedése esetén kevesebbet fogyasztunk a szóban forgó termékből. Az alábbi ábrákon egy alsóbbrendű jószág jövedelem-ajánlati görbéje és Engel-görbéje látható. 8.6 fólia 8.7 fólia Egy jószág normál vagy alsóbbrendű volta a jövedelem szintjétől is függ. Valószínű, hogy a nagyon szegény emberek jövedelmük emelkedésével több olcsó és rossz minőségű felvágottat fognak fogyasztani (normál jószág). Egy jövedelemszint fölött azonban a jövedelem növekedése az embereket arra készteti, hogy inkább jobb minőségű felvágottakat fogyasszanak, és így a olcsó és rossz minőségű felvágottak fogyasztása visszaesik (alsóbbrendű jószág). 8.5 Néhány példa A továbbiakban megvizsgáljuk, hogyan fest a jövedelem-ajánlati görbe és az Engel-görbe különféle speciális preferenciák esetén! Tökéletes helyettesítés: Ha az x és x 2 jószág egymás tökéletes helyettesítői, akkor mint a múlt órán is láttuk fogyasztásunkban kizárólag az egyik termékre specializálódunk, a másik termékből nem fogyasztunk semmit. A p 2 > p esetben csakis a relatíve olcsóbb x terméket fogjuk fogyasztani. A kereslet volumenét ez esetben az x = m / p összefüggés adja meg. Ebből közvetlenül adódik, hogy az Engel-görbe egy egyenes lesz, melynek meredeksége: / p. 8.8 fólia Tökéletes kiegészítés: Ha az x és x 2 jószág egymás tökéletes kiegészítői, akkor az azt jelenti, hogy változatlan arányban mindig együtt fogyasztjuk őket. Ha ez az arány :-hez * * * * (mint a jobb- és ballábas cipők esetében), akkor ez az ( x, x2 ) csomag ( x = x2 ) fogyasztását jelenti. A fogyasztás mennyiségét ez esetben az x = m /( p + p2) összefüggés adja meg. Ebből közvetlenül adódik, hogy az Engel-görbe megint egy egyenes lesz, melynek meredeksége: /( p + ). p2 4
5 8.9 fólia Cobb-Douglas preferenciák: Könnyen megmutatható (erre a szemináriumokon kerül sor), hogy a jól viselkedő preferenciák körébe tartozó Cobb-Douglas preferenciák esetében a kereslet mennyiségét az x = am / p, illetve x2 = ( a) m / p2 összefüggések adják meg. Ezekből közvetlenül adódik, hogy a megfelelő Engel-görbék lineárisak, meredekségük pedig rendre a / p, illet-ve ( a) / p fólia 8. fólia Homotetikus preferenciák: Az előbbiekben említett mindhárom preferencia az ún. homotetikus preferenciák körébe tartozik. Homotetikus preferenciák esetében igaz az alábbi állítás: ha valaki előnyben részesít egy adott A jószágkosarat egy másik B jószágkosárral szemben, akkor ha a szóban forgó kosarak által reprezentált mennyiségeket (fogyasztásvektorokat) egy konstanssal megszorozzuk, az illető egyén az eredetileg preferált A kosarat továbbra is előnyben részesíti B-vel szemben. Ilyen jellegű preferenciák esetében (amikor is a fogyasztó preferenciái a javak arányaitól függnek) az Engel-görbe lineráris, és az origóból indul ki. 8.2 fólia A homotetikus preferenciák nem túl realisztikusak, viszont könnyű velük dolgozni a lineáris jövedelmi hatásokat könnyű technikailag kezelni, ami vonzóvá teheti őket a közgazdasági elemzések során. Kvázilineáris preferenciák: A közgazdasági elemzésekben fontos szerepet töltenek be a a kvázilineáris preferenciák. Erről a preferenciatípusról a korábbi hetekben már volt szó. 8.3 fólia A megadott u ( x, x2) = v( x) + x2 hasznossági függvény és a hozzá tartozó közömbösségi térkép alapján belátható, hogy a jövedelem növekedése nem érinti x termék fogyasztását, egyedül x 2 fogyasztását növeli. A kvázilineráris preferenciák alkalmazásával könnyen elérhetjük, hogy egy termék fogyasztását (jelen esetben x -ét) függetlenítsük a jövedelmi hatástól. Ez bizonyos elemzések esetében hasznunkra lehet. A megfelelő Engel-görbe az x tengellyel párhuzamos egyenes. Bár az efféle hasznossági függvény nem tűnik túl realisztikusnak, tény az, hogy bizonyos javakból (például fogkrémből vagy sóból) nem veszünk többet akkor, ha nő a jövedelmünk. Ha az összes többi jószág, illetve egy olyan termék közti választást vizsgáljuk, amely költségvetésünk nem túl nagy részét teszi ki, akkor a kvázilineáris preferenciák feltételezésével nem tévedünk túl nagyot (legalábbis akkor, ha az összjövedelmünk elég nagy). 5
6 AZ ÁRVÁLTOZÁS ELEMZÉSE A továbbiakban rátérünk a bevezetőben ígért másik kérdés, az árváltozás hatásának elemzésére. Arra vagyunk kíváncsiak, hogyan változik a fogyasztás mennyisége, ha az illető termék ára változik, miközben a többi termék ára és a fogyasztó jövedelme változatlan marad. Ha a költségvetési egyenes egyenletét átrendezzük, és x 2 -t x függvényében fejezzük ki, akkor könnyen belátható, hogy az x termék saját árának változása elforgatja költségvetési egyenest a függőleges tengelymetszet pontjából, hiszen a költségvetési egyenes meredekségét meghatározó árarány megváltozott: ha p ár csökken, akkor a költségvetési halmaz tágabbra nyílik, ha p ár nő, akkor leszűkül. Hogyan hat ez x termék fogyasztására? A probléma megértéséhez be kell vezetnünk néhány új fogalmat. 8.6 Ár-ajánlati görbe és keresleti görbe Induljunk ki abból az esetből, hogy p ár fokozatosan csökken! Kössük össze egymással az így fokozatosan egyre laposabbá váló költségvetési egyenesek és a megfelelő közömbösségi görbék érintési pontjait, amelyek kijelölik az változó árarányokhoz tartozó fogyasztói optimumokat! Az ily módon meghatározott görbét ár-ajánlati görbének nevezzük. 8.4 fólia Az ár-ajánlati görbe (ÁAG) megadja egy adott termék változó áraihoz tartozó optimális fogyasztói kosarakat (miközben a másik termék ára és a fogyasztó jövedelme változatlan marad). Az ár-ajánlati görbét a két termék mennyisége által meghatározott ( x, x ) 2 koordinátarendszerben ábrázoltuk. Minket azonban itt csak az egyik termék fogyasztásának alakulása érdekel, nevezetesen: azé a terméké, amelynek az ára változott. A sajátár-változás (p változása) és a fogyasztás változása (x változása) közti függvényszerű összefüggést az ár-ajánlati görbét is tartalmazó ( x, x ) koordinátarendszerről 2 könnyen leolvashatjuk. Nem kell mást tennünk, mint egy másik ( p, x ) koordinátarendszerre felrajzolni ezeket a pontokat. Az ily módon felrajzolható görbét inverz keresleti görbének nevezzük. Az inverz keresleti görbe a termék árát adja meg a mindenkori optimális fogyasztás függvényében. 8.5 fólia Ha a koordinátatengelyeket felcseréljük, akkor megkapjuk a keresleti görbét, amely az adott termék saját árának függvényében adja meg a fogyasztás optimális mennyiségét. Vegyük észre, hogy a keresleti görbe nem más, mint egy, a grafikus ábrázolhatóság céljából leegyszerűsített keresleti függvény. Az x = x ( p ) keresleti görbe az x = x p, p, ) keresleti függvény pontjait jelöli azzal a feltétellel, hogy a másik ( 2 m 6
7 termék árát (p 2 -t) és a fogyasztó jövedelmét (m-et) egy előre megadott szinten rögzítettük: x = x p p = ~ p, m = ~ ). ( 2 2 m 8.6 fólia Közönséges esetben, amikor egy jószág ára nő, a kereslete csökkenni fog. Egy jószág ára és kereslete általában ellenkező irányban változik, ami azt jelenti, hogy a keresleti görbének rendszerint negatív meredeksége van: dx / dp < 0. A következő előadás során pontosítani fogjuk ezt a megállapítást mely a közgazdaságtan egyik legfontosabb megállapítása, és a bizonyítását is megadjuk. 8.7 Az inverz keresleti görbe közgazdasági értelmezése Az inverz keresleti görbe egyes pontjainak fontos közgazdasági jelentése van. 8.7 fólia Emlékezzünk vissza arra, hogy optimális döntés esetén fenn kell állnia a leggyakoribb, legérdekesebb esetben az MRS = p / p 2 érintőfeltételnek: a fogyasztói optimumban a fogyasztó szubjektív értékelését kifejező helyettesítési határarány és piac objektív értékelését kifejező árarány megegyezik. Ha ebből az egyenletből kifejezzük p árat, megkapjuk a p = p2 MRS egyenlőséget. Ez azt jelenti: az x jószág ára arányos az x és x 2 jószág közötti helyettesítési határaránnyal. Tekintsük azt a különösen fontos esetet, amikor a másik jószág (x 2 ) nem más, mint az összes többi termékre való kiadásunk, vagyis azt az esetet, amikor x 2 az összetett jószág. Minthogy az összetett jószág ára, az érintőfeltétel az alábbi alakot ölti: p = MRS. Maga egy konkrét p ár tehát nem más, mint a fogyasztó fizetési határhajlandósága éppen aktuális szintű fogyasztása esetén: azt fejezi ki, hogy mennyi egyéb fogyasztásról lenne hajlandó lemondani x termék mennyiségének egységnyi növeléséért. Mivel ez a megállapítás az inverz keresleti görbe minden pontjára (a fogyasztás minden lehetséges szintjére) igaz, ezért az inverz keresleti görbe pontjai azt fejezik ki, hogy a fogyasztó az x termék mindenkor adott fogyasztási szintjén mennyi pénzt lenne hajlandó áldozni (mennyi egyéb fogyasztási lehetőségről lenne hajlandó lemondani) annak érdekében, hogy fogyasztását x termékből egységnyivel növelje. Egy apró terminológiai megjegyzés: A közgazdászok körében (Marshall óta) az a konvenció, hogy amikor keresleti görbéről beszélnek, a grafikus ábrázolásokban voltaképpen nem azt, hanem annak inverzét szokták felrajzolni. Ez senkit se zavarjon meg. Ez a pongyolaság nagyjából száz éve szokássá vált a közgazdász-társadalomban. A grafikus ábrázolások során gyakran felrajzolt (voltaképpen: inverz) keresleti görbét a későbbiekben mi sem fogjuk minden esetben rigorózusan inverz keresleti görbének nevezni. Ebben az előadásban azonban hogy ne keverjük össze a frissen bevezett fogalmakat pontosan fogjuk használni a keresleti görbe és az inverz keresleti görbe terminusait. 7
8 8.8 Közönséges javak és Giffen-javak További fogalomtisztázó definíciók következnek. Ez az előadás sajnos ilyen. Ezt a fáradságot nem takaríthatjuk meg. A következő előadások során mindezeket az újonnan bevezetett fogalmakat gyakran fogjuk használni. Az ár-ajánlati görbe, illetve a keresleti (vagy inverz keresleti görbe) alakja ismét csak elárul egy fontos dolgot. Nem szükségszerű ugyanis az, hogy a keresleti görbe az ár és a kereslet mennyisége között negatív összefüggést írjon le. Csak az ún. közönséges javak esetében igaz, hogy a termékből fogyasztott mennyiség nő, ha a termék ára csökken. Ezen az eseten mutattuk meg az ár-ajánlati görbét és az inverz keresleti görbét. Most megismételjük egy pillanatra a már egyszer bemutatott ábrát. 8.8 fólia A közönséges javak szöges ellentétét jelentik a Giffen-javak 3. Giffen-javak esetében az ár és a kereslet mennyisége között pozitív kapcsolat van: ha a termék ára nő, nő a termékből fogyasztott mennyiség is. 8.9 fólia Bár Giffen-javak létezhetnek, illetve egy jószág fogyasztása elvileg alakulhat e szerint az összefüggés szerint, ez az eset mégis inkább nagyon ritka kivételnek tekinthető. A jövő órán már jobban fogjuk érteni, hogy miért. 8.9 Néhány példa Korábbi gyakorlatunkhoz híven, nézzük meg, hogyan fest az ár-ajánlati görbe és az inverz keresleti görbe néhány jellegzetes preferenciatípus esetén! Tökéletes helyettesítés: Ha az x és x 2 jószág egymás tökéletes helyettesítői, akkor az x jószág kereslete nulla, amennyiben a két ár között a p > p2 reláció áll fenn. Ha p = p2, akkor a kereslet a költségvetési egyenes mentén tetszőleges nagyságú. Amennyiben p < p 2, a kereslet nagysága: m / p fólia Tökéletes kiegészítés: Ha az x és x 2 jószág egymás tökéletes kiegészítői, akkor az azt jelenti, hogy változatlan arányban mindig együtt fogyasztjuk őket. Ha ez az arány :-hez * * * * (mint a jobb- és ballábas cipők esetében), akkor ez az ( x, x2 ) csomag ( x = x2 ) fogyasztását jelenti. A kereslet mennyiségét ez esetben az x = m /( p + p2) összefüggés adja meg. Ha rögzítjük m és p 2 értékét, akkor a keresleti görbe egyenlete x ~ /( ~ = m p + p2) lesz, ahol m ~ és~ p 2 egy-egy konkrét szám. Ebből p -et kifejezve, megkapjuk az inverz keresleti görbét, amely nem más, mint egy hiperbola: p = ( m~ / x ) ~ p. Lejtése természetesen negatív. 2 3 Robert Giffen (837-90) angol statisztikus után nevezték el. 8
9 8.2 fólia 8.0 Helyettesítés és komplementaritás (kiegészítés) Használtuk már a helyettesítés és kiegészítés (komplementaritás) kategóriáit, de adósak maradtunk azzal, hogy formálisan is definiáljuk őket. Mivel eddig csak a tökéletes helyettesítés, illetve a tökéletes kiegészítés eseteivel találkoztunk, hasznos lesz a nem tökéletes helyettesítés és a nem tökéletes kiegészítés eseteit is szemügyre venni. Tökéletes vs. nem tökéletes helyettesítés/kiegészítés: piros és kék ceruzák bizonyos helyzetekben (ha valaki nem törődik a szinekkel) tökéletesen helyettesítik egymást; ezzel szemben a toll és a ceruza csak bizonyos mértékig helyettesíti egymást (a toll pl. nem radírozható). Hasonlóképpen: a jobb és ballábas cipők egymás tökéletes kiegészítői (mindig együtt használják őket); a cipő és a zokni is kiegészítői egymásnak, de nem tökéletes kiegészítői: előfordulhat (bár ritka), hogy valaki zokni nélkül hord cipőt. A helyettesítés és kiegészítés közgazdasági fogalmának megértéséhez a keresleti függvényt kell megvizsgálnunk. Emlékszünk rá: egy jószág keresleti függvénye azt mutatja meg, hogyan változik az adott termék kereslete a jószág saját árának, a többi jószág árának és a fogyasztó jövedelmének a függvényében. Amikor azt vizsgáljuk, hogyan változik egy jószág kereslete egy másik jószág árának függvényében, akkor voltaképpen a szóban forgó két jószág közti lehetséges helyettesítési és komplementaritási relációkat firtatjuk. Ha az x jószág kereslete megnő, amikor az x 2 jószág ára emelkedik, akkor azt mondjuk, hogy az x helyettesítője x 2 -nek. A keresleti függvény szóban forgó deriváltja ennek megfelelően pozitív fólia Tökéletes helyettesítés esetén esetén e derivált értéke pozitív vagy nulla fólia Ha az x jószág kereslete csökken, amikor az x 2 jószág ára emelkedik, akkor azt mondjuk, hogy az x kiegészítője x 2 -nek. A keresleti függvény szóban forgó deriváltja ennek megfelelően negatív. E derivált értéke tökéletes kiegészítés esetén is negatív. E fogalmakkal kapcsolatban két dologra kell fölhívnunk a figyelmet. Mindkét dolog kéttermékes modellünk sajátosságaiból fakad.. Mivel a jövedelem rögzített, ha többet költünk az egyik jószágra, kevesebb marad a másikra. Ez némiképp korlátozza a lehetséges helyettesítési és kiegészítő kapcsolatok körét. Kettőnél több termékes modellben ez nem olyan nagy probléma. 2. A helyettesítés és kiegészítés fent adott meghatározásaival gondjaink lehetnek kettőnél több termékes modell esetén. Például: előfordulhat, hogy két termék közti helyettesítési vagy komplementaritási kapcsolatok nem szimmetrikusak: az i-edik termék helyettesítője/komplementere a j-ediknek, de a j- 9
10 edik termék nem helyettesítője/komplementere az i-ediknek. E sajátosság miatt egy másik definíciót is szokás adni a helyettesítés, illetve kiegészítés fogalmainak. (Erre a problémára még visszatérünk a. előadás során.) 8. Összegzés Foglaljuk össze a javak osztályozása kapcsán tanultakat. A javakat osztályoztuk aszerint, hogy a termék kereslete hogyan reagál a jövedelem, a saját ár és egy másik termék árának változására. Az alábbi táblázatban a keresleti függvény megfelelő parciális deriváltjainak értékével definiáltuk az egyes fogalmakat fólia 0
11 8. előadás EGYÉNI KERESLET MELLÉKLET Kertesi Gábor
12 8. Keresleti függvény Környezeti tényezőket reprezentáló argumentumok-kal: x x ( p,p,m,k,, ) = x 2 K l ( p,p,m,k,, ) 2 = x2 2 K l Környezeti tényezők nélkül: = x( p,p,m) x ( p,p,m) x 2 x2 = 2 2 2
13 8.2 Jövedelem-ajánlati görbe (JAG) 3
14 8.3 Jövedelem-ajánlati görbe és az Engel-görbe 4
15 8.4 Engel-görbe 5
16 8.5 Normál jószág Engel-görbéje 6
17 8.6 Alsóbbrendű jószág jövedelem-ajánlati görbéje és Engel-görbéje 7
18 8.7 Alsóbbrendű jószág Engel-görbéje 8
19 8.8 Jövedelem-ajánlati görbe és Engel-görbe tökéletes helyettesítés esetén 9
20 8.9 Jövedelem-ajánlati görbe és Engel-görbe tökéletes kiegészítés esetén 20
21 8.0 Jövedelem-ajánlati görbe Cobb-Douglas preferenciák esetén 2
22 8. Engel-görbék Cobb-Douglas preferenciák esetén 22
23 8.2 Jövedelem-ajánlati görbe és Engel-görbe homotetikus preferenciák esetén 23
24 8.3 Jövedelem-ajánlati görbe és Engel-görbe kvázilineáris preferenciák esetén 24
25 8.4 Ár-ajánlati görbe (ÁAG) 25
26 8.5 Ár-ajánlati görbe és az inverz keresleti görbe 26
27 8.6 Keresleti függvény és keresleti görbe Keresleti függvény: = x( p,p,m) x ( p,p,m) x 2 x2 = 2 2 Keresleti görbe: x x 2 = x = x 2 (p (p 2 ) ), ami valójában azt jelenti, hogy: x x 2 = x = x 2 (p (p 2 p 2 p = p ~ = p ~ 2,m = m ~ ),m = m ~ ), ahol m ~, illetve p ~ és p ~ 2 valamely előre rögzített érték. 27
28 8.7 Az inverz keresleti görbe közgazdasági jelentése Az optimális fogyasztás pontjában (általában) fennáll az érintőfeltétel: p MRS,2 = () p 2 Átrendezve: p p2 MRS,2 = (2) Így: Ha x 2 = összetett áru (fogyasztásunk értéke minden egyéb termékből), akkor p 2 =. p = MRS,2 (3) Mivel különböző árarányok esetén más és más x optimális fogyasztást kapunk, így a p = p(x ) (4) inverz keresleti görbe voltaképpen a fogyasztó fizetési határhajlandóságát fejezi ki minden lehetséges x fogyasztási szinten. 28
29 8.8 Közönséges jószág 29
30 8.9 Giffen-jószág 30
31 8.20 Ár-ajánlati görbe és inverz keresleti görbe tökéletes helyettesítés esetén 3
32 8.2 Ár-ajánlati görbe és inverz keresleti görbe tökéletes kiegészítés esetén 32
33 8.22 x jószág x 2 helyettesítője * x keresleti függvénye: x 2 = x(p,p,m). () Amennyiben fennáll az alábbi összefüggés: x p > 2 0, (2) akkor azt mondjuk, hogy az x jószág x 2 helyettesítője: ha x 2 drágul a fogyasztó többet fogyaszt x -ből (x 2 -t x -gyel helyettesíti). * A 0. és. előadás során még finomítjuk ezt a meghatározást. 33
34 8.23 x jószág x 2 kiegészítője (komplementere) * x keresleti függvénye: x 2 = x(p,p,m). () Amennyiben fennáll az alábbi összefüggés: x p < 2 0, (2) akkor azt mondjuk, hogy az x jószág x 2 kiegészítője (komplementere): ha x 2 drágul a fogyasztó x -ből is kevesebbet fogyaszt, hiszen a kiegészítő javakat együtt fogyasztják. * A 0. és. előadás során még finomítjuk ezt a meghatározást. 34
35 8.24 A javak osztályozása az x i = x i (p, p 2, m), i =, 2 keresleti függvény alapján Jövedelemváltozásra való reakciók alapján: Normál jószág: x i m 0 i =, 2 Alsóbbrendű jószág: x i m 0 i =, 2 Sajátár-változásra való reakciók alapján: Közönséges jószág: Giffen-jószág: x p i x p i i i 0 0 i =, 2 i =, 2 A másik termék árának változására való reakciók alapján: x i jószág x j helyettesítője: x p i j i, j =, 2 0 i j x i jószág x j kiegészítője: x p i j 0 i, j =, 2 i j 35
2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
6. előadás PREFERENCIÁK (2), HASZNOSSÁG
6. előadás PREFERENCIÁK (), HASZNOSSÁG Kertesi Gábor Varian 3. fejezetének 50-55. oldalai és 4. fejezete alapján PREFERENCIÁK FEJEZET FOLYTATÁSA 6. A helyettesítési határarány Dolgozzunk mostantól fogva
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó
MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
14. előadás JÓLÉTI TÉTELEK
4. előadás JÓLÉTI TÉTELEK Kertesi Gábor Varian 9. fejezetének 9-3. alfejezetei átdolgozva 4. evezető Ennek az előadásnak a során az előző órán vett kéttermékes, kétszereplős, termelés nélküli általános
Forgásfelületek származtatása és ábrázolása
Forgásfelületek származtatása és ábrázolása Ha egy rögzített egyenes körül egy tetszőleges görbét forgatunk, akkor a görbe úgynevezett forgásfelületet ír le; a rögzített egyenes, amely körül a görbe forog,
KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN)
0801 ÉRETTSÉGI VIZSGA 009. május. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM JAVÍTÁSI ÚTMUTATÓ
Termékdifferenciálás. Modellek. Helyettesíthetıség és verseny. 13.elıadás: Monopolisztikus verseny és monopolista viselkedés
1 /8 13.elıadás: Monopolisztikus verseny és monopolista viselkedés Termékdifferenciálás A termékek azért differenciáltak, mert a fogyasztók úgy gondolják, hogy különböznek egymástól A fogyasztónak mindig
Bináris keres fák kiegyensúlyozásai. Egyed Boglárka
Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi
Mikroökonómia szeminárium 2. Konzultáció
Mikroökonómia szeminárium 2. Konzultáció Révész Sándor Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011. október 12. Tesztek - Preferenciák, közömbösségi görbék Egy közömbösségi görbe mentén biztosan
4. A GYÁRTÁS ÉS GYÁRTÓRENDSZER TERVEZÉSÉNEK ÁLTALÁNOS MODELLJE (Dudás Illés)
4. A GYÁRTÁS ÉS GYÁRTÓRENDSZER TERVEZÉSÉNEK ÁLTALÁNOS MODELLJE (Dudás Illés) ). A gyártás-előkészítés-irányítás funkcióit, alrendszereit egységbe foglaló (általános gyártási) modellt a 4.1. ábra szemlélteti.
Átrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30.
Átrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30. 1. Határozzuk meg, hány egybevágósága van egy négyzetnek! Melyek azonos jellegűek ezek között? Ez egy általános bevezető feladat tud
2. előadás: További gömbi fogalmak
2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással
Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia
Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Készítette: Dr. Ábrahám István A játékelmélet a 2. század közepén alakult ki. (Neumann J., O. Morgenstern). Gyakran
Mikroökonómia I. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét PREFERENCIÁK, HASZNOSSÁG 2. RÉSZ
MIKROÖKONÓMI I. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. PREFERENCIÁK, HSZNOSSÁG 2. RÉSZ Készítette: K hegyi Gergely, Horn Dániel Szakmai felel s: K hegyi Gergely 2010. június tananyagot
Analízisfeladat-gyűjtemény IV.
Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította
Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László
Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication
MIKROÖKONÓMIA - konzultáció - Piac és fogyasztás
MIKROÖKONÓMIA - konzultáció - Piac és fogyasztás Révész Sándor szuperkonzultacio.hu 2012. január 7. Dierenciálszámítási alapok A mikroökonómiai problémák megoldása két formában fog történni: 1. egyensúly
Mikroökonómia I. feladatok
Mikroökonómia I. feladatok 2014 december Írta: Rózemberczki Benedek András Alkalmazott közgazdaságtan szak Got It! konzultáció 2014 TARTALOMJEGYZÉK TARTALOMJEGYZÉK Tartalomjegyzék 1. Preferenciák 3 2.
MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
Bevezetés. Párhuzamos vetítés és tulajdonságai
Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való
Diplomamunka. Koczka László
Diplomamunka Koczka László Debrecen 010 Debreceni Egyetem Informatikai Kar Közgazdasági Modellek Számítógépes Szimulációja Témavezető: Dr. Földvári Péter Egyetemi adjunktus Készítette: Koczka László Gazdaságinformatikus
Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét TÉNYEZŽPIACOK ÉS JÖVEDELEMELOSZTÁS 2. RÉSZ
MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B TÉNYEZŽPIACOK ÉS JÖVEDELEMELOSZTÁS 2. RÉSZ Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer,
LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás
LÁNG CSABÁNÉ SZÁMELMÉLET Példák és feladatok ELTE IK Budapest 2010-10-24 2. javított kiadás Fels oktatási tankönyv Lektorálták: Kátai Imre Bui Minh Phong Burcsi Péter Farkas Gábor Fülöp Ágnes Germán László
A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
Budapesti Corvinus Egyetem Közgazdaságtudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar
Budapesti Corvinus Egyetem Közgazdaságtudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Hermán Dániel Nyugdíjváromány el rejelzése egyéni paraméterek alapján MSc. szakdolgozat Témavezet
A migrációs statisztika fejlesztésének lehetőségei
A migrációs statisztika fejlesztésének lehetőségei Megvalósíthatósági tanulmány Összeállította Tóth Pál Péter Készült a A migrációs statisztika fejlesztésének lehetőségei c. projekt (EIA/2010/3.2.1.1.)
Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa
Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT. Készítette: Szigeti Zsolt. Felkészítő tanár: Báthori Éva.
Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT Készítette: Szigeti Zsolt Felkészítő tanár: Báthori Éva 2010 október Dolgozatom témája a különböző függvények, illetve mértani
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1.
Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás szakirány áttekintő tanterv Nagyításhoz
Gráfokkal megoldható hétköznapi problémák
Eötvös Loránd Tudományegyetem Természettudományi Kar Gráfokkal megoldható hétköznapi problémák Szakdolgozat Készítette Vincze Ágnes Melitta Konzulens Héger Tamás Budapest, 2015 Tartalomjegyzék Bevezetés
Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013
UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS
Valószínűségszámítás feladatgyűjtemény
Valószínűségszámítás feladatgyűjtemény Összeállította: Kucsinka Katalin Tartalomjegyzék Előszó 4 1. Kombinatorika 5 2. Eseményalgebra 14 3. Valószínűségszámítás 21 3.1. Klasszikus valószínűség.....................
Tartalomjegyzék. 5. A közbeszerzési eljárás főbb eljárási cselekményei. 6. Eljárási időkedvezmények a közbeszerzési törvényben
Magyar Terület- és Regionális Fejlesztési Hivatal Regionális Fejlesztés Operatív Program Irányító Hatósága INFORMÁCIÓS CSOMAG a Strukturális Alapokból és a Kohéziós Alapból származó támogatásokat felhasználó
J/55. B E S Z Á M O L Ó
KÖZBESZERZÉSEK TANÁCSA J/55. B E S Z Á M O L Ó az Országgyűlés részére a Közbeszerzések Tanácsának a közbeszerzések tisztaságával és átláthatóságával kapcsolatos tapasztalatairól, valamint a 2005. január
Költségvetési korlát és költségvetési egyenes
(C) htt://kgt.bme.hu/ ikroökonómia Elıadásvázlat. október 4. I. Rövid elmélettörténeti visszatekintés - Klasszikus közgazdaságtan (dam Smithtıl egészen a XIX. század második feléig) kínálatorientált közgazdaságtan
Fizikaverseny, Döntő, Elméleti forduló 2013. február 8.
Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek
Elektromágneses hullámok - Hullámoptika
Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik
Valószín ségelmélet házi feladatok
Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott
Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény
4. sz. Füzet. A hibafa számszerű kiértékelése 2002.
M Ű S Z A K I B I Z O N S Á G I F Ő F E L Ü G Y E L E 4. sz. Füzet A hibafa számszerű kiértékelése 00. Sem a Műszaki Biztonsági Főfelügyelet, sem annak nevében, képviseletében vagy részéről eljáró személy
3. Konzultáció: Kondenzátorok, tekercsek, RC és RL tagok, bekapcsolási jelenségek (még nagyon Béta-verzió)
3. Konzultáció: Kondenzátorok, tekercsek, R és RL tagok, bekapcsolási jelenségek (még nagyon Béta-verzió Zoli 2009. október 28. 1 Tartalomjegyzék 1. Frekvenciafüggő elemek, kondenzátorok és tekercsek:
Híd és ajtó. Georg Simmel. Ó z e r K a t alin fo r dí t á s a
Georg Simmel Híd és ajtó Ó z e r K a t alin fo r dí t á s a 30 A külvilág dolgainak képe számunkra azzal a kétértelműséggel bír, hogy a külső természetben minden egymáshoz kapcsolódva, ám ugyanakkor különállóként
S T A T I K A. Az összeállításban közremûködtek: Dr. Elter Pálné Dr. Kocsis Lászlo Dr. Ágoston György Molnár Zsolt
S T A T I K A Ez az anyag az "Alapítvány a Magyar Felsôoktatásért és Kutatásért" és a "Gépészmérnök Képzésért Alapítvány" támogatásával készült a Mûszaki Mechanikai Tanszéken kísérleti jelleggel, hogy
Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn
Modern piacelmélet ELTE TáTK Közgazdaságtudományi Tanszék Selei Adrienn A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült az ELTE TáTK
MAGYARORSZÁG NYUGDÍJRENDSZERE (1997-2013) 2013. Október 5-7.
MAGYARORSZÁG NYUGDÍJRENDSZERE (1997-2013) 2013. Október 5-7. 1 TARTALOM: I. Előzmény 1997-(röviden) 1. MAGÁNNYUGDÍJ RENDSZER II. NYUGDÍJREFORM FOLYAMATOK MAGYARORSZÁGON 2009-2013 1. KORHATÁREMELÉS 2. MAGÁNNYUGDÍJ
(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez.
1. A transzformátor működési elve, felépítése, helyettesítő kapcsolása (működési elv, indukált feszültség, áttétel, felépítés, vasmag, tekercsek, helyettesítő kapcsolás és származtatása) (1. és 2. kérdéshez
Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 2. rész
MIKROÖKONÓMIA II. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 2. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack
Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.
Halmazok Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x H,
MATEMATIKA. 5 8. évfolyam
MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni
Az analízis néhány közgazdaságtani alkalmazása
Az analízis néhány közgazdaságtani alkalmazása Szakdolgozat Írta: Simon Anita Matematika Bsc szak Matematikai elemző szakirány Témavezető: Sikolya Eszter, adjunktus Alkalmazott Analízis és Számításmatematikai
Szakképzés Foglalkoztatás Gyakorlati képzés Pályakezdők Munkaerő-piaci kereslet-kínálat. Tanulmány
Szakképzés Foglalkoztatás Gyakorlati képzés Pályakezdők Munkaerő-piaci kereslet-kínálat Tanulmány Pályakezdő szakmunkások elhelyezkedésének alakulása Gazdálkodók szakképző iskolát végzettek, felsőfokú
A rádió* I. Elektromos rezgések és hullámok.
A rádió* I. Elektromos rezgések és hullámok. A legtöbb test dörzsölés, nyomás következtében elektromos töltést nyer. E töltéstől függ a test elektromos feszültsége, akárcsak a hőtartalomtól a hőmérséklete;
Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád
Dr. Katz Sándor: Lehet vagy nem? Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád A kreativitás fejlesztésének legközvetlenebb módja a konstrukciós feladatok megoldása.
ÉS TESZTEK A DEFINITSÉG
MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001
Bevezetés a valószínűségszámításba és alkalmazásaiba: példákkal, szimulációkkal
Bevezetés a valószínűségszámításba és alkalmazásaiba: példákkal, szimulációkkal Arató Miklós, Prokaj Vilmos és Zempléni András 2013.05.07 Tartalom Tartalom 1 1. Bevezetés, véletlen kísérletek 4 1.1 Bevezetés...................................
* Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Tárgyfelelős neve * Modern piacelmélet Kutatás és fejlesztés. * Kutatás és fejlesztés
* Modern piacelmélet ELTE TáTK Közgazdaságtudományi Tanszék Tárgyfelelős neve * Modern piacelmélet Kutatás és fejlesztés ELTE TáTK Közgazdaságtudományi Tanszék Készítette: Hidi János * Kutatás és fejlesztés
Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK
Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:
Matematikai programozás gyakorlatok
VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................
Matematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
A történelem érettségi a K-T-tengelyen Válasz Dupcsik Csaba és Repárszky Ildikó kritikájára. Kritika és válasz
A történelem érettségi a K-T-tengelyen Válasz Dupcsik Csaba és Repárszky Ildikó kritikájára Kritika és válasz Érdeklődéssel olvastuk Repárszky Ildikó és Dupcsik Csaba elemzését a történelem érettségi szerkezetében
MIKROÖKONÓMIA II. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február
MIKROÖKONÓMIA II. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
KÖNYVEKRŐL. Ádám G yörgy: Az orvosi hálapénz M agyarországon. (Magvető Kiadó, Budapest 1986.)
KÖNYVEKRŐL Ádám G yörgy: Az orvosi hálapénz M agyarországon (Magvető Kiadó, Budapest 1986.) Magam sem hittem volna, hogy Ádám György m onográfiájával az orvosi hálapénz ilyen újszerű megközelítését és
1. Előadás Lineáris programozás Szállítási feladatok
1. Előadás Lineáris programozás Szállítási feladatok Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Projekt Témák: Lineáris programozási feladat (3 hallgató) Szállítási feladat
Duna House Barométer. 16. szám. 2012. III. negyedév + 2012. szeptember hónap
Duna House Barométer 16. szám 2012. III. negyedév + 2012. szeptember hónap Tartalomjegyzék: Vezetői összefoglaló Tranzakciószám és keresletindex Lakásindexek Lakásindexek - Regionális Régiós lakásadatok
MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
AZ EU KÖZÖS ÁRUSZÁLLÍTÁSI LOGISZTIKAI POLITIKÁJA
DR. RIXER ATTILA * DR. TÓTH LAJOS ** AZ EU KÖZÖS ÁRUSZÁLLÍTÁSI LOGISZTIKAI POLITIKÁJA 1. BEVEZETÉS Az EU közös áruszállítási logisztikai politikája önállóan nem létezik, de az EU közös közlekedéspolitikájának
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika
Kombinatorika Modulok: A kombinatorikai feladatok megoldásához három modult használunk: Permutáció (Sorba rendezés) Kombináció (Kiválasztás) Variáció (Kiválasztás és sorba rendezés) DEFINÍCIÓ: (Ismétlés
III. PÉNZPOLITIKA ÉS PÉNZELMÉLET
III. PÉNZPOLITIKA ÉS PÉNZELMÉLET A pénz felhasználása gazdaságpolitikai szolgálatra részben feltételezte, részben maga után vonta a pénznek a gazdaságban betöltött szerepével kapcsolatos elméleti nézetek
KÖZGAZDASÁGTAN ALAPJAI
KÖZGAZDASÁGTAN ALAPJAI Tartalom 1. A makroökonómia alapkérdései, a makroszintű jövedelem mérése 2. Gazdasági körforgás 3. Az árupiac és az IS görbe 4. A pénzpiac és az LM görbe 5. Az IS-LM rendszer 6.
Tűgörgős csapágy szöghiba érzékenységének vizsgálata I.
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Tudományos Diákköri Konferencia Tűgörgős csapágy szöghiba érzékenységének vizsgálata I. Szöghézag és a beépítésből adódó szöghiba vizsgálata
Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés
Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a
2.3. A rendez pályaudvarok és rendez állomások vonat-összeállítási tervének kidolgozása...35 2.3.1. A vonatközlekedési terv modellje...37 2.3.2.
TARTALOMJEGYZÉK BEVEZETÉS...5 1. ÁRU ÉS KOCSIÁRAMLATOK TERVEZÉSE...6 1.1. A vonatközlekedési terv fogalma, jelent sége és kidolgozásának fontosabb elvei...6 1.2. A kocsiáramlatok és osztályozásuk...7 1.2.1.
J/19392. A Magyar Köztársaság legfőbb ügyészének. országgyűlési beszámolója. az ügyészség 2005. évi tevékenységéről
J/19392 A Magyar Köztársaság legfőbb ügyészének országgyűlési beszámolója az ügyészség 2005. évi tevékenységéről 2 TARTALOMJEGYZÉK 1. Az ügyészi szervezet 6 2. A büntetőjogi ügyészi tevékenység 8 A) A
A készletezés Készlet: készletezés Indok Készlettípusok az igény teljesítés viszony szerint
A készletezés Készlet: Olyan anyagi javak, amelyeket egy szervezet (termelő, vagy szolgáltatóvállalat, kereskedő, stb.) azért halmoz fel, hogy a jövőben alkalmas időpontban felhasználjon A készletezés
A beszerzési logisztikai folyamat tervezésének és működtetésének stratégiái II.
A beszerzési logisztikai folyamat tervezésének és működtetésének stratégiái II. Prof. Dr. Cselényi József Dr. Illés Béla PhD. egyetemi tanár tanszékvezető egyetemi docens MISKOLCI EGYETEM Anyagmozgatási
Duna House Barométer. 07. szám. 2011. év 2011. december hónap
Duna House Barométer 07. szám 2011. év 2011. december hónap Tartalomjegyzék: Éves összefoglaló: ingatlanpiac 2011 Vezetői összefoglaló Tranzakciószám és keresletindex Lakásindexek Lakásindexek - Regionális
Klasszikus alkalmazások
Klasszikus alkalmazások Termelésoptimalizálás Hozzárendelési probléma: folytonos eset Arbitrázsárazás p. Termelésoptimalizálás A gazdasági élet és a logisztika területén gyakran találkozunk lineáris optimalizálási
Papp Gábor Előadás, 2007. október 19. Bűnözés és vándorlás
Papp Gábor Előadás, 2007. október 19. Bűnözés és vándorlás Előadásomban arra teszek kísérletet, hogy a bűnözés és a vándorlás kapcsolatát, annak lehetséges megközelítési módjait elméletileg és módszertanilag
Kártyajátékok és bűvésztrükkök
Szalkai Balázs, Szalkai István : Kártyajátékok és bűvésztrükkök Közismert, hogy nagyon sok bűvésztrükk matematikai alapokon nyugszik, a kártyaés egyéb játékok matematikai elemzéséről nem is szólva. Nem
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak
Műszaki folyamatok közgazdasági elemzése Előadásvázlat 2016. április 5. Piaci szerkezetek, piaci koncentráció: tökéletes verseny monopólium
Műszaki folyamatok közgazdasági elemzése Előadásvázlat 206. április 5. Piaci szerkezetek, piaci koncentráció: tökéletes verseny monopólium. Optimális (maximális profitot biztosító) termelési mennyiség
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási
MATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
Pongrácz Tiborné S. Molnár Edit: A gyermekvállalási magatartás alakulása
Pongrácz Tiborné S. Molnár Edit: A gyermekvállalási magatartás alakulása (elektronikus verzió, készült 2006-ban) A tanulmány eredetileg nyomtatásban megjelent: Pongrácz Tiborné S. Molnár Edit (1997): A
Elméleti közgazdaságtan I.
Elméleti közgazdaságtan I. lapfogalmak és Mikroökonómia FOGYSZTÓI MGTRTÁS (I. rész) fogasztói preferenciák Eg játék fogasztónak felkínálunk két kosarat azzal, hog bármelik az övé lehet minden egéb feltétel
Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert
Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris
A JÖVİ NEMZEDÉKEK ORSZÁGGYŐLÉSI BIZTOSÁNAK ÁLLÁSFOGLALÁSA
JÖVİ NEMZEDÉKEK ORSZÁGGYŐLÉSI BIZTOSA 1051 Budapest, Nádor u. 22. 1387 Budapest, Pf. 40.Telefon: 475-7100 Fax: 269-1615 A JÖVİ NEMZEDÉKEK ORSZÁGGYŐLÉSI BIZTOSÁNAK ÁLLÁSFOGLALÁSA a Red Bull Air Race repülırendezvény
Felmérés a hitelezési vezetők körében, a bankok hitelezési gyakorlatának vizsgálatára Az első három felmérés összesített eredményének ismertetése
Felmérés a hitelezési vezetők körében, a bankok hitelezési gyakorlatának vizsgálatára Az első három felmérés összesített eredményének ismertetése Az elemzést készítette: Bethlendi András Pénzügyi Stabilitási
Digitális írástudás, társadalmi szegmentáltság
Digitális írástudás, társadalmi szegmentáltság Bernát Anikó Fábián Zoltán 1. Bevezetés Az 1990-es évek óta egyre szélesebb körben használatos a digitális írástudás fogalma, amely a digitális infokommunikációs
III. rész: A VÁLLALATI MAGATARTÁS
III. rész: A VÁAATI MAGATARTÁS Az árupiacon a kínálati oldalon a termelőegységek, a vállalatok állnak. A vállalatok különböznek tevékenységük, méretük, tulajdonformájuk szerint. Különböző vállalatok közös
19. Az elektron fajlagos töltése
19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................
Bácskay Andrea Gondozási formák az idősellátásban a szociális alapellátás
Bácskay Andrea Gondozási formák az idősellátásban a szociális alapellátás Az 1990-es években a társadalomban tovább halmozódtak a már meglévő szociális gondok, többek között felgyorsult a népesség elöregedésének
ENERGIA NAPLÓ 2013. / 2. szám
A Get Energy Magyarország Kft. energetikai tájékoztatója Energiahatékonysággal a költségmegtakarításért Közös úton a VEP és a GOP Elszámolható Gazdaságfejlesztési Operatív Program keretében a Virtuális
A két csapatra osztás leggyakoribb megvalósításai: Lyukas teli (vagy sima vagy nem lyukas)
Eredeti forrás: Pintér Klára: Játsszunk Dienes Zoltán Pál logikai készletével! http://www.jgypk.u-szeged.hu/methodus/pinter-klara-jatsszunk-logikat-logikai-keszlettel/ A logikai készlet lapjaival kapcsolatos