A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,
|
|
- Alajos Kocsis
- 6 évvel ezelőtt
- Látták:
Átírás
1 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos üggvéyre létezik a határérték és F az egy olya primitívje amelyre F. Bizoyítsd be F t hogy létezik a lim dt határérték! t lim t d t 3. Bizoyítsd be hogy az : e üggvéyek létezik olya F primitívje amelyre határértéket! 4. Tetszőleges lim F majd számítsd ki a határozzuk meg hogy teljesüljö az lim F e eseté legye a ahol az a -et úgy d egyelőség. Jelöljük g- el az azo primitívjét amelyre g és F -el a g azo primitívjét amelyre F. Bizoyítsd be hogy az sup F összeüggéssel értelmezett N sorozat koverges és lim. 5. Az : [ + üggvéy bijektív. Létezik-e olya primitívvel redelkező g: [ + üggvéy amelyre gog? 6. Határozd meg az a k k és az a valós számsorozatokat úgy si hogy az : si a k Z * és a k kπ
2 A primitív üggvéy létezése 7 üggvéy az \ {} halmazo olytoos legye és -ek létezze -e primitív üggvéye! 7. Határozd meg az a valós paraméter értékét úgy hogy az : cos üggvéyek létezze primitív üggvéye majd úgy a hogy Darbou tulajdoságú legye külö-külö! 8. Bizoyítsd be hogy az : üggvéy si cos > em redelkezik primitív üggvéyel! 9. Bizoyítsd be hogy ha az : üggvéyek létezik primitív üggvéye a g: üggvéy olytoosa deriválható és g eseté a h: üggvéy pedig az g üggvéy egy primitív üggvéye akkor az oh üggvéyek is létezik primitív üggvéye! si. Bizoyítsd be hogy az : arctg üggvéyek létezik primitív üggvéye!. Az : üggvéyre az + és + üggvéyekek létezik primitív üggvéye. Következik-e ebből hogy az -ek is létezik primitív üggvéye?. Határozd meg az összes olya : üggvéyt amelyre y y +y + y és -ek létezik primitív üggvéye! 3. Határozd meg az összes olya : primitívvel redelkező üggvéyt amelyre y y + ky y k! 4. Határozd meg az a valós paraméter értékét úgy hogy az : e üggvéy: a a primitív üggvéyel redelkezze; b Darbou tulajdoságú legye! 5. Az g: üggvéyek egy-egy primitívjét jelöljük F-el illetve G- G + g F + vel. Határozd meg az és g üggvéyeket ha és g!
3 8 A primitív üggvéy létezése 6. Számítsd ki a + t t 3 d lim határértéket! 7. Bizoyítsd be hogy ha az : a b üggvéyek olytoosak és akkor az üggvéyek ics primitív üggvéye! Országos olimpia 98 Q Q \ ] [ ] [ b a b a 8. Az : üggvéy olytoos és periodikus. Bizoyítsd be hogy a g: c g üggvéyek potosa akkor létezik primitív üggvéye ha T T c d ahol T az egy periódusa! 9. Határozd meg az a paraméter értékét úgy hogy az : si a üggvéyek létezze primitív üggvéye!. Határozd meg az a paraméter értékét úgy hogy az si a üggvéyek létezze primitív üggvéye!. Igaz-e hogy ha az : üggvéyek létezik primitív üggvéye akkor -ek is létezik primitív üggvéye?. Igaz-e hogy ha az : üggvéyek létezik primitív üggvéye akkor -ek is létezik primitív üggvéye? 3. Bizoyítsd be hogy az : si üggvéyek potosa akkor létezik primitív üggvéye ha páratla! Megyei olimpia Vizsgáld meg a következő üggvéyek primitívjeiek létezését: a ; cos : R R
4 A primitív üggvéy létezése 9 b cos si m g : R R g. 5. Határozd meg az : 3 + si + cos primitívjeit! 6. Az g: [ab] üggvéyek teljesítik az alábbi eltételeket: a -ek létezik primitív üggvéye F egy primitívje; b g olytoos; c g [a b]; F F d létezik [a b] úgy hogy sup g. b a [ a b] Bizoyítsd be hogy g kostas üggvéy! 7. Bizoyítsd be hogy az : a arcsi + arctg a a + üggvéyek létezik primitív üggvéye a -a a itervallumo majd számítsd ki egy primitívjét! 8. Bizoyítsd be hogy ha az : üggvéyek a primitívjei em ijektívek akkor létezik c úgy hogy c! 9. Legye P egy em idetikusa ulla poliom és : I egy em kostas üggvéy I itervallum. Bizoyítsd be hogy ha P o I akkor -ek ics primitív üggvéye I-! 3. Bizoyítsd be hogy ha : I I itervallum egy szigorúa csökkeő üggvéy akkor em létezik olya primitívvel redelkező sőt Darbou tulajdoságú sem g: I üggvéy amelyre gog! 3. Bizoyítsd be hogy ha az : üggvéyek létezik primitív üggvéye és g: olytoosa deriválható akkor a h: h g üggvéyek is létezik primitív üggvéye! 3. Létezek-e olya primitívvel redelkező : * üggvéyek amelyekek valamely F primitívjére FF F.? 33. Bizoyítsd be hogy ha az : üggvéyek létezik primitív üggvéye akkor a g: g üggvéyek is létezik primitív üggvéye! M. Rădulescu 98
5 A primitív üggvéy létezése 34. Az : deriválható üggvéy teljesíti a lim lim egyelőségeket. Bizoyítsd be hogy a g: ' g üggvéyek létezik primitív üggvéye! 35. Létezik-e a h: cos h üggvéyek primitívje? Az : üggvéyek létezik primitív üggvéye és mide valós eseté teljesül az + egyelőtleség. Bizoyítsd be hogy az tetszőleges F primitív üggvéyéek potosa egy ipotja va! 37. Szerkessz olya g: üggvéyeket amelyekek em létezik primitívjük de amelyekre az o g üggvéyek létezik primitívje! 38. Milye értékekre létezik az : si cos < cos + si > üggvéyek primitív üggvéye? 39. Darbou tulajdoságú-e az : si cos > üggvéy? 4. Bizoyítsd be hogy egy alulról vagy elülről korlátos és primitívvel redelkező üggvéy és egy olytoos üggvéy szorzatáak létezik primitív üggvéye! 4. Bizoyítsd be hogy ha az : * üggvéyek létezik primitív üggvéye és a g: üggvéy olytoos akkor az g üggvéyek is létezik primitív üggvéye!
6 A primitív üggvéy létezése 4. Határozd meg az a paraméter értékét úgy hogy az : [ + l si ha > üggvéyek létezze primitív üggvéye! a ha 43. Az g és h: üggvéyek teljesítik a következő tulajdoságokat: a páratla okszámú poliomüggvéy; b g olytoos -; c g ; g ha d h ahol λ rögzített. λ ha Létezik-e a h üggvéyek primitívje? 44. Bizoyítsd be hogy ha a [ + és m * akkor az : a ha m üggvéyek em létezik primitívje! si cos ha > 45. Határozd meg a c k k sorozatot úgy hogy az : π * cos si ha k Z π k si üggvéyek * ck ha k Z és c ha k létezze primitív üggvéye! 46. Az : mooto üggvéy olya hogy -ek létezik primitív üggvéye. Bizoyítsd be hogy 4 -ek is létezik primitív üggvéye! Igaz- 3 e hogy -ek is létezik primitív üggvéye? Mihai Piticari 47. Bizoyítsd be hogy ha az : üggvéyek létezik primitív üggvéye - akkor a g : g üggvéyek is létezik primitív üggvéye! Sori Rădulescu 48. Határozd meg az g és h: primitívvel redelkező üggvéyeket ha G + H g F + H h F + G. F G H redre az g h üggvéyek egy-egy primitívje! 49. Bizoyítsd be hogy egy szigorúa mooto : üggvéyek potosa akkor létezik primitív üggvéye ha o-ek létezik primitív üggvéye!
7 A primitív üggvéy létezése 5. Létezek-e olya : bijektív üggvéyek amelyekre o d? 5. Az : olytoos üggvéyre lim d M y y. Bizoyítsd be hogy a g: g ha M ha üggvéyek létezik primitív üggvéye! 5. Bizoyítsd be hogy ha az : [ + primitívvel redelkező üggvéyek -ba szakadási potja va akkor létezik olya a amelyre a g: [ + ha g a ha üggvéy Darbou tulajdoságú! 53. Bizoyítsd be hogy ha az : üggvéyek létezik primitív üggvéye és egy F primitívjére lim F akkor a g: l ha > g üggvéyek csak a eseté létezik primitív a ha üggvéye! 54. Vizsgáld meg az alábbi kijeletések igazságértékét: a páros és primitívvel redelkező üggvéy primitívje páratla; b páratla és primitívvel redelkező üggvéy primitívje páros. 55. Az a paraméter milye értékeire létezik az :[ ] si ha [ üggvéyek primitív üggvéye? a ha 56. Bizoyítsd be hogy az : cos ha l + + ha üggvéyek létezik primitív üggvéye! 57. Az : olya üggvéy amelyhez hozzáredelhető olya P [X] poliomiális üggvéy amelyre P -ak ics többszörös gyöke és az op üggvéyek létezik primitív üggvéye. Bizoyítsd be hogy -ek is létezik primitív üggvéye -! y
8 A primitív üggvéy létezése Bizoyítsd be hogy ha az : üggvéy olytoosa deriválható és a g: üggvéyek létezik primitív üggvéye akkor az go üggvéyek is létezik primitív üggvéye! Mihai Piticari 59. Határozd meg azokat az számokat amelyekre az : cos + si ha üggvéyek létezik primitív ha üggvéye! 6. Bizoyítsd be hogy ha az : üggvéyek létezik primitív üggvéye akkor a g: g + üggvéyek is létezik primitív üggvéye! 6. Az : olytoosa deriválható üggvéy és a üggvéy értéke ullá kívül sehol sem ulla. Határozd meg az a paraméter ' si ha értékét úgy hogy a g: g a ha üggvéyek létezze primitív üggvéye! 6. Bizoyítsd be hogy az : -π π cos cos ha π π \ {} si üggvéyek potosa akkor a ha létezik primitív üggvéye ha a! + e ha 63. Határozd meg az : üggvéy l ha > primitívjeit! 64. Határozd meg az : ma üggvéy primitívjeit! 65. Határozd meg az : arcsi üggvéy primitívjeit! Az : [ π] üggvéy teljesíti az si π- cos egyelőséget [ π] eseté. Határozd meg az primitív üggvéyeit! 67. Az : [ ] [ e] üggvéy teljesíti az y e -ye y egyelőtleséget y [ ] eseté. Határozd meg az primitív üggvéyeit! 68. Bizoyítsd be hogy ha az : üggvéyek létezik olya F primitívje amelyre létezik a lim F határérték akkor -ek va legalább egy ipotja!
9 4 A primitív üggvéy létezése 69. Határozd meg az : [ + deriválható üggvéyt ha és yy Fy + y y [ + ahol F az egy primitívje! 7. Határozd meg az : si üggvéy primitívjeit! 7. a Bizoyítsd be hogy ha az : primitívvel redelkező üggvéy periodikus és T > egy periódusa akkor létezik olya a álladó amelyre F + T F a és az bármely F primitívje eseté! b Az előbbi eltételek mellett a g: a g F T üggvéy periodikus. 7. Határozd meg a c és c álladókat úgy hogy az g: + si ha e si ha g c ha c ha üggvéyekek létezze primitív üggvéye! 73. Bizoyítsd be hogy ha egy : üggvéyre a g: g si és h: h cos üggvéyekek létezik primitív üggvéye akkor -ek is létezik primitív üggvéye! 74. Bizoyítsd be hogy az : arctg ha > ha üggvéyek em létezik primitív üggvéye! 75. Bizoyítsd be hogy ha az : üggvéy teljesíti az egyelőtleséget bármely > eseté akkor -ek em létezik primitív üggvéye! 76. Létezik-e olya : primitívvel redelkező üggvéy amelyre a eseté ahol a > a rögzített valós szám? 77. Bizoyítsd be hogy ha az : [ ] [ ] üggvéyek létezik primitív üggvéye és valamely α eseté α akkor em ijektív! 78. Bizoyítsd be hogy az k : k + si ha k ha üggvéyek létezik primitív üggvéye bármely k eseté!
10 A primitív üggvéy létezése Határozd meg az α paraméter értékét úgy hogy az : α cos ha üggvéyek létezze primitív üggvéye! ha 8. Határozd meg a c k k * sorozatot úgy hogy az k : k si ha k üggvéysorozat mide tagja redelkezze ck ha primitív üggvéyel! 3 l ha > 8. Bizoyítsd be hogy az : + ha üggvéyek ics primitívje! 8. Határozd meg az a paraméter értékét úgy hogy az : e si ha üggvéyek létezze primitívje! a ha 83. Határozd meg az a paraméter értékét úgy hogy az : e si ha üggvéyek létezze primitív üggvéye! a ha 84. Az : üggvéyek létezik olya F primitívje amelyre F lim. Határozd meg az a paraméter értékét úgy hogy a + ha g: g üggvéyek bármely eseté a ha létezze primitív üggvéye! a a cos 85. Bizoyítsd be hogy az : ha + ha üggvéyek létezik primitív üggvéye bármely * eseté. 86. Bizoyítsd be hogy az λ : -π π
11 6 A primitív üggvéy létezése cos si ha π π \ {} λ si λ ha üggvéyek potosa akkor létezik primitív üggvéye ha λ. 87. Az : üggvéy deriválható és korlátos -. Bizoyítsd be hogy si ' a g: ha g üggvéyek létezik primitív ha üggvéye! V. Ciubotaru 88. Bizoyítsd be hogy ha a P [X] poliom em redelkezik valós si ha gyökökkel akkor az : P üggvéyek ha létezik primitív üggvéye! 89. Az a b itervallum tetszőleges véges A részhalmaza eseté szerkesszél olya : [a b] üggvéyt amely redelkezik a következő tulajdoságokkal: a korlátos; b olytoos [a b] \ A- és mide A-beli pot szakadási potja; c -ek létezik primitív üggvéye [a b]-. l si ha 9. Bizoyítsd be hogy az : ha üggvéyek létezik primitív üggvéye! si ha > 3 9. Bizoyítsd be hogy az : ha si ha < üggvéyek létezik primitív üggvéye! 9. Az : üggvéy teljesíti a lim eltételt. Bizoyítsd be ' + l ha > hogy a g: g ha üggvéyek létezik ' l ha < primitív üggvéye!
12 A primitív üggvéy létezése 7 si ha 93. Bizoyítsd be hogy az : + ha üggvéyek létezik primitív üggvéye! 94. Az és g: olytoosa deriválható üggvéyek teljesítik a következő eltételeket: a lim ; b g és g ; c korlátos és g kétszer deriválható. ' ha Bizoyítsd be hogy a h a : h a g a ha üggvéyek potosa akkor létezik primitív üggvéye ha a! 95. Bizoyítsd be hogy ha az : üggvéy mide primitívje ha korlátos - akkor a g: g üggvéyek is ha létezik primitívje! 96. Bizoyítsd be hogy az : si ha + arctg ha üggvéyek létezik primitív üggvéye! L. Vlădescu si si ha 97. Bizoyítsd be hogy az : ha üggvéyek létezik primitív üggvéye! 98. Bizoyítsd be hogy az : + üggvéyek potosa akkor létezik primitív üggvéye ha a g h: + g a és h -a üggvéyekek létezik primitív üggvéye! 99. Adott természetes számra szerkesszél olya : üggvéyt amelyre az... üggvéyek em redelkezek primitív üggvéyel de az primitív üggvéye!... üggvéyek létezik
Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK
Kitűzött feladatok Ijektivitás és egyéb tulajdoságok 69 1. KITŰZÖTT FELADATOK Határozd meg az összes szigorúa mooto f:z Z függvéyt, amely teljesíti az f ( xy) = f ( y), x, y Z összefüggést és létezik k
VII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
KITŰZÖTT FELADATOK A X. OSZTÁLY SZÁMÁRA
Kitűzött feladatok a X. osztály számára 7 KITŰZÖTT FELADATOK A X. OSZTÁLY SZÁMÁRA. Legye A egy véges halmaz, amelyre A. Határozd meg az A elemeiek számát úgy, hogy létezze f : A A P(A) bijektiv függvéy.
A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és
Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8
Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,
Gyakorló feladatok II.
Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,
V. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.
Határátmeet Határértékszámítás.. Tétel. (Nevezetes sorozatok) 005..5 Készítette: Dr. Toledo Rodolfo (a)... α (α > 0) (b) (c) 0 0... 0 (α > 0) α q (d) c (c > 0) ha q > = ha q = 0 ha q < diverges korlátos
1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k
A primitív függvény és a határozatlan integrál 7
A primitív függvéy és a határozatla itegrál 7 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Korábbi taulmáyaitok sorá láthattátok, hogy sok műveletek, függvéyek va fordított művelete, iverz függvéye
ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2
ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i
Függvények határértéke 69. III. Függvények határértéke
Függvéyek határértéke 69 A határérték értelmezése III Függvéyek határértéke Ebbe a fejezetbe taulmáyozi fogjuk a függvéy határértékét egy potba A feladat így fogalmazható meg: Ha adott az f : D valós változójú
Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor
ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
FELADATOK A KALKULUS C. TÁRGYHOZ
FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy
(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1
. Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..
10.M ALGEBRA < <
0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész
INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK
Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy
3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
ANALÍZIS I. DEFINÍCIÓK, TÉTELEK
ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add
(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
SOROK Feladatok és megoldások 1. Numerikus sorok
SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......
I. rész. Valós számok
I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =
Matematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!
megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások
Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!
Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk
1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?
1. Fogalmazza meg az R -beli háromszög-egyelőtleségeket!,y R (i) +y + y (ii) -y - y 2. Mit mod ki a Beroulli-egyelőtleség? (i) (1+h) 1+ h ( h>-1) ( N*) (ii) (1+h) 1+2 h 1 ( N*) h 2 3. Hogya szól a számtai
(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1.
PROGRAMTERVEZŐ MATEMATIKUS SZAK II. ÉVF. III. FÉLÉV GYAKORLÓ FELADATOK AZ II. ANALÍZIS ZH-RA Primitívfüggvéy keresés. Adja meg az f függvéy egy primitívfüggvéyét: f) = 6 8 + 3 b) f) = + 3 f) = + 5 ) /
Analízis I. gyakorlat
Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................
2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
B1 teszt 87. 1, x = 0 sorozat határértéke
B teszt 87 B teszt A világot csak hat szám vezérli. (Marti Rees) Ezt a köyvet öt betű.. Az = + +,, = sorozat határértéke ( + ) a) ; b) ; c) d) ; e) em létezik.. A lim{ e } határérték ({ } az törtrésze)
A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,
l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f
2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
Lajkó Károly Kalkulus I. példatár mobidiák könyvtár
Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus
Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter
Debrecei Egyetem Természettudomáyi és Techológiai Kar Kalkulus példatár Gselma Eszter Debrece, 08 Tartalomjegyzék. Valós számsorozatok Elméleti áttekités........................................................
min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:
. A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát
(arcsin x) (arccos x) ( x
ALAPDERIVÁLTAK ( c ) (si ) cos ( ) (cos ) si ( ) ( ) ( tg) cos ( e ) e ( ctg ) si ( a ) a l a ( sh) ch (l ) ( ch) sh (log a ) ( th) l a ch (arcsi ) (arccos ) ( arctg ) DERIVÁLÁSI SZABÁLYOK. ( c ) c. c
Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011
1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }
Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
KITŰZÖTT FELADATOK A IX. OSZTÁLY SZÁMÁRA
Kitűzött eladatok 15 KITŰZÖTT FELADATOK A IX. OSZTÁLY SZÁMÁRA 1. Bizonyítsd be, hogy nem létezik olyan : R R üggvény, amely teljesítené az alábbi egyenlőségek valamelyikét: a) ( x 1) + (1 x) x, x R; b)
ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA
ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add
Andai Attila: november 13.
Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.
II. INTEGRÁLÁSI MÓDSZEREK
Itegrálási módszerek 5 II INTEGRÁLÁSI MÓDSZEREK A parciális itegrálás módszere Ha az f, g : D (D em degeerált itervallumok egyesítése) függvéyek deriválhatók a D halmazo, akkor tudjuk, hogy a szorzatuk
FELVÉTELI VIZSGA, július 17.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 2017. július 17. Írásbeli vizsga MATEMATIKÁBÓL I. TÉTEL (30 pont) 1) (10 pont) Igazoljuk, hogy tetszőleges m R esetén
III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK
Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar
n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,
205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:
Függvényhatárérték-számítás
Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről
Nevezetes sorozat-határértékek
Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív
Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév
Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Komplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
Valós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
BSc Analízis I. előadásjegyzet
BSc Aalízis I. előadásjegyzet 2009/200. őszi félév Sikolya Eszter ELTE TTK Alkalmazott Aalízis és Számításmatematikai Taszék 200. április 30. ii Tartalomjegyzék Előszó v. Bevezetés.. Logikai állítások,
Bevezető analízis II. példatár
Bevezető aalízis II. példatár Gémes Margit, Szetmiklóssy Zoltá Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Matematikai Itézet 06. ovember 3. Tartalomjegyzék. Bizoyítási módszerek, valós számok 3..
I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL
A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív
Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha
. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,
Egyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus
Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)
Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy
A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )
Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és
8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,
3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5
Megoldott feladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA
Megoldott eladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA. Az : R R üggvény teljesíti az ( + y) = ( a y) + ( y) ( a ) összeüggést bármely,y R esetén (a egy rögzített valós szám). Bizonyítsd
Draft version. Use at your own risk!
BME Matematika Itézet Aalízis Taszék Adai Attila Bevezető aalízispéldák példatár éháy BSc-s órához 8 Tartalomjegyzék. Halmazalgebra. Teljes idukció 3. Relációk, függvéyek 3 4. Számosságok 6 5. A valós
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FELADATOK Taylor- (Maclaurin-) sorok, hibabecslés
FELADATOK Taylor- (Maclauri- soro, hibabecslés Határozzu meg az e üggvéy -örüli Taylor-sorát! Adju meg a hatváysor overgecia sugarát, ill. overgecia halmazát! Számítsu i a deriváltaat a -helye: e, e, e,
A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:
Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai
A1 teszt 7. kifejezés értéke (x,
A teszt 7 A teszt (Algebra IX. osztály) Szeretük és ápoluk kell a tévedést, mert ő a megismerés ayaöle. (Nietzsche). Az E y y = + + y + y kifejezés értéke (, y ) a), y, ; b) függ -től és y -tól; c) csak
1. feladatlap megoldása. Analízis II. 1. Vizsgálja meg az alábbi sorokat konvergencia szempontjából! a) n 2 n = 1 1X 1
. feladatlap megoldása Aalízis II.. Vizsgálja meg az alábbi sorokat kovergecia szempotjából! a) X Alkalmazva a gyökkritériumot ("egyszer½usített változatát"): Azaz a sor koverges. b) p a!! p < : X 000
Kalkulus gyakorlat - Megoldásvázlatok
Kalkulus gyakorlat - Megoldásvázlatok Fizika BSc I/. gyakorlat. Tétel Newto Leibiz. Ha f folytoos az a, b] itervallumo és F primitív függvéye f-ek, akkor b a f F b F a.. Számítsuk ki az alábbi racioális
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12
Határértékszámítás szerkesztés alatt) Dr. Toledo Rodolfo 207. április 23. Tartalomjegyzék. Bevezetés 2 2. Segédállítások 3 3. Nevezetes sorozatok 7 4. A határátmeet és a műveletek 2 5. Az e szám fogalma
GAZDASÁGI MATEMATIKA 1. ANALÍZIS
SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY
Matematika A1 vizsga elméleti kérdések
Mtemtik A1 vizsg elméleti kérdések Deiíciók Forrás: Szirmi Jeő elődásvázltok, Szász Gáor: Mtemtik 1. tköyv Gépre vitte: Atli Máté 1. Peo-xiómák A természetes számok hlmzát N Peo-xiómák segítségével deiiáljuk.
Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós
Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.
Feladatok matematikából 3. rész
Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!
MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
Integrálszámítás (Gyakorló feladatok)
Itegrálszámítás Gyakorló feladatok Programtervez iformatikus szakos hallgatókak az Aalízis. cím tárgyhoz Összeállította Szili László 8. február Tartalomjegyzék I. Feladatok 5. Primitív függvéyek határozatla
TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...
TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT
1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i
(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.
Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
Integrált Intetnzív Matematika Érettségi
tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f
= λ valós megoldása van.
Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt
194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma
94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,
Függvénygörbe alatti terület a határozott integrál
Függvéygörbe alatt terület a határozott tegrál Tektsük az üggvéyt a ; tervallumo. Adjuk becslést a görbe az tegely és az egyees között síkdom területére! Jelöljük ezt a területet I-vel! A becslést legegyszerűbbe
18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
konvergensek-e. Amennyiben igen, számítsa ki határértéküket!
1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π
Matematika Ac gyakorlat Vegyzméröki, Bioméröki, Köryezetméröki szakok, 7/8 ősz 4. feladatsor: Fourier-sorok megoldás. Legye fx = ha x, ], fx = ha x, π]. Írjuk fel f Fourier-sorát. Mely potokba állítja
10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása
. tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb