1. Gyökvonás komplex számból

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Gyökvonás komplex számból"

Átírás

1 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ) ) = s (cosβ+isiβ). Azaz hatváyozáskor a hosszat a kitevőre emeljük, a szöget a kitevővel szorozzuk. A gyökvoás képlete (K1.5.2) Határozzuk meg 0 z = r(cosα+isiα) -edik gyökeit. Ha r(cosα+isiα) = ( s(cosβ +isiβ) ) = s (cosβ +isiβ), akkor s = r, és β α = k 2π (k egész). Ezért z = r ( cos α+2kπ Példa gyökvoásra +isi α+2kπ r(cosα+isiα) = r(cos α+2kπ ). +isi α+2kπ ) (k Z) ( r : r > 0 valós, egyértelműe voható pozitív -edik gyök.) Példa z = 4 = 4(cos180 +isi180 ) = 4(cosπ +isiπ) 4 ( 4 = 4 4 cos π +2kπ +isi π +2kπ ) (k Z) 4 4 Háyféle számot kapuk? k = 0: 2 ( cos( π/4)+isi( π/4) ) = 1+i. k = 1: 2 ( cos(3π/4)+isi(3π/4) ) = 1+i. k = 2: 2 ( cos(5π/4)+isi(5π/4) ) = 1 i. k = 3: 2 ( cos(7π/4)+isi(7π/4) ) = 1 i. Tovább? A egyedik gyökök száma z = 4 = 4(cos180 +isi180 ) = 4(cosπ +isiπ) 4 ( 4 = 4 4 cos π +2kπ +isi π +2kπ ) (k Z) 4 4 k = 0: 2 ( cos( π/4)+isi( π/4) ) = 1+i. k = 4: 2 ( cos(9π/4)+isi(9π/4) ) = 1+i. Oka: 9π/4 π/4 = 2π. Mit k = 0-ra.

2 π +2(k +4)π = π +2kπ + 8π = π +2kπ +2π. 4 Ha m k osztható 4-gyel, akkor m és k ugyaazt adja. Ezért csak k-ak a 4-gyel való osztási maradéka számít. 4 4-ek égy értéke va: 1+i, 1+i, 1 i, 1 i. Az -edik gyökök száma Tétel (K1.5.4) Mide em ulla komplex számak darab -edik gyöke va. Bizoyítás r(cosα+isiα) = r(cos α+2kπ +isi α+2kπ ) (k Z) Ha m k osztható -el, azaz m = k +l (l egész), akkor π +2mπ = π +2kπ + 2lπ = π +2kπ +l 2π. Ezért csak k-ak az -el való osztási maradéka számít. Házi feladat (a bizoyításhoz hozzátartozik) Ha m k em osztható -el, akkor a szögek külöbsége em lesz 2π egész többszöröse, és így a két -edik gyök külöböző. Eltolás, forgatás, yújtás A z z +w függvéy a w vektorral való eltolás. Állítás (K1.4.5) Ha w 0, akkor az f : z zw függvéy (a w-vel szorzás) forgatva yújtás: w szögével forgat az origó körül, és w hosszaszorosára yújt az origóból. Bizoyítás Legye z = r(cosα+isiα) és w = s(cosβ +isiβ). Láttuk, hogy zw = rs ( cos(α+β)+isi(α+β) ). Ezért zw szöge z szögéél β-val agyobb, zw hossza pedig z hosszáak s-szerese. Így az f függvéy a z vektort β-val forgatja, s-szeresére yújtja. 2

3 A egyedik gyökök elhelyezkedése 4 4-ek égy értéke va: 1+i, 1+i, 1 i, 1 i. Ezek egy égyzet égy csúcsába helyezkedek el, melyek középpotja az origó. 1+i 1 i 1+i 1 i Bizoyítás 1 + i-ek a +90 -os elforgatottja 1 + i, mert i(1 + i) = 1 + i. Hasolóa i( 1+i) = 1 i, i( 1 i) = 1 i, i(1 i) = 1+i. i = 1(cos90 +isi90 ). Az -edik gyökök elhelyezkedése Tétel (K1.5.4) Egy em ulla komplex szám -edik gyökei szabályos -szöget alkotak a komplex számsíko, melyek középpotja az origó. Bizoyítás Ha z = r(cosα+isiα), akkor z értékei w 1,w 2,...,w, ahol w k = ( r cos α+2kπ +isi α+2kπ ) (k Z). Ha ε = cos(2π/)+isi(2π/), akkor εw k = w k+1, mert α+2kπ + 2π α+2(k +1)π =. De az ε-al szorzás 2π/-el forgat, ami a szabályos -szögbe egy oldalhoz tartozó középpoti szög. 2. Komplex egységgyökök Az 1 szám -edik gyökei Defiíció (K1.5.3, K1.5.4) Az 1 szám -edik gyökeit -edik egységgyökökek evezzük. Ezek a cos(2kπ/)+isi(2kπ/) számok, ahol k Z. Összese darab -edik egységgyök va. 1 = 1(cos0 +isi0 ) r(cosα+isiα) = r(cos α+2kπ +isi α+2kπ ) (k Z) 3

4 Példa A egyedik egységgyökök a következők. cos(2π/4)+isi(2π/4) = 0+1i = i. cos(4π/4)+isi(4π/4) = 1+0i = 1. cos(6π/4)+isi(6π/4) = 0 1i = i. cos(8π/4)+isi(8π/4) = 1+0i = 1. A hatodik egységgyökök Példa A hatodik egységgyökök a következők. ε 1 = cos( 2π/6)+isi( 2π/6) = 1/2+i 3/2. ε 2 = cos( 4π/6)+isi( 4π/6) = 1/2+i 3/2. ε 3 = cos( 6π/6)+isi( 6π/6) = 1. ε 4 = cos( 8π/6)+isi( 8π/6) = 1/2 i 3/2. ε 5 = cos(10π/6)+isi(10π/6) = 1/2 i 3/2. ε 6 = cos(12π/6)+isi(12π/6) = 1. ε 2 ε1 ε 3 ε 6 ε 4 ε 5 Szabályos hatszöget alkotak. Gyökvoás egységgyökök segítségével Állítás Legye ε k = cos(2kπ/)+isi(2kπ/). Ekkor ε k = ε k 1. Az -edik egységgyökök a cos(2π/)+isi(2π/) hatváyai. A k tetszőleges egész, egatív is lehet. Tétel (K1.5.4) Ha a z 0 számak w 0 az egyik -edik gyöke, akkor ε k w 0 (k = 1,2,...,) az összes -edik gyöke. Vagyis w 0 -t végig kell szorozi az -edik egységgyökökkel. Bizoyítás w = z w = w 0 (w/w 0 ) = 1, akkor és csak akkor, ha w/w 0 egy -edik egységgyök. Ha w/w 0 = ε, akkor w = εw 0. Az algebra alaptétele Az algebra alaptétele (K2.5.4) Mide em kostas, komplex együtthatós poliomak va gyöke a komplex számok között. 4

5 Bizoyítás: egyelőre ics A tétel bizoyításához az aalízis eszközei szükségesek. Harmadéve: bizoyítás komplex függvéyta segítségével. Másodéve: bizoyítás Galois-elmélet segítségével. Felhaszált segédtétel: Tétel Páratla fokú valós együtthatós poliomak va valós gyöke. Ez bizoyítható az elemi aalízis Bolzao-tételével, de következik az algebra alaptételéből is (később). 3. Geometria a komplex számsíko A háromszög-egyelőtleség A háromszög-egyelőtleség (K1.4.3) Mide z,w C-re z +w z + w. Egyelőség potosa akkor áll, ha z és w párhuzamosak, és egyelő állásúak, azaz z = rw vagy w = rz alkalmas valós r 0-ra. O w B z +w z z A w C Bizoyítás Háromszög-egyelőtleség az OAC háromszögre. Két pot távolsága Állítás (K1.4.7) Mide z,w C-re a z és w távolsága z w. O w B z w z z w D A Bizoyítás Legye z = OA és w = OB. Ekkor z w = BA, hisze w +(z w) = z. De z w hossza z w. 5

6 Forgatás pot körül Forgatás adott pot körül (K1.4. ábra) Mi lesz a z pot w körüli +90 fokos elforgatottja? A w-ből z-be mutató z w vektort az origóba toljuk, elforgatjuk (i szöge 90 ), visszatoljuk, azaz w-t hozzáaduk. i(z w) w z w i(z w)+w i = 1(cos90 +isi90 ) z Geometria-feladatok megoldása komplex számokkal Feladat (K ) Egy égyszög oldalaira kifelé égyzeteket rajzoluk. Kössük össze az átellees égyzetek középpotjait. Igazoljuk, hogy e két szakasz merőleges, és egyelő hosszú. 6

7 Négyzet középpotja Határozzuk meg az AB oldalú két égyzet két középpotját. A Y X B Láttuk: w körül z-t +90 fokkal elforgatva i(z w) + w-t kapjuk. X körül A-t +90 fokkal forgatva B-t kapjuk. Így B = i(a X)+X. Ie X = (B Ai)/(1 i). Y körül B-t +90 fokkal forgatva A-t kapjuk. Így A = i(b Y)+Y. Ie Y = (A Bi)/(1 i). A égyszöges feladat megoldása (D Ai)/(1 i) = V D U = (C Di)/(1 i) C Y = (B Ci)/(1 i) A B XU = U X = 1 YV = V Y = 1 X = (A Bi)/(1 i) ( (C ) ( ) ) Di A Bi. 1 i( (D ) ( ) ) Ai B Ci. De 1 i i ( (C Di) (A Bi) ) = ( (D Ai) (B Ci) ). Azaz i(u X) = V Y, így XU +90 -os elforgatottja YV. 4. Példák egyeletredszerre Egy ismeretle kiejtése Oldjuk meg: 2x 3y = 1 5x 2y = 8 Ötlet: Próbáljuk meg x-et kiejtei (elimiáli). Az első egyelet 5-szöröséből vojuk ki a második egyelet 2-szeresét. Az eredméy: 7

8 15y ( 4y) = 5 16, azaz 11y = 11. Ie y = 1. Az első egyeletből ekkor 2x 3 = 1, azaz x = 2. Elleőrzés: = = 8 Geometriai ábrázolás 2x 3y = 1, azaz y = (2/3)x (1/3). 5x 2y = 8, azaz y = (5/2)x 4. y = (5/2)x 4 y = (2/3)x (1/3) (x,y) = (2,1) A megoldások száma Két egyeesek lehet (1) Nulla darab közös potja (ha párhuzamosak); (2) Egy darab közös potja (ha metszők); (3) Végtele sok közös potja (ha egyelők). Példák 3x 3y = 3 2x 2y = 4 Párhuzamos egyeesek (y = x 1, y = x 2), ics megoldás. 3x 3y = 3 2x 2y = 2 Egybeeső egyeesek (y = x 1), végtele sok megoldás. 8

9 Az általáos megoldás Az egyeletredszer általáos megoldása az összes olya (x,y) számpár valamilye megadása, amik megoldásai az egyeletredszerek. Példa 3x 3y = 3 2x 2y = 2 Az (x,y) akkor megoldás, ha y = x 1. Ezért az általáos megoldás: {(r,r 1) r R}. Probléma Hogya lehet megkeresi egy általáos egyeletredszer általáos megoldását? Lieáris egyeletredszer eseté Gauss-elimiációval. 5. Gauss-elimiáció Lieáris egyeletredszerek Defiíció Legyeek az ismeretleek x 1,x 2,...,x m. Lieáris egyelet: a 1 x a m x m = b Ismeretleek szorzata em szerepel, a 1,...,a m,b számok. Defiíció (Freud, 3.1. szakasz) Lieáris egyeletredszer: több lieáris egyelet közös megoldásait keressük. Általáos jelölés: a 11 x a 1m x m = b 1 a 21 x a 2m x m = b 2... a 1 x a m x m = b Itt egyelet va és m ismeretle. Az elimiáció megegedett lépései Skalár: egy szám, amilyeek az együtthatók is. (1) Az egyik egyeletet egy em ulla skalárral megszorozzuk. (2) Az egyik egyeletből kivojuk egy másik egyelet tetszőleges skalárszorosát. Ekkor a megoldások ugyaazok maradak. Az (1) lépéssel bármelyik em ulla együtthatóból 1-et csiálhatuk, ha aak reciprokával szorzuk. A (2) lépéssel ki lehet ullázi mide olya együtthatót, amely fölött vagy alatt egy em ulla együttható található. 9

10 2x+4y = 6 x+2y = 3 x+2y = 3 3x+2y = 5 3x+2y = 5 0x 4y = 4 Az első háromszorosát kivojuk a másodikból. Így y = 1. Szisztematikus eljárás (1) Egy em ulla együtthatót leosztással 1-re változtatuk, és bekarikázzuk. Ez a vezéregyes. (2) Az oszlopába a többi együtthatót kiullázzuk. (3) Az (1)+(2)-t ismételjük, de (1)-be csak olya együtthatót választhatuk, amely sorába és oszlopába ics karika. (4) Ha ilye ics, akkor megálluk. Ezutá: (5) Ha va olya sor, amelyek bal oldalá mide együttható ulla, de a jobb oldali b j em, akkor az egyeletredszer elletmodásos, ics megoldása. Ez egy tilos sor. (6) Ha va olya sor, amelyek bal oldalá mide együttható ulla, és a jobb oldali b j is ulla, akkor ezt a sort kihúzzuk. A megoldás leolvasása (F Tétel) (7) Azokat az ismeretleeket, amelyek oszlopába ics karika, szabad változóak evezzük. A többi ismeretle a kötött változó. (8) Midegyik kötött változó csak egyetle egyeletbe szerepel, és abba az együtthatója 1. Ezért a kötött változók kifejezhetők a szabad változókkal. A megoldások száma A szabad változókak tetszőleges értéket adva egyértelmű megoldást kapuk. Így ha va szabad változó, akkor a megoldások száma végtele. A megoldás akkor egyértelmű, ha az egyeletredszer em elletmodásos, és ics szabad változó. 10

11 Az egyetle összefüggés Tétel (F Tétel) Ha az egyeletek száma kisebb, mit az ismeretleek száma, akkor em lehet egyértelmű a megoldás. Bizoyítás Ha egyértelmű a megoldás, akkor ics szabad változó. Ezért mide oszlopba va karika. De a karikák csupa külöböző sorokba vaak, így legalább ayi sor va, mit oszlop. Azaz legalább ayi egyelet va, mit ismeretle. Fotos: más összefüggés ics az ismeretleek száma, az egyeletek száma és a megoldások száma között! Példák: gyakorlato, mátrixos jelöléssel. Homogé lieáris egyeletredszerek Defiíció Egy lieáris egyeletredszer homogé, ha a jobb oldalá szereplő midegyik b j ullával egyelő. Triviális megoldás: midegyik ismeretle ulla. Következméy (F Tétel) Ha egy homogé lieáris egyeletredszerbe az egyeletek száma kisebb, mit az ismeretleek száma, akkor va emtriviális megoldás. Bizoyítás Az előző tétel miatt em lehet egyértelmű a megoldás. De em is elletmodásos, mert va (triviális) megoldás. Ezért va legalább még egy megoldás. 6. Összefoglaló A 4. előadáshoz tartozó vizsgaayag Fogalmak Komplex -edik egységgyök (K1.5.3). Lieáris és homogé lieáris egyeletredszer (F3.1. szakasz). Tételek Komplex szám -edik gyökéek képlete (K1.5.2). Az -edik gyökök száma, elhelyezkedése (K1.5.4). Az algebra alaptétele (K2.5.4). A háromszög-egyelőtleség (K1.4.3). Két pot távolsága (K1.4.7). Forgatva yújtás komplex számmal (K1.4.5). Forgatás adott pot körül (K1.4. ábra). Gauss-elimiáció, a megoldások leolvasása (F Tétel). A megoldások, az ismeretleek és az egyeletek száma közötti összefüggés (általáos és homogé eset: F és F Tétel). 11

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

1. Geometria a komplex számsíkon

1. Geometria a komplex számsíkon 1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Bevezetés az algebrába komplex számok

Bevezetés az algebrába komplex számok Bevezetés az algebrába komplex számok Wettl Ferec Algebra Taszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december 6.

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

1. Sajátérték és sajátvektor

1. Sajátérték és sajátvektor 1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

3.4. gyakorlat. Matematika B1X február 1819.

3.4. gyakorlat. Matematika B1X február 1819. 3.4. gyakorlat Matematika B1X 2003. február 1819. 1. A harmadik el adás (II. 17.) 1.1. Számosság Egyel számosságú halmazok. Véges, megszámlálhatóa végtele és kotiuum számosságú halmazok. Hatváyhalmaz számossága

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

N - edik gyökvonás. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

N - edik gyökvonás. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Brósch Zoltá (Debrecei Egyetem Kossuth Lajos Gyakorló Gimáziuma) N - edik gyökvoás DEFINÍCIÓ: (Négyzetgyökvoás) Egy em egatív x valós szám égyzetgyöké azt a em egatív valós számot értjük, amelyek égyzete

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük: . Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b). 1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1 Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.

Részletesebben

Koordinátageometria összefoglalás. d x x y y

Koordinátageometria összefoglalás. d x x y y Koordiátageometria összefoglalás Vektorok A helyvektor hossza Két pot távolsága r x y d x x y y AB A két potot összekötő vektort megkapjuk, ha a végpot koordiátáiból kivojuk a kezdőpot koordiátáit. Vektor

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 017. ősz 1. Diszkrét matematika 1. középszint. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

1. Írd fel hatványalakban a következõ szorzatokat!

1. Írd fel hatványalakban a következõ szorzatokat! Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat: 6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

Kalkulus. Komplex számok

Kalkulus. Komplex számok Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe

Részletesebben

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23 Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 06. február 4..

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl). ) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe

Részletesebben

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek? Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os

Részletesebben

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12 Határértékszámítás szerkesztés alatt) Dr. Toledo Rodolfo 207. április 23. Tartalomjegyzék. Bevezetés 2 2. Segédállítások 3 3. Nevezetes sorozatok 7 4. A határátmeet és a műveletek 2 5. Az e szám fogalma

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2 Nevezetes zoosságok: mteksoft.hu ( + ) + + ( x + ) x + 6 x + 9 ( x + y) 4x + 1xy + 9y ( ) + ( x ) x 6 x + 9 ( x y) 4x 1xy + 9y ( + + c) + + c + + c + c ( x + y + ) x + y + 4 + xy + 4x + 4y Htváyozás zoossági

Részletesebben

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1 PPKE ITK Algebr és diszkrét mtemtik = DETERMINÁNSOK = 13 = + + 13 13 Bércesé Novák Áges 1 PPKE ITK Algebr és diszkrét mtemtik DETERMINÁNSOK Defiíció: z sorb és m oszlopb elredezett x m (vlós vgy képzetes)

Részletesebben

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus)

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus) A htváyoz yozás s iverz műveletei. m (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté Def.: egy oly téyezős szorzt, melyek mide téyezője. htváylp : kitevő: htváyérték: A htváyozás zoossági:

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY I. FÉLÉVÉHEZ

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY I. FÉLÉVÉHEZ FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY I. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A Halmazok és a Relációk témakörbe megoldott, letölthet példák találhatók Bruder

Részletesebben

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0 Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása. 223 = 7 31 + 6. Visszaszorzunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a, b Z esetén, ahol b 0, létezik olyan q, r Z, hogy a = bq + r és r < b.

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Komplex számok StKis, EIC 2019-02-06 Wettl Ferenc

Részletesebben

I. Koordinátarendszerek a síkban és a térben, mátrixok

I. Koordinátarendszerek a síkban és a térben, mátrixok Koordiátaredszerek mátrixok 0 I Koordiátaredszerek a síkba és a térbe mátrixok Koordiátaredszerek A korábbi taulmáyaitok sorá megismerkedhettetek a sík aalitikus geometriájáak éháy alapfogalmával (koordiátaredszerek

Részletesebben

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 016. február 11

Részletesebben

KITŰZÖTT FELADATOK A X. OSZTÁLY SZÁMÁRA

KITŰZÖTT FELADATOK A X. OSZTÁLY SZÁMÁRA Kitűzött feladatok a X. osztály számára 7 KITŰZÖTT FELADATOK A X. OSZTÁLY SZÁMÁRA. Legye A egy véges halmaz, amelyre A. Határozd meg az A elemeiek számát úgy, hogy létezze f : A A P(A) bijektiv függvéy.

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Algebra évfolyam. Szerkesztette: Hraskó András, Kiss Géza, Pataki János, Szoldatics József január 23.

Algebra évfolyam. Szerkesztette: Hraskó András, Kiss Géza, Pataki János, Szoldatics József január 23. Algebra 11 1. évfolyam Szerkesztette: Hraskó Adrás, Kiss Géza, Pataki Jáos, Szoldatics József 017. jauár 3. Techikai mukák (MatKöyv project, TEX programozás, PHP programozás, tördelés...) Dées Balázs,

Részletesebben