SZÁMELMÉLET. Szigeti Jenő

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZÁMELMÉLET. Szigeti Jenő"

Átírás

1 SZÁMELMÉLET Sigeti Jeő. OSZTHATÓSÁG A osthatósággal kapcsolatba égy alapvető eredméyt kölük bioyítás élkül. Jelölje φ() a {,,..., } halmaból ao elemek sámát, amelyek relatív prímek a -he. Ha például p prímsám, akkor φ(p) = p... Tétel (Euler). Ha a a egés sám relatív prím a -he, akkor a φ() ostható -el: a φ().. Tétel (Fermat). Ha a a egés sám em ostható a p prímsámmal, akkor a p ostható p-vel: p a p..3. Tétel (Wilso). Ha p prímsám, akkor (p )!+ ostható p-vel: p (p )! +.4. Tétel (Kíai Maradéktétel). Ha a a, a,..., a és r, r,..., r egésekre lko(a i, a j ) = mide i < j eseté, akkor léteik olya b egés sám, amelyre a a i b r i osthatóság teljesül mide i eseté..5. Példa. Bioyítsuk be, hogy 5 k teljesül a k = 5 5 esetbe és 5 k, ha k < 5 5. Megoldás. Mivel φ(5 ) = 5 5 = 4 5, Euler tételéek alkalmaásával kapjuk, hogy A továbbiakba teljes idukciót alkalmauk. Ha = és k = = 4, akkor 5 4 = 5 és a k < = 4 egésekre köye látható, hogy 5 k. Tegyük fel, hogy állításuk iga -re, de em teljesül + -re. Legye k < a legkisebb k, amelyre 5 + k. Most 4 5 =5 + 5 = kq + r, ahol 0 r k a ostási maradék a k-val törtétő maradékos ostásál. Ha r, akkor kq+ r k q r r 5 = = (( ) ) + ( ) és így k ( k ) q miatt 5 + r adóda elletétbe k válastásával. Tehát r = 0, aa 4 5 = kq. At állítjuk, hogy 4 5 ostója k-ak. Legye k = 4 5 t + m, ahol 0 m < 4 5 = 5 5 a ostási maradék a 4 5 -el való ostáskor. Ha m, akkor 5 = = (( t ) ) + ( + k t+ m m m t és így ( ) miatt 5 m adóda elletétbe a -re voatkoó feltevésükel. Tehát m = 0, aa k = 4 5 t. A 4 5 = kq = 4 5 tq egyelőségre való tekitettel kapjuk, hogy t = vagy t = 5. A t = eset lehetetle, hise 5 + k =. A t = 5 eset sité lehetetle, mert k < = 4 5. Már csak ayit kell beláti, hogy valóba teljesül. Most 5 = és a -re voatkoó feltevésük követkeméye. Így at kapjuk, hogy ) = 5 s, ahol

2 5 s. Tehát = (5 s) em ostható 5 + -el (5 s) 4 + 0(5 = (5 s) 3 s + ) + 0(5 5 = s) + 5(5 s) = 5 p.6. Példa. Igaoljuk, hogy p! +, ahol p = 4k+ prímsám. + w + 5 Megoldás. Wilso tétele serit p (p-)! += (k) (k+) (p ) + és (k) (k+) (p ) + = (k) (p k) (p (k )) (p )+= = [(k)!] + pw +, valamilye w egés sámra, ahoa a kívát osthatóság adódik..7. Példa. Igaoljuk, hogy a p = x + y egyeletek léteik (x, y) egés sámokból álló megoldása, ahol p = 4k + prímsám. Megoldás. Ha mp = x + y megoldható valamilye m < p egésre (a.6 példa serit e iga), akkor belátjuk, hogy p = x + y is megoldható valamilye m egésre. Ha s m páros, akkor x + y ahol és x y m x + y p = x y +, egés sámok. Ha m páratla, akkor x = mr + x ad y = ms + y valamilye x < m és y < m egésekre. alapjá x y = m + mp = x + y = ( mr + x ) + ( ms + y) = mw + x + y adódik valamilye egésre ( = 0 em lehetséges, mert mp = x +y em ostható m -el). A x < m és y < m egyelőtleségekből m m m m = x + y < + = kapható, ahoa < m adódik. A p = x +y megoldhatósága a m p = ( mp)( m) = ( x + y )( x + y ) = ( xx + yy ) + ( xy x y) + yy = ( mr + x ) x + ( ms + y) y = mrx + msy + x + y = m( rx + sy xy x y = ( mr + x ) y x ( ms + y) = m( ry xs) p = ( rx + sy + ) + ( ry xs). xx + egyeletekből követkeik. A feti ú. lesálló lépés ismételt alkalmaása (a m helyett a a előbbieket) végül at adja, hogy p = x +y.8. Feladat. Igaoljuk a követkeőket. () 00 0 megoldható. ) m egésre megismételve

3 () (3) (4) (5) (6) m(m ) (7) k + (8) Útmutatás. () 0 = ( )( ) () 3 követkeméye 3 60 és követkeméye Így Másrést követkeméye és (3) 5 + és követkeméye 0 5 és követkeméye , ahoa adódik követkeméye és felhasálásával kapjuk, hogy (4) =( ) + ( ) ( ), = 4 ( ), =64 és 7 + 4, , (5) és (6) = és hasáljuk Fermat tételét. Alkalmauk teljes idukciót: (3 3(+)+3 6(+) 7) ( ) = 6(3 3+3 ) és k = 8t = ) k+ 4 követkeméye és ( 8t.9. Feladat. Egy égyetsám utolsó égy sámjegye aoos. Melyik e a sámjegy? Útmutatás. Egy égyet utolsó sámjegye 0,, 4, 5, 6 és 9 lehet. A utolsó két sámjegy em lehet, 55, 66 és 99 (et a 4-el való ostás mutatja). A megmaradt lehetőségek köül 4444 em lehetséges (et a 6-al való ostás mutatja). A egyetle eset a 0000, amelyet a 00 megvalósít..0. Feladat. Igaoljuk, hogy (!) (-)! ostója (!)!-ak. Útmutatás. Hasáljuk fel, hogy! (t + )(t + ) (t + )... Feladat. Legye m egés sám. Bioyítsuk be, hogy mide páros sám felírható két m-he relatív prím egés külöbségekét. Útmutatás. Legye k a adott páros sám és legyeek p, p,, p r a m prímtéyeői. Mide i r idex eseté léteik olya x i egés, amelyre f(x i ) = x i (x i + k) em ostható p i -vel. A Kíai Maradéktétel bitosítja a léteését olya x egések, amelyre p i x x i mide i eseté. Így kapjuk, hogy p i f(x) f(x i ) és p i f(x) mide i-re (itt f(x) = x(x + k) ). Tehát k = (x + k) x a kívát felírás.

4 . AZ ax + by = c LINEÁRIS EGYENLET.. Tétel. Legyeek a,b,c em ulla egés sámok, ekkor a alábbi állítások ekvivalesek: () Léteek olya x és y egések, amelyekre ax + by = c teljesül. () A a és b legagyobb köös ostója c-ek ostója, aa lko(a, b) c. Ha (x 0,y 0 ) egy tetsőleges megoldása a ax + by = c egyeletek, akkor bármely más (x, y) megoldás a alábbi x = x 0 + b 0 t és y = y 0 a 0 t, alakba kapható, ahol t valamilye egés sám és a 0 = a/lko(a,b), valamit b 0 = b/lko(a, b). Bioyítás. Legye d = lko(a, b). ()() d a és d b alapjá d ax és d by adódik, ahoa d ax + by kapható. Így d c is teljesül. ()() Most c 0 = c/d egés sám és ax + by = c helyett írható, hogy a 0 x + b 0 y = c 0, ahol lko(a 0, b 0 ) =. Ahogya at már egy lemmába láttuk (a Euklidési algoritmussal kapcsolatba) lko(a 0,b 0 ) = garatálja, hogy a 0 x + b 0 y = teljesül alkalmas (x,y ) egésekre. Nyilvávaló, hogy (x,y ) megoldása a ax + by = d egyeletek és a is, hogy (c 0 x,c 0 y ) megoldása a ax + by = c egyeletek. A ax + by = c össes (x, y) megoldását a ax 0 + by 0 = c egyeletből úgy kapjuk, hogy a alábbi ax + by = ax 0 + by 0 egyelőséget tekitjük. Ie előbb a(x x 0 ) = b(y 0 y) majd a 0 (x x 0 ) = b 0 (y 0 y) kapható. Mivel lko(a 0, b 0 ) =, eért b 0 x x 0 aa x x 0 = b 0 t teljesül valamilye t-re. A a 0 b 0 t = b 0 (y 0 y) követkeméyekét kapjuk, hogy y 0 y = a 0 t. Tehát x = x 0 + b 0 t és y = y 0 a 0 t. Köye elleőríhető, hogy bármely t-re a (x 0 + b 0 t, y 0 a 0 t) pár megoldása a ax + by = c egyeletek... Példa. Keressük meg a 354x + 38y = egyelet megoldásait a egés sámok körébe. Megoldás. Most lko(354, 38) = 6 és 354 = 6 59, 38 = 6 3, = 6. Mivel 6, a egyelet megoldható. Elegedő a 59x + 3y = egyelettel foglalkoi, ahol lko(59, 3) =. Előbb a 59x + 3y = egyeletet oldjuk meg a Euklidési algoritmusak a (59, 3) sámpárra való alkalmaásával. A követkeő lépéseket tessük: 59 = 3 + 3, 3 = 3 + 0, 3 = 0 + 3, 0 = 3 3 +, 3 = Így a alábbi kifejeéseket kapjuk a egymást követő maradékokra: 3 = 59 3 = ( ), 0 = 3 3 = 3 ( ( )) = 59 ( ) + 3 3, 3 = 3 0 = ( ( )) (59 ( ) + 3 3) = ( 5) = = (59 ( ) + 3 3) ( ( 5)) 3 = 59 ( 7) Tehát x = 7 és y = 8 megoldása a 59x + 3y = egyeletek. Nyilvávalóa x 0 = ( 7) = 4 és y 0 = 8 = 36 megoldása a 59x + 3y = egyeletek. A. Tételt hasálva kapjuk a 59x + 3y = össes megoldását: ahol t tetsőleges egés sám. ( 4 + 3t, 36 59t),.3. Példa. Keressük meg a 35x + 5y + = 8 egyelet megoldásait a egés sámok körébe.

5 Megoldás. A egyelet 5(7x + 3y) + = 8 alakba is írható. Előbb a 5u + = 8 egyeletet oldjuk meg. A u = 4 és = egések megoldását adják a 5u + = egyeletek, eért ( 3, 8) megoldása a 5u + = 8 egyeletek. A tételük serit a 5u + = 8 egyelet megoldásait a ( 3 + t, 8 5t), t Z párok solgáltatják. Így 5(7x + 3y) + = 8 potosa akkor teljesül a x, y, egésekre, ha 7x + 3y = 3 + t és = 8 5t teljesül valamilye t egésre. Csupá a 7x + 3y = 3 + t egyelet megoldásait kell megtaláli tetsőleges t eseté. A (, ) pár megoldása a 7x + 3y = egyeletek, eért ( 3 + t, 64 4t) megoldása a 7x + 3y = 3 + t egyeletek. A. Tétel serit a általáos megoldást a alábbiak solgáltatják x = 3 + t + 3s és y = 64 4t 7s, ahol s tetsőleges egés sám. Követkeésképpe (x, y, ) potosa akkor megoldása a 35x + 5y + = 8 egyeletek, ha találhatóak olya t és s egések, amelyekre (x, y, ) = ( 3 + t + 3s, 64 4t - 7s, 8 5t)..4. Feladat. Keressük meg a alábbi egyelet redser megoldásait a egés sámok körébe. 3x + y 7 = 5, x 5y + 9 =. 3. NEM LINEÁRIS DIOFANTOSZI EGYENLETEK 3.. Tétel. Legyeekt x, y, poitív (em ulla) egés sámok és x = dx,y = dy, = d, ahol d = lko(x, y, ) > 0. Ekkor x + y = potosa akkor teljesül, ha () vagy () teljesül. () x = u v, y = uv és = u + v valamilye u > v egésekre, ahol lko(u, v) =. () x = uv, y = u v és = u + v valamilye u > v egésekre, ahol lko(u, v) =. Bioyítás. x + y = átírható d x + d y = d alakba, így egyserűsíthetük d el. Most lko(x, y ) =, lko(x, ) =, lko(y, ) =. At állítjuk, hogy x és y potosa egyike páros. Valóba lko(x, y ) = miatt x és y midegyike em lehet páros. Másrést ha x és y midegyike páros lee, akkor x = k + és y = l + at eredméyeé, hogy 4( k + k + l + ) (*) = x + y = l + aa, hogy és így is páros. De 4, elletmodaa (*)-ak. Tegyük fel, hogy y = l páros, ekkor x és eel együtt is páratla. Most ( + x )( x = x = y követketébe )

6 + x x y =. Mivel + x x = x + x + x =, és lko(x, y ) =, eért + x x = lko, A egymásho relatív prím égyetsám, ha + x és x sámok sorata csak úgy lehet + x = u és x = v teljesül valamilye u > v egésekre, ahol lko(u, v) =. A fetiek serit és így u v = x ad u + v = ( u + v ) ( u v ) u y = = x = 4 v a y = uv egyelőséghe veet. A a eset, amikor x a páros hasolóa tárgyalható és a ()-be látható egyelőséghe veet. Végül megjegyeük, hogy a aoosság midíg teljesül. ( u v ) + ( uv) = ( u + v ) 3.. Példa. Keressük meg a x + y = egyelet egés megoldásait. Megoldás. Csak a em egatív megoldásokkal foglalkouk. Egyserűsítsük d -el, ahol d = lko(x, y, ), a erdméyt x + y = alakba írjuk. Most y és aoos paritásúak, továbbá lko(x, y, ) =. Nyilvávaló, hogy x + y = + y y legye lko(, ) = δ. Ekkor vagy y 3

7 + y = 3 u δ és y = v δ vagy pedig + y = v δ és y = 3 u δ teljesül alkalmas relatív prím u 0 és v 0 egésekre. A első illetve a második esetbe a alábbiakat kapjuk illetve = ( 3u + v )δ, y = ( 3u v )δ, x = uvδ = ( 3u + v )δ, y = ( v 3u )δ, x = uvδ Mivel δ x, δ y ad δ midkét esetbe, eért δ =. A em egatív megoldások a követkeők x = uv, y = 3u v, = 3u + v Tétel. Ha (x, y, ) megoldása a x 4 + y 4 = egyeletek, akkor x = 0 vagy y = 0. Bioyítás. Legye x, y, és (x, y, ) olya megoldás, amelybe a lehető legkisebb. A általáosság rovására em megy ha feltételeük, hogy lko(x, y) =. A 3. Tételt alkalmava kapjuk, hogy x = uv, y = u v ad = u + v alkalmas u > v, lko(u, v) = egésekre. x = uv miatt u és v valamelyike páros (a másik páratla). Ha u = k és v = l +, akkor y = u v = 4(k l l) elletmodás. Tehát v = l és x = 4ul, ahoa x = ul adódik. Mivel lko(u, l) =, eért u = és l = teljesül bioyos és v egésekre. Most v = v és páratla. A y = u v egyeletből v ( v ) y = ( ) +, követkeik, ahol lko( v, y ) =. A 3. Tétel ismételt alkalmaásával kapjuk, hogy v = u v, y = u v, + = u v a u > v, lko(u, v ) = egésekre. A v = u követkeméye, hogy u = és v v = teljesül bioyos x és y relatív prím egésekre. A = u + felírható y v x

8 x = y alakba. Tehát (x, y, ) olya megoldás, amelyre elletmodásba a válastásával. = u < u + v = teljesül 3.4. Példa. Keressük meg a x 6 + 3y 6 = 6 egyelet egés megoldásait. Megoldás. Legye (x,y) (0,0). Feltehető, hogy x és y valamelyike em ostható 7-el (ellekeő esetbe egyserűsíthetük 7 6 -al). Három esetet visgáluk. - Ha 7 x és 7 y, akkor Fermat tétele serit 7 (x 6 ) + 3(y 6 ) = 6 5. Mivel 7 vagy 7 6, eért 6 5 em ostható 7-el, e elletmodás. - Ha 7 x és 7 y, akkor 7 x 6 + 3(y 6 ) = 6 3. Mivel 7 vagy 7 6, eért 6 3 em ostható 7-el, e elletmodás. - Ha 7 x és 7 y, akkor 7 (x 6 ) + 3y 6 = 6. Mivel 7 vagy 7 6, eért 6 em ostható 7-el, e elletmodás. Tehát a egyetle megoldás x = y = = 0. A Diofatosi egyeletek általáos elméletébe a egyik legfotosabb eredméy a követkeő Tétel (Roth, 955). Legyeek a 0, a,,a, b ij Z (0 i, j) olya egés sámok, amelyekre a f(x) = a 0 + a x + + a x poliom irreducibilis a Z felett. Ha 3, akkor a alábbi egyeletek csak véges sok megoldása va a egés sámok körébe a x + a x y axy + a0 y = bij i+ j 3 i x y j 3.6. Példa. Véges sok olya (x, y) egés sámokból álló pár va, amelyre x + 3x y 3x y + 6y = x y + xy + 7x + 5y + teljesül. Megoldás. Mivel f(x) = x 5 + 3x 3 3x + 6 irreducibilis felett (pl. Eiestei kritériuma serit), a 3.5 Tétel alkalmaható Feladat. Keressük meg a alábbi egyelet egés megoldásait x + 3y + 4 = u Útmutatás. Hasáljuk Fermat tételét: 3 vagy 3 mide egésre Feladat. Keressük meg aokat a (x, y) egésekből álló párokat, amelyekre x + 3xy ( x + y) = 0. Útmutatás. Írjuk fel a egyeletet a 003 9y = 3x x alakba és hasáljuk, hogy 003 prím Feladat. Keressük aokat a (x, y, ) egéseket, amelyekre

9 x + y + = 3 és x 3 + y = 3. Útmutatás. (x + y + ) 3 (x 3 + y ) = 3(x + y)(x + )(y + ) Feladat. Legye egés és p prím. Igaoljuk, hogy x(x + ) = p y(y + ) em oldható meg a x és y egésekre. Útmutatás. x + p és p = [p (y + ) + (x + )][p (y + ) (x + )]. 3.. Feladat. Legye D = m + valamilye m egésre. Igaoljuk, hogy a x Dy = egyeletek végtele sok megoldása va a egés sámok körébe. Útmutatás. x = m + és y = m megoldás. A biomiális tétel serit mide kitevőre ( x + y D ) = x + y D és ( x y D ) = x y D alkalmas (x, y ) egésekből álló párra. Továbbá ( x Dy ) = ( x + y D ) ( x y D ) = x Dy =.

26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007

26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007 6 Győri Istvá, Hartug Ferec: MA4f és MA66a előadásjegyet, 006/007. A -trasformált.. Egy iformációátviteli probléma Legye adott egy üeetátviteli redserük, amelybe a üeeteket két alapjel modjuk a és b segítségével

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév Sersámgépe 5. előadás. Márcis. Sersámg mgépe 5. előad adás Misolc - Egyetemváros /.félév Sersámgépe 5. előadás. Márcis. A sabályohatósági tartomáy övelésée módserei Előetes megfotoláso: S mi mi M S φ,

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

illetve a n 3 illetve a 2n 5

illetve a n 3 illetve a 2n 5 BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Prímszámok a Fibonacci sorozatban

Prímszámok a Fibonacci sorozatban www.titokta.hu D é e s T a m á s matematikus-kriptográfus e-mail: tdeest@freemail.hu Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

SZÁMELMÉLETI FELADATOK

SZÁMELMÉLETI FELADATOK SZÁMELMÉLETI FELADATOK 1. Az 1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4 számokat a pitagoreusok háromszög számoknak nevezték, mert az összeadandóknak megfelelő számú pont szabályos háromszög alakban

Részletesebben

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N} 2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egész számok 2 H406 2016-09-13,15,18 Wettl Ferenc

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

2.2. A z-transzformált

2.2. A z-transzformált 22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

Megjegyzés: Amint már előbb is említettük, a komplex számok

Megjegyzés: Amint már előbb is említettük, a komplex számok 1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B) Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Ferde hatásvonalú csuklóval megtámasztott rúd stabilitási vizsgálata

Ferde hatásvonalú csuklóval megtámasztott rúd stabilitási vizsgálata MISKOCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR TUDOMÁNYOS DIÁKKÖRI DOGOZAT Ferde hatásvoalú csuklóval megtámastott rúd stabilitási visgálata egyel Ákos Jósef I. éves gépésméröki MSc sakos hallgató Koules:

Részletesebben

Bevezetés az algebrába az egész számok 2

Bevezetés az algebrába az egész számok 2 Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +

Részletesebben

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK Kitűzött feladatok Ijektivitás és egyéb tulajdoságok 69 1. KITŰZÖTT FELADATOK Határozd meg az összes szigorúa mooto f:z Z függvéyt, amely teljesíti az f ( xy) = f ( y), x, y Z összefüggést és létezik k

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe

Részletesebben

Lineáris egyenlet. Lineáris egyenletrendszer. algebrai egyenlet konstansok és első fokú ismeretlenek pl.: egyenes egyenlete

Lineáris egyenlet. Lineáris egyenletrendszer. algebrai egyenlet konstansok és első fokú ismeretlenek pl.: egyenes egyenlete Lieáris egyelet algebrai egyelet kostasok és első fokú ismeretleek pl.: egyees egyelete Lieáris egyeletredser y a b lieáris egyeletek csoportja ugya ao a váltoó halmao Lieáris egyeletredser B b B b B b

Részletesebben

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba

Részletesebben

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Algoritmuselmélet gyakorlat (MMN111G)

Algoritmuselmélet gyakorlat (MMN111G) Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA 1 MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA Tuzso Zoltá Akár a régebbi, akár az alteratív XI. osztályos algebra taköyveket lapozva, akár példatárakba vagy matematikai verseyeke gyakra találkozuk egyél magasabb

Részletesebben

Minden egész szám osztója önmagának, azaz a a minden egész a-ra.

Minden egész szám osztója önmagának, azaz a a minden egész a-ra. 1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

Magyary Zoltán Posztdoktori beszámoló előadás

Magyary Zoltán Posztdoktori beszámoló előadás Magyary Zoltán Posztdoktori beszámoló előadás Tengely Szabolcs 2007. november 9. Számelméleti Szeminárium tengely@math.klte.hu slide 1 Eredmények Eredmények Chabauty (T.Sz.): On the Diophantine equation

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet: Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Algebra gyakorlat, 3. feladatsor, megoldásvázlatok

Algebra gyakorlat, 3. feladatsor, megoldásvázlatok Algebra gyakorlat, 3. feladatsor, megoldásvázlatok 1. a) Z(G), mert az egységelem yilvá felcserélhet mide G-beli elemmel. Továbbá Z(G) zárt a szorzásra, mert ha a, b Z(G), akkor tetsz leges g G-re (ab)g

Részletesebben

Ö ü ö ü Ö Ö ü ú ó ü ö ö Ö ó Ö ö ú ö ó ö ö ó ö ö ö í í ö ö ü ü ö í ü ö ö í ö í ó ü ö ö í ü í ö í ü ú ü ö Ö ü ö ű ó í ó ó ó ö í ü ó ó ó ö ö ó ö í ó ü ó ó ö ö ü ó ö ö ó ó ó ü ü ó ó ö ö ü í ö ű ö ű ö ö ű í

Részletesebben

í ö í í ú ű í í í ú í ű í Ü ö ö ö ü ö ö ö í ö ö ö ö Ö Á ö ö É ö ö ú ú ö ö ú ö í Á Á ö Ü Ú í ÁÁ ö í ö í í ú ű í ö ö í ú É í ű í ö ö É í í ű í ű í É í í ü ű ü ű í Á Á í ü í ü í ü ö ű ö É ü É ú Á Ó í í í

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

Szakács Lili Kata megoldása

Szakács Lili Kata megoldása 1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan

Részletesebben

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus

Részletesebben

VIII. FEJEZET ÖSSZEFOGLALÓ FELADATOK

VIII. FEJEZET ÖSSZEFOGLALÓ FELADATOK Össefoglaló feladato 7 VIII FEJEZET ÖSSZEFOGLALÓ FELADATOK VIII Verseyre előésítő feladato Két samitás, 6060 illetve 8080-cm agyságú sőyegdarab (mide meő 00 cm agyságú) segítségével le ell fedi egy 0000

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12 Határértékszámítás szerkesztés alatt) Dr. Toledo Rodolfo 207. április 23. Tartalomjegyzék. Bevezetés 2 2. Segédállítások 3 3. Nevezetes sorozatok 7 4. A határátmeet és a műveletek 2 5. Az e szám fogalma

Részletesebben

Bevezetés az algebrába komplex számok

Bevezetés az algebrába komplex számok Bevezetés az algebrába komplex számok Wettl Ferec Algebra Taszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december 6.

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

5. Az Algebrai Számelmélet Elemei

5. Az Algebrai Számelmélet Elemei 5. Az Algebrai Számelmélet Elemei 5.0. Bevezetés. Az algebrai számelmélet legegyszerűbb kérdései az ún. algebrai számtestek egészei gyűrűjének aritmetikai tulajdonságainak vizsgálata. Ezek legegyszerűbb

Részletesebben