SZÁMELMÉLET. Szigeti Jenő

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZÁMELMÉLET. Szigeti Jenő"

Átírás

1 SZÁMELMÉLET Sigeti Jeő. OSZTHATÓSÁG A osthatósággal kapcsolatba égy alapvető eredméyt kölük bioyítás élkül. Jelölje φ() a {,,..., } halmaból ao elemek sámát, amelyek relatív prímek a -he. Ha például p prímsám, akkor φ(p) = p... Tétel (Euler). Ha a a egés sám relatív prím a -he, akkor a φ() ostható -el: a φ().. Tétel (Fermat). Ha a a egés sám em ostható a p prímsámmal, akkor a p ostható p-vel: p a p..3. Tétel (Wilso). Ha p prímsám, akkor (p )!+ ostható p-vel: p (p )! +.4. Tétel (Kíai Maradéktétel). Ha a a, a,..., a és r, r,..., r egésekre lko(a i, a j ) = mide i < j eseté, akkor léteik olya b egés sám, amelyre a a i b r i osthatóság teljesül mide i eseté..5. Példa. Bioyítsuk be, hogy 5 k teljesül a k = 5 5 esetbe és 5 k, ha k < 5 5. Megoldás. Mivel φ(5 ) = 5 5 = 4 5, Euler tételéek alkalmaásával kapjuk, hogy A továbbiakba teljes idukciót alkalmauk. Ha = és k = = 4, akkor 5 4 = 5 és a k < = 4 egésekre köye látható, hogy 5 k. Tegyük fel, hogy állításuk iga -re, de em teljesül + -re. Legye k < a legkisebb k, amelyre 5 + k. Most 4 5 =5 + 5 = kq + r, ahol 0 r k a ostási maradék a k-val törtétő maradékos ostásál. Ha r, akkor kq+ r k q r r 5 = = (( ) ) + ( ) és így k ( k ) q miatt 5 + r adóda elletétbe k válastásával. Tehát r = 0, aa 4 5 = kq. At állítjuk, hogy 4 5 ostója k-ak. Legye k = 4 5 t + m, ahol 0 m < 4 5 = 5 5 a ostási maradék a 4 5 -el való ostáskor. Ha m, akkor 5 = = (( t ) ) + ( + k t+ m m m t és így ( ) miatt 5 m adóda elletétbe a -re voatkoó feltevésükel. Tehát m = 0, aa k = 4 5 t. A 4 5 = kq = 4 5 tq egyelőségre való tekitettel kapjuk, hogy t = vagy t = 5. A t = eset lehetetle, hise 5 + k =. A t = 5 eset sité lehetetle, mert k < = 4 5. Már csak ayit kell beláti, hogy valóba teljesül. Most 5 = és a -re voatkoó feltevésük követkeméye. Így at kapjuk, hogy ) = 5 s, ahol

2 5 s. Tehát = (5 s) em ostható 5 + -el (5 s) 4 + 0(5 = (5 s) 3 s + ) + 0(5 5 = s) + 5(5 s) = 5 p.6. Példa. Igaoljuk, hogy p! +, ahol p = 4k+ prímsám. + w + 5 Megoldás. Wilso tétele serit p (p-)! += (k) (k+) (p ) + és (k) (k+) (p ) + = (k) (p k) (p (k )) (p )+= = [(k)!] + pw +, valamilye w egés sámra, ahoa a kívát osthatóság adódik..7. Példa. Igaoljuk, hogy a p = x + y egyeletek léteik (x, y) egés sámokból álló megoldása, ahol p = 4k + prímsám. Megoldás. Ha mp = x + y megoldható valamilye m < p egésre (a.6 példa serit e iga), akkor belátjuk, hogy p = x + y is megoldható valamilye m egésre. Ha s m páros, akkor x + y ahol és x y m x + y p = x y +, egés sámok. Ha m páratla, akkor x = mr + x ad y = ms + y valamilye x < m és y < m egésekre. alapjá x y = m + mp = x + y = ( mr + x ) + ( ms + y) = mw + x + y adódik valamilye egésre ( = 0 em lehetséges, mert mp = x +y em ostható m -el). A x < m és y < m egyelőtleségekből m m m m = x + y < + = kapható, ahoa < m adódik. A p = x +y megoldhatósága a m p = ( mp)( m) = ( x + y )( x + y ) = ( xx + yy ) + ( xy x y) + yy = ( mr + x ) x + ( ms + y) y = mrx + msy + x + y = m( rx + sy xy x y = ( mr + x ) y x ( ms + y) = m( ry xs) p = ( rx + sy + ) + ( ry xs). xx + egyeletekből követkeik. A feti ú. lesálló lépés ismételt alkalmaása (a m helyett a a előbbieket) végül at adja, hogy p = x +y.8. Feladat. Igaoljuk a követkeőket. () 00 0 megoldható. ) m egésre megismételve

3 () (3) (4) (5) (6) m(m ) (7) k + (8) Útmutatás. () 0 = ( )( ) () 3 követkeméye 3 60 és követkeméye Így Másrést követkeméye és (3) 5 + és követkeméye 0 5 és követkeméye , ahoa adódik követkeméye és felhasálásával kapjuk, hogy (4) =( ) + ( ) ( ), = 4 ( ), =64 és 7 + 4, , (5) és (6) = és hasáljuk Fermat tételét. Alkalmauk teljes idukciót: (3 3(+)+3 6(+) 7) ( ) = 6(3 3+3 ) és k = 8t = ) k+ 4 követkeméye és ( 8t.9. Feladat. Egy égyetsám utolsó égy sámjegye aoos. Melyik e a sámjegy? Útmutatás. Egy égyet utolsó sámjegye 0,, 4, 5, 6 és 9 lehet. A utolsó két sámjegy em lehet, 55, 66 és 99 (et a 4-el való ostás mutatja). A megmaradt lehetőségek köül 4444 em lehetséges (et a 6-al való ostás mutatja). A egyetle eset a 0000, amelyet a 00 megvalósít..0. Feladat. Igaoljuk, hogy (!) (-)! ostója (!)!-ak. Útmutatás. Hasáljuk fel, hogy! (t + )(t + ) (t + )... Feladat. Legye m egés sám. Bioyítsuk be, hogy mide páros sám felírható két m-he relatív prím egés külöbségekét. Útmutatás. Legye k a adott páros sám és legyeek p, p,, p r a m prímtéyeői. Mide i r idex eseté léteik olya x i egés, amelyre f(x i ) = x i (x i + k) em ostható p i -vel. A Kíai Maradéktétel bitosítja a léteését olya x egések, amelyre p i x x i mide i eseté. Így kapjuk, hogy p i f(x) f(x i ) és p i f(x) mide i-re (itt f(x) = x(x + k) ). Tehát k = (x + k) x a kívát felírás.

4 . AZ ax + by = c LINEÁRIS EGYENLET.. Tétel. Legyeek a,b,c em ulla egés sámok, ekkor a alábbi állítások ekvivalesek: () Léteek olya x és y egések, amelyekre ax + by = c teljesül. () A a és b legagyobb köös ostója c-ek ostója, aa lko(a, b) c. Ha (x 0,y 0 ) egy tetsőleges megoldása a ax + by = c egyeletek, akkor bármely más (x, y) megoldás a alábbi x = x 0 + b 0 t és y = y 0 a 0 t, alakba kapható, ahol t valamilye egés sám és a 0 = a/lko(a,b), valamit b 0 = b/lko(a, b). Bioyítás. Legye d = lko(a, b). ()() d a és d b alapjá d ax és d by adódik, ahoa d ax + by kapható. Így d c is teljesül. ()() Most c 0 = c/d egés sám és ax + by = c helyett írható, hogy a 0 x + b 0 y = c 0, ahol lko(a 0, b 0 ) =. Ahogya at már egy lemmába láttuk (a Euklidési algoritmussal kapcsolatba) lko(a 0,b 0 ) = garatálja, hogy a 0 x + b 0 y = teljesül alkalmas (x,y ) egésekre. Nyilvávaló, hogy (x,y ) megoldása a ax + by = d egyeletek és a is, hogy (c 0 x,c 0 y ) megoldása a ax + by = c egyeletek. A ax + by = c össes (x, y) megoldását a ax 0 + by 0 = c egyeletből úgy kapjuk, hogy a alábbi ax + by = ax 0 + by 0 egyelőséget tekitjük. Ie előbb a(x x 0 ) = b(y 0 y) majd a 0 (x x 0 ) = b 0 (y 0 y) kapható. Mivel lko(a 0, b 0 ) =, eért b 0 x x 0 aa x x 0 = b 0 t teljesül valamilye t-re. A a 0 b 0 t = b 0 (y 0 y) követkeméyekét kapjuk, hogy y 0 y = a 0 t. Tehát x = x 0 + b 0 t és y = y 0 a 0 t. Köye elleőríhető, hogy bármely t-re a (x 0 + b 0 t, y 0 a 0 t) pár megoldása a ax + by = c egyeletek... Példa. Keressük meg a 354x + 38y = egyelet megoldásait a egés sámok körébe. Megoldás. Most lko(354, 38) = 6 és 354 = 6 59, 38 = 6 3, = 6. Mivel 6, a egyelet megoldható. Elegedő a 59x + 3y = egyelettel foglalkoi, ahol lko(59, 3) =. Előbb a 59x + 3y = egyeletet oldjuk meg a Euklidési algoritmusak a (59, 3) sámpárra való alkalmaásával. A követkeő lépéseket tessük: 59 = 3 + 3, 3 = 3 + 0, 3 = 0 + 3, 0 = 3 3 +, 3 = Így a alábbi kifejeéseket kapjuk a egymást követő maradékokra: 3 = 59 3 = ( ), 0 = 3 3 = 3 ( ( )) = 59 ( ) + 3 3, 3 = 3 0 = ( ( )) (59 ( ) + 3 3) = ( 5) = = (59 ( ) + 3 3) ( ( 5)) 3 = 59 ( 7) Tehát x = 7 és y = 8 megoldása a 59x + 3y = egyeletek. Nyilvávalóa x 0 = ( 7) = 4 és y 0 = 8 = 36 megoldása a 59x + 3y = egyeletek. A. Tételt hasálva kapjuk a 59x + 3y = össes megoldását: ahol t tetsőleges egés sám. ( 4 + 3t, 36 59t),.3. Példa. Keressük meg a 35x + 5y + = 8 egyelet megoldásait a egés sámok körébe.

5 Megoldás. A egyelet 5(7x + 3y) + = 8 alakba is írható. Előbb a 5u + = 8 egyeletet oldjuk meg. A u = 4 és = egések megoldását adják a 5u + = egyeletek, eért ( 3, 8) megoldása a 5u + = 8 egyeletek. A tételük serit a 5u + = 8 egyelet megoldásait a ( 3 + t, 8 5t), t Z párok solgáltatják. Így 5(7x + 3y) + = 8 potosa akkor teljesül a x, y, egésekre, ha 7x + 3y = 3 + t és = 8 5t teljesül valamilye t egésre. Csupá a 7x + 3y = 3 + t egyelet megoldásait kell megtaláli tetsőleges t eseté. A (, ) pár megoldása a 7x + 3y = egyeletek, eért ( 3 + t, 64 4t) megoldása a 7x + 3y = 3 + t egyeletek. A. Tétel serit a általáos megoldást a alábbiak solgáltatják x = 3 + t + 3s és y = 64 4t 7s, ahol s tetsőleges egés sám. Követkeésképpe (x, y, ) potosa akkor megoldása a 35x + 5y + = 8 egyeletek, ha találhatóak olya t és s egések, amelyekre (x, y, ) = ( 3 + t + 3s, 64 4t - 7s, 8 5t)..4. Feladat. Keressük meg a alábbi egyelet redser megoldásait a egés sámok körébe. 3x + y 7 = 5, x 5y + 9 =. 3. NEM LINEÁRIS DIOFANTOSZI EGYENLETEK 3.. Tétel. Legyeekt x, y, poitív (em ulla) egés sámok és x = dx,y = dy, = d, ahol d = lko(x, y, ) > 0. Ekkor x + y = potosa akkor teljesül, ha () vagy () teljesül. () x = u v, y = uv és = u + v valamilye u > v egésekre, ahol lko(u, v) =. () x = uv, y = u v és = u + v valamilye u > v egésekre, ahol lko(u, v) =. Bioyítás. x + y = átírható d x + d y = d alakba, így egyserűsíthetük d el. Most lko(x, y ) =, lko(x, ) =, lko(y, ) =. At állítjuk, hogy x és y potosa egyike páros. Valóba lko(x, y ) = miatt x és y midegyike em lehet páros. Másrést ha x és y midegyike páros lee, akkor x = k + és y = l + at eredméyeé, hogy 4( k + k + l + ) (*) = x + y = l + aa, hogy és így is páros. De 4, elletmodaa (*)-ak. Tegyük fel, hogy y = l páros, ekkor x és eel együtt is páratla. Most ( + x )( x = x = y követketébe )

6 + x x y =. Mivel + x x = x + x + x =, és lko(x, y ) =, eért + x x = lko, A egymásho relatív prím égyetsám, ha + x és x sámok sorata csak úgy lehet + x = u és x = v teljesül valamilye u > v egésekre, ahol lko(u, v) =. A fetiek serit és így u v = x ad u + v = ( u + v ) ( u v ) u y = = x = 4 v a y = uv egyelőséghe veet. A a eset, amikor x a páros hasolóa tárgyalható és a ()-be látható egyelőséghe veet. Végül megjegyeük, hogy a aoosság midíg teljesül. ( u v ) + ( uv) = ( u + v ) 3.. Példa. Keressük meg a x + y = egyelet egés megoldásait. Megoldás. Csak a em egatív megoldásokkal foglalkouk. Egyserűsítsük d -el, ahol d = lko(x, y, ), a erdméyt x + y = alakba írjuk. Most y és aoos paritásúak, továbbá lko(x, y, ) =. Nyilvávaló, hogy x + y = + y y legye lko(, ) = δ. Ekkor vagy y 3

7 + y = 3 u δ és y = v δ vagy pedig + y = v δ és y = 3 u δ teljesül alkalmas relatív prím u 0 és v 0 egésekre. A első illetve a második esetbe a alábbiakat kapjuk illetve = ( 3u + v )δ, y = ( 3u v )δ, x = uvδ = ( 3u + v )δ, y = ( v 3u )δ, x = uvδ Mivel δ x, δ y ad δ midkét esetbe, eért δ =. A em egatív megoldások a követkeők x = uv, y = 3u v, = 3u + v Tétel. Ha (x, y, ) megoldása a x 4 + y 4 = egyeletek, akkor x = 0 vagy y = 0. Bioyítás. Legye x, y, és (x, y, ) olya megoldás, amelybe a lehető legkisebb. A általáosság rovására em megy ha feltételeük, hogy lko(x, y) =. A 3. Tételt alkalmava kapjuk, hogy x = uv, y = u v ad = u + v alkalmas u > v, lko(u, v) = egésekre. x = uv miatt u és v valamelyike páros (a másik páratla). Ha u = k és v = l +, akkor y = u v = 4(k l l) elletmodás. Tehát v = l és x = 4ul, ahoa x = ul adódik. Mivel lko(u, l) =, eért u = és l = teljesül bioyos és v egésekre. Most v = v és páratla. A y = u v egyeletből v ( v ) y = ( ) +, követkeik, ahol lko( v, y ) =. A 3. Tétel ismételt alkalmaásával kapjuk, hogy v = u v, y = u v, + = u v a u > v, lko(u, v ) = egésekre. A v = u követkeméye, hogy u = és v v = teljesül bioyos x és y relatív prím egésekre. A = u + felírható y v x

8 x = y alakba. Tehát (x, y, ) olya megoldás, amelyre elletmodásba a válastásával. = u < u + v = teljesül 3.4. Példa. Keressük meg a x 6 + 3y 6 = 6 egyelet egés megoldásait. Megoldás. Legye (x,y) (0,0). Feltehető, hogy x és y valamelyike em ostható 7-el (ellekeő esetbe egyserűsíthetük 7 6 -al). Három esetet visgáluk. - Ha 7 x és 7 y, akkor Fermat tétele serit 7 (x 6 ) + 3(y 6 ) = 6 5. Mivel 7 vagy 7 6, eért 6 5 em ostható 7-el, e elletmodás. - Ha 7 x és 7 y, akkor 7 x 6 + 3(y 6 ) = 6 3. Mivel 7 vagy 7 6, eért 6 3 em ostható 7-el, e elletmodás. - Ha 7 x és 7 y, akkor 7 (x 6 ) + 3y 6 = 6. Mivel 7 vagy 7 6, eért 6 em ostható 7-el, e elletmodás. Tehát a egyetle megoldás x = y = = 0. A Diofatosi egyeletek általáos elméletébe a egyik legfotosabb eredméy a követkeő Tétel (Roth, 955). Legyeek a 0, a,,a, b ij Z (0 i, j) olya egés sámok, amelyekre a f(x) = a 0 + a x + + a x poliom irreducibilis a Z felett. Ha 3, akkor a alábbi egyeletek csak véges sok megoldása va a egés sámok körébe a x + a x y axy + a0 y = bij i+ j 3 i x y j 3.6. Példa. Véges sok olya (x, y) egés sámokból álló pár va, amelyre x + 3x y 3x y + 6y = x y + xy + 7x + 5y + teljesül. Megoldás. Mivel f(x) = x 5 + 3x 3 3x + 6 irreducibilis felett (pl. Eiestei kritériuma serit), a 3.5 Tétel alkalmaható Feladat. Keressük meg a alábbi egyelet egés megoldásait x + 3y + 4 = u Útmutatás. Hasáljuk Fermat tételét: 3 vagy 3 mide egésre Feladat. Keressük meg aokat a (x, y) egésekből álló párokat, amelyekre x + 3xy ( x + y) = 0. Útmutatás. Írjuk fel a egyeletet a 003 9y = 3x x alakba és hasáljuk, hogy 003 prím Feladat. Keressük aokat a (x, y, ) egéseket, amelyekre

9 x + y + = 3 és x 3 + y = 3. Útmutatás. (x + y + ) 3 (x 3 + y ) = 3(x + y)(x + )(y + ) Feladat. Legye egés és p prím. Igaoljuk, hogy x(x + ) = p y(y + ) em oldható meg a x és y egésekre. Útmutatás. x + p és p = [p (y + ) + (x + )][p (y + ) (x + )]. 3.. Feladat. Legye D = m + valamilye m egésre. Igaoljuk, hogy a x Dy = egyeletek végtele sok megoldása va a egés sámok körébe. Útmutatás. x = m + és y = m megoldás. A biomiális tétel serit mide kitevőre ( x + y D ) = x + y D és ( x y D ) = x y D alkalmas (x, y ) egésekből álló párra. Továbbá ( x Dy ) = ( x + y D ) ( x y D ) = x Dy =.

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév Sersámgépe 5. előadás. Márcis. Sersámg mgépe 5. előad adás Misolc - Egyetemváros /.félév Sersámgépe 5. előadás. Márcis. A sabályohatósági tartomáy övelésée módserei Előetes megfotoláso: S mi mi M S φ,

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Prímszámok a Fibonacci sorozatban

Prímszámok a Fibonacci sorozatban www.titokta.hu D é e s T a m á s matematikus-kriptográfus e-mail: tdeest@freemail.hu Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N} 2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

2.2. A z-transzformált

2.2. A z-transzformált 22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Ö ü ö ü Ö Ö ü ú ó ü ö ö Ö ó Ö ö ú ö ó ö ö ó ö ö ö í í ö ö ü ü ö í ü ö ö í ö í ó ü ö ö í ü í ö í ü ú ü ö Ö ü ö ű ó í ó ó ó ö í ü ó ó ó ö ö ó ö í ó ü ó ó ö ö ü ó ö ö ó ó ó ü ü ó ó ö ö ü í ö ű ö ű ö ö ű í

Részletesebben

í ö í í ú ű í í í ú í ű í Ü ö ö ö ü ö ö ö í ö ö ö ö Ö Á ö ö É ö ö ú ú ö ö ú ö í Á Á ö Ü Ú í ÁÁ ö í ö í í ú ű í ö ö í ú É í ű í ö ö É í í ű í ű í É í í ü ű ü ű í Á Á í ü í ü í ü ö ű ö É ü É ú Á Ó í í í

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése Komplex sámok Komplex sámok beveetése A valós sámok körét a követkeőképpen építettük fel. Elősör a termésetes sámokat veettük be. Itt két művelet volt, a össeadás és a sorás (ismételt össeadás A össeadás

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév Diszkrét matematika I. legfotosabb tételek/defiíciók (II. javított verzió) 2014/2015. I. félév 1. Előszó A jegyzet a Diszkrét matematika I. (DE IK PTI, tárgykód: INDK101-K5, Dr. Burai Pál) tatárgy 2014/2015.

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár dr. CONSTANTIN NĂSTĂSESCU egyetemi taár a Romá Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi taár I. VALÓS SZÁMOK. VALÓS GYÖKÖKKEL RENDELKEZŐ MÁSODFOKÚ EGYENLETEK II. A MATEMATIKAI LOGIKA ELEMEI.

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

MISKOLCI EGYETEM GÉ PÉ SZMÉ RNÖ KI KAR Szerszámgépek Tanszéke FORGÁ CSOLÓ SZERSZÁ MGÉ PEK FOKOZATOS FŐ HAJTÓ MŰ VEI. Oktatá si segédlet

MISKOLCI EGYETEM GÉ PÉ SZMÉ RNÖ KI KAR Szerszámgépek Tanszéke FORGÁ CSOLÓ SZERSZÁ MGÉ PEK FOKOZATOS FŐ HAJTÓ MŰ VEI. Oktatá si segédlet MISKOLCI EGYETEM GÉ PÉ SZMÉ RNÖ KI KAR Sersámgépe Tasée FORGÁ CSOLÓ SZERSZÁ MGÉ PEK FOKOZATOS FŐ HAJTÓ MŰ VEI Otatá si segédlet Misolc, 00 PDF created with FiePrit pdffactory trial versio http://www.fieprit.com

Részletesebben

Algebra évfolyam. Szerkesztette: Hraskó András, Kiss Géza, Pataki János, Szoldatics József január 23.

Algebra évfolyam. Szerkesztette: Hraskó András, Kiss Géza, Pataki János, Szoldatics József január 23. Algebra 11 1. évfolyam Szerkesztette: Hraskó Adrás, Kiss Géza, Pataki Jáos, Szoldatics József 017. jauár 3. Techikai mukák (MatKöyv project, TEX programozás, PHP programozás, tördelés...) Dées Balázs,

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek? Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os

Részletesebben

Hosszmérés finomtapintóval 2.

Hosszmérés finomtapintóval 2. Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t.

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t. Ászpóke csapat Kalló Beát, Nagy Baló Adás Nagy Jáos, éges Máto Fazekas tábo 008. Igaz-e, hogy ha az f, g: Q Q függvéyek szigoúa ooto őek és étékkészletük a teljes Q, akko az f g függvéy étékkészlete is

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Név: EHA-kód: 1. 2. 3. 4. 5. Diszkrét matematika II. gyakorlat 1. ZH 2014. március 19. Uruk-hai csoport 1. Feladat. 4 pont) Oldja meg az 5 122 x mod 72) kongruenciát? Érdekesség: az 5 122 szám 86 számjegyű.)

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

2. Hatványozás, gyökvonás

2. Hatványozás, gyökvonás 2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

IV. A matematikai logika elemei

IV. A matematikai logika elemei 4 A matematikai logika elemei IV A matematikai logika elemei IV Gyakorlatok és feladatok (87 oldal) Készítsd el az alábbi kijeletések logikai értéktáblázatát: a) ( p) ; b) p q ; c) p q ; d) p ( p q) ;

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Dr. BALOGH ALBERT. A folyamatképesség és a folyamatteljesítmény statisztikái (ISO 21747)

Dr. BALOGH ALBERT. A folyamatképesség és a folyamatteljesítmény statisztikái (ISO 21747) Dr. BAOGH ABERT A folyamatkéesség és a folyamatteljesítméy statistikái ISO 747 Folyamat sabályoott, ha csak véletle okú váltoásokat hibákat tartalma. Sabályoatla, ha aoosítható okú redseres váltoásokat

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása. 223 = 7 31 + 6. Visszaszorzunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a, b Z esetén, ahol b 0, létezik olyan q, r Z, hogy a = bq + r és r < b.

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:

Részletesebben

KockaKobak Országos Matematikaverseny 9. osztály

KockaKobak Országos Matematikaverseny 9. osztály KockaKobak Országos Matematikaverseny 9. osztály 204. november 27. A feladatsort készítette: RÓKA SÁNDOR Lektorálta: DR. KISS GÉZA Anyanyelvi lektor: ASZÓDINÉ KOVÁCS MÁRIA www.kockakobak.hu A válaszlapról

Részletesebben

IV. Sorozatok. Sorozatok bevezetése

IV. Sorozatok. Sorozatok bevezetése Sorozatok Sorozatok bevezetése 8 Az,,, számjegyek és tegelyes tükörképeik együtt alkotják a sorozat tagjait A folytatás lehetséges például az ábrá látható módoko Megjegyzés: A Hogya folytatható típusú

Részletesebben

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula. Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben