Statisztikai hipotézisvizsgálatok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Statisztikai hipotézisvizsgálatok"

Átírás

1 Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy töltőgép megfelelőe va-e beállítva; a cigarettába levő kátráy alatta marad-e az előírt értékekek. Ezekbe az esetekbe azt vizsgáltuk, hogy az adott mita származhat-e egy adott paraméterű sokaságból, illetve, hogy a mita egyik paramétere azoos-e egy elméleti értékkel. A sokaság adott tulajdoságát em mérhetjük le közvetleül, haem csak a sokaságból vett mita alapjá becsülhetjük. A becslés azoba véletle hibákkal terhelt, ezért számszerű eltérés a mitából számított érték (pl. átlag) és az adott érték között em szükségszerűe jeleti azt, hogy a sokaságra jellemző érték is eltér az adott értéktől. Más esetekbe két sokaság valamely paraméterét hasolítjuk össze: két populáció jövedelmi viszoyai azoosak tekithető-e; tovább élek-e a ők, mit a férfiak. Amikor dötést akaruk hozi, feltételezéseket fogalmazuk meg, melyek lehetek igazak vagy hamisak, ezeket hívjuk statisztikai hipotézisekek. Dötésüket a mita alapjá kalkulált érték segítségével tudjuk meghozi. Mivel a mitavételt a véletle befolyásolja, ezek a számolt statisztikai mutatók valószíűségi változók leszek. A statisztikai próbáak evezzük azt az eljárást, amiek a segítségével eldöthetjük, hogy az adott hipotézis elfogadható-e vagy sem. A módszer alkalmazása sorá összehasolítuk két számot: a számított próbastatisztika értékét és egy táblázatbeli (kritikus) értéket. A ullhipotézis a feltételezésük matematikai megfogalmazása. Alakja egyelőség, két érték azoosságát állítja. (Nevét oa kapta, hogy e két érték külöbsége ulla.) Például: a sokaság várható értéke (µ) megegyezik egy előre rögzített értékkel (m 0 ). H 0 : µ m 0. Ezzel szembe álló másik állítás az alteratív hipotézis. Az alteratív hipotézis lehet kétoldali alteratív hipotézis vagy egyoldali alteratív hipotézis. Az előző példáál maradva: Kétoldali alteratív hipotézis: H : µ m 0. Egyoldali alteratív hipotézis: H : µ < m 0 (baloldali) H : µ > m 0 (jobboldali). Megbízhatósági szit (kofidecia szit) (-α) a ullhipotézis elfogadására voatkozó dötés helyességéek valószíűségét fejezi ki, ameyibe a ullhipotézis igaz. A szigifikacia szit (α) a hibás dötés valószíűsége ugyacsak igaz ullhipotézis eseté. Empirikus szigifikacia szit (P érték) aak a valószíűsége, hogy a próbastatisztika a mitából kiszámított értéket veszi fel. Az empirikus szigifikaciával a statisztikai szoftverek alkalmazásáál találkozhatuk. Miél kisebb a P érték, aál agyobb a valószíűsége hogy a H 0 hipotézis hamis. A próbastatisztika értéke a ullhipotézis érvéyességétől, a kritikus érték agysága a megbízhatósági szittől függ. Mivel a mita a véletletől függ, ezért soha em lehetük biztosak abba, hogy a hipotézis igaz vagy sem. A statisztikai dötés sorá kétféle hibát követhetük el. Első fajú hiba (α) eseté a ullhipotézist elutasítjuk, pedig igaz. Az első fajú hiba elkövetéséek valószíűsége a szigifikacia szittel megegyezik. A hiba agysága a szigifikacia szit csökketésével csökkethető. Másodfajú hiba (β) eseté a ullhipotézist elfogadjuk, pedig em igaz. A hiba agysága csökke, ha öveljük a szigifikacia szitet. Ha öveljük a kritikus értéket, akkor az esetek többségébe csökketjük α-t, és egyúttal öveljük β-t. Ha

2 csökketjük a kritikus értéket, akkor β_ csökke, de α ő. Az α-t általába 5%-ak szokás megadi. Eze hibák együttes csökketése csak a mita elemszám övelésével érhető el. H 0 hipotézis Igaz Hamis Elfogadás Helyes következtetés Másodfajú hiba (β) Elvetés Első fajú hiba (α) Helyes következtetés Elfogadási : az az itervallum ahová ha a próbastatisztika értéke kerül, a ullhipotézist elfogadjuk. Kritikus : az az itervallum ahová ha a próbastatisztika értéke kerül, a ullhipotézist elvetjük. Kritikus érték: az a szám, amivel a próbastatisztika értékét összehasolíthatjuk, és döthetük, hogy az elfogadási vagy a kritikus ba esik. Kritikus és elfogadási egyoldali alteratív hipotézis eseté: kritikus elfogadási kritikus α/ -α α/ Kritikus és elfogadási baloldali alteratív hipotézis eseté: kritikus elfogadási α -α Kritikus és elfogadási jobboldali alteratív hipotézis eseté: elfogadási kritikus -α α A statisztikai próba algoritmusa:

3 A kérdés megfogalmazása, a próbastatisztika kiválasztása. A ullhipotézis és az alteratív hipotézis felállítása. A szigifikacia szit (α) megválasztása. A próbastatisztika értékéek kiszámítása. A (táblázatbeli) kritikus érték meghatározása. A dötés meghozatala a ullhipotézis elfogadásáról vagy elvetéséről. A következtetések levoása. Paraméteres statisztikai próbák Ha az eloszlás jellege ismert, és a ullhipotézisük az eloszlás valamely paraméterére voatkozik, paraméteres próbáról, ellekező esetbe emparaméteres próbáról beszélük. A paraméteres próbák alkalmazása omiális és ordiális változóko em ajálott. Középértékekre voatkozó próbák (z-próba; t-próba) Egy mitás próbák: A ullhipotézis a következő lehet: származhatott-e a mita egy adott középértékű sokaságból? z-próba (vagy u próba): Akkor haszáljuk, ha a sokaság ormális eloszlású, az alapsokaság szórása ismert vagy tetszőleges eloszlású sokaság, de a mita elemszám kellőe agy. A próbastatisztika kiszámítása: x µ z, ahol x a mita átlaga, µ a sokaság átlaga, a sokaság szórása, a mita elemszáma. Elfogadási : z < z emp krit t-próba: ormális eloszlású sokasá g eseté haszálható, amikor a szórás em ismert valamit a mita elemszám kicsi ( < 30). x µ t, a szabadsági fok száma: -, ahol s x a mita átlaga, µ a sokasági átlag, s a sokaság becsült szórása, a mita elemszáma. Elfogadási : t < t emp krit Példa: Egy kísérletbe egy új gyógyszer testtömegre gyakorolt hatását szereték leelleőrizi. Egereke tesztelik az új vegyületet. A laboratóriumi populációba geerációról geerációra az

4 egerek adott idős korukra 0 grammosak voltak, tömegük szórása,5 g volt. Feltételezhetjük, hogy az egerek tömege ormális eloszlású µ 0 g átlaggal és,5 g szórással. A vizsgálathoz kiválasztaak egy véletle mitát 0 egeret, és megézik, hogy mekkora lesz az adott korba a tömegük. Azt tapasztalják, hogy a 0 egér átlagosa grammosok lettek. Véletleek vagy a vegyületek köszöhető-e a változás? Felmerül a kérdés, hogy a mitavételezési hibát figyelembe véve a 0 egér tömegéek legalább mekkoráak kell leie ahhoz, hogy az új vegyületet hatásosak lehesse yilváítai. Nullhipotézis: a vegyület em okozott változást. Alteratív hipotézis: a vegyület hatással va a testtömegre. Vagyis: H 0 : µ 0; H : µ 0. Ez egy kétoldali alteratív hipotézis. A hipotézis elfogadásáról vagy elvetéséről egy ismert eloszlású ú. próbastatisztika segítségével dötük. 0 x µ zemp,6,5 0 A dötési szabályuk az, hogy H 0 -t elfogadjuk, ha a z emp kisebb, mit a,5%-hoz tartozó kritikus érték (azaz,96), elutasítjuk, ha z emp meghaladja ezt az értéket. Ez 5%-os szigifikacia szitet jelet, hisze kétoldali alteratív hipotézisük va, hisze,5% esélyt aduk aak, hogy helyteleül dötsük a pozitív effektusról, és,5%-ot aak, hogy helyteleül dötsük a egatív effektusról. Esetükbe z emp < z krit, tehát elfogadhatjuk a ullhipotézist, miszerit a vegyület em okozott változást. Megjegyzés: Mi va akkor, ha em ismerjük a szórást? Nyilvá becslést kell aduk rá. Ha agy mitából becsüljük, akkor feltételezhetjük, hogy a becslés elegedőe potos, és alkalmazhatjuk az eddig leírtakat. Ha a populáció eloszlása ormális, akkor kis mita eseté a t-eloszlás haszálatával korrigálhatjuk a módszert. Eek az lesz a hatása, hogy a kritikus értékek távolabb fogak esi a H 0 -ba feltételezett µ 0 átlagértéktől. Például, ha az egértömegek eseté em ismerjük a szórást, csak becsültük a 0 elemű mitából, és az,5-ek adódott, akkor egyoldali próba eseté a kritikus érték: 0 x µ t emp,6 s,5 0 A t krit. értéket a t-táblázat alapjá határozzuk meg. A szabadsági fok - 9, a szigifikacia szit 0,05. A kritikus értéket a táblázat α/ 0,05 részéél kell keresi a kétoldali alteratív hipotézis miatt. Így t krit.,6. Kétmitás próbák: Előző példákba azt vizsgáltuk, hogy egy új vegyület hatására változak-e az egértömegek az előző geerációk adatai alapjá megállapított, elméleti értékhez képest. Nagyo gyakra azoba em áll redelkezésükre ilye elméleti érték. Ilye esetekbe célszerű egy másik (kotroll) csoporthoz viszoyítauk az eredméyeiket. Szite midig ez az eljárás gyógyszer-hatás vizsgálatál. Gyakra előfordul az is, hogy egyszerűe csak két csoportot (populációt) szereték összehasolítai. Például, szereték megtudi, hogy vajo a doháyosok rövidebb ideig élek-e, mit a em doháyosok, a Holstei-Frízek tejtermelése agyobb-e Németországba, mit áluk A két összehasolítadó csoportak em tudjuk a populáció átlagait, csak a belőlük kiválasztott

5 miták átlagait tudjuk összehasolítai, és azt vizsgáljuk, hogy a kettő szigifikása külöbözik-e. A ullhipotézis a következő lehet: két mita középértéke azoosak tekithető-e? H 0 : x x z-próba: Akkor haszáljuk, ha mid a két sokaság ormális eloszlású, az alapsokaságok szórásai ismertek vagy a miták elemszámai kellőe agyok. x x z + t-próba: Normális eloszlású sokaságok eseté, amikor a szórások em ismertek, de közel azoosak. x x t, a szabadsági fok száma: + - Sp + S p ( ) s + ( ) + Példa: Két halastóból származó halak zsírtartalmát szereték összehasolítai. Az egyik tóból elemű miták va, a mita átlaga 7%, szórása 4%. A másik esetbe 5 elemű mita alapjá az átlagos zsírtartalom 4%, szórása 3%. A számok alapjá úgy tűik, hogy az első tó eseté agyobb a zsírtartalom. Kérdés, hogy ez a külöbség szigifikás-e, vagy csak a mitavételi hiba okozta a külöbséget? Nullhipotézis: ics külöbség a két zsírtartalom között H 0 : µ µ. Alteratív hipotézis: va külöbség a két zsír-tartalom között H : µ µ. Ha a mitáik elég agyok, akkor a mitaátlagok ormális eloszlásúak leszek. (Nem túl agy miták eseté, az egymitás esethez hasolóa, itt is a t-eloszlást kell haszáli a ormális eloszlás helyett.) Mitaátlag Várható értéke Szórása x µ s x µ Ha a miták függetleek, akkor a mitaátlagok külöbsége is ormális eloszlású. Ha a szórásukat ismerjük, akkor x - x várható értéke µ -µ, szórása x eloszlása N(0, (.04) ). +. Példákba x -

6 z emp x x + 0,7 0,4 0, , ,03,886 0,00008 z krit,96 a t eloszlás táblázatáak szabadsági fok sora és α/ 0,05 oszlopából, mivel kétoldali alteratív hipotézisük va. (Ez 5%-os szigifikacia szitet jelet. Esetükbe z emp > z krit, tehát elutasítjuk a ullhipotézist, az eltérés em a véletleek köszöhető. Példa: Egy vizsgálatba arra kerestek választ, hogy vajo a városi vagy a falvakba lakó kismamák maradak-e tovább ottho gyermekeikkel. Egy agyvárosba véletleszerűe 0 kismamát kérdeztek meg, a köryéke levő kisebb településeke pedig 40-et. A városiak átlagosa 6 hóapig, 3 hóap szórással, a falvakba pedig átlagosa 30 hóapig 4 hóap szórással. Szigifikás-e a külöbség a tapasztalt értékek között? Nullhipotézis: H 0 : µ falusi µ városi ; H : µ falusi > µ városi. x x A megoldáshoz a t-próbát alkalmazhatjuk: t, ahol Sp + ( ) s + ( ) s S p és a szabadsági fok száma: S p ( ) s + ( ) t emp + s x x 30 6 Sp + 3, ,945 3,70 A szabadsági fok száma 58, és a 95%-os megbízhatósági szithez t krit,67 érték tartozik. Mivel t emp > t krit, tehát elutasítjuk a ullhipotézist, a kisebb településeke tovább maradtak ottho a kismamák. Páros t-próba Tegyük fel, hogy egy mitá vizsgáljuk valamilye kezelések a hatását. Ilye esetekbe em a mitaátlagokat hasolítjuk össze, haem a kezelés előtti és utái érték külöbségéről állapítjuk meg, hogy szigifikása külöbözik-e ullától. Példa. Egy lázcsillapító gyógyszer hatásosságát vizsgáljuk. A betegek hőmérsékletét kétszer, a lázcsillapító bevétele előtt illetve utá mérjük meg. A mért értékeket és a változást a következő táblázat tartalmazza. Lázcsillapítás Külöbség előtt utá 39, 38,6 0,6 38,7 37,,5 37,9 36,8, 38,8 37,9 0,9

7 39,4 38,, 38, 38,0 0, 38,6 36,9,7 38,8 37,8,0 39,0 37,9, 38,5 37,6 0,9 A hipotéziseket formálisa felírva: H 0 : µ d 0, H : µ d 0. A külöbségek átlaga: d, 0, szórása s d 0,4. Vagyis a ullhipotézis szerit a gyógyszer hatástala. Ettől kezdve midet úgy kell csiáluk, mit az egymitás próba eseté. Ezek szerit az x d mitaátlag eloszlása ormális, várható értéke 0. A szabadsági fok esetükbe - 9, az ehhez és a 95%-os valószíűséghez tartozó t érték,6. Ha igaz a ullhipotézis, akkor t emp < t krit. x µ,0 0 t emp 7,68 s 0,4 0 Ez em teljesül, ezért elutasítjuk a ullhipotézist. Tehát azt modhatjuk, hogy a lázcsillapító gyógyszer hatásos. Szórásokra, variaciákra voatkozó próbák (F-próba.) A t-próba tárgyalásáál már volt arról szó, hogy a próbát másképp kell elvégezi, ha a két sokaság szórása (szóráségyzete) megegyezik, és másképp akkor, ha em. Felmerül a kérdés, hogy hogya lehet eldötei, hogy a szóráségyzetek megegyezek-e. Legye az első, a második populáció variaciája (szóráségyzete). Ekkor a ull- és az alteratív hipotézisek a következők leszek: H 0 :, H :. Ha H 0 igaz, akkor a két populáció szóráségyzetéek háyadosa. Két mita alapjá s becsüljük ezt a háyadost. A becslést F-statisztikáak evezzük, ahol F, és s az első, s s a második mita korrigált tapasztalati szóráségyzete, ahol s > s. Ha ez az F érték elég közel va -hez, akkor azt modhatjuk, hogy az eltérést csupá a véletle mitavételből származó hiba okozta, így elfogadhatjuk a H 0 -t, egyébkét pedig elutasítjuk. Miél agyobbak a mitáik, aál jobba megközelíti a miták szóráségyzete a sokaság szóráségyzetét. Ilye esetekbe az -től csak kis eltérést egedük meg. Ha a mitáik viszoylag kicsik, akkor pedig még agyobb eltérés eseté is elfogadjuk a ullhipotézist. Az is előfordulhat, hogy az egyik mita kicsi, a másik pedig agy. Ebből is kitűik, hogy mid a két mita elemszámától függ, hogy az körüli mekkora itervallumba fogadjuk el a H 0 hipotézist. Az F-statisztika eloszlása külöböző mita elemszámok eseté más és más lesz. Hasolóa a t-statisztikához, itt is a szabadsági fok mutatja meg, hogy melyik F-eloszlást kell választauk. A két mita szabadsági foka ( -, - ), ahol az első mita, pedig a második mita elemszáma. A táblázatokat általába 5%-os szigifikacia szitre közlik a külöböző statisztika köyvek. Példa:

8 A jövedelmek differeciálódásával kapcsolatos felmérés alapjá azt találták hogy egy adott régióba az 000 egyéi vállalkozó adóbevallása alapjá a jövedelmek szórása Ft volt. A következő évbe ugyaitt, egy 5 elemű véletle mita alapjá már 9 00 Ft volt. Igazolható-e statisztikailag a jövedelmek differeciálódásáról szóló elmélet? H 0 :, vagyis a szórások (szóráségyzetek) megegyezek. H :, külöbözőek a szóráségyzetek. s 900 F emp,538, a számláló szabadsági foka 4, a evezőé pedig 999. F s krit, Mivel F emp > F krit így a ullhipotézist elvethetjük, a jövedelmek valóba differeciálódtak. Megállapításukat 95%-os megbízhatósági szite tettük. Felhaszált irodalom Baráth Cs. Ittzés A. Ugrósdy Gy.: Biometria. Mezőgazda Kiadó 996 Kiss A. Maczel J. Pitér L. Varga K.: Statisztikai módszerek alkalmazása a mezőgazdaságba. Mezőgazdasági Kiadó 983 Kovács Istvá: Statisztika. Szet Istvá Egyetem Gazdálkodási és Mezőgazdasági Főiskolai Kar jegyzete. Gyögyös 000 Kriszt Varga Keyeres: Általáos statisztika II. Nemzeti taköyvkiadó 997. Fodor Jáos: Biomatematika Meszéa György Zierma Margit: Valószíűségelmélet és matematikai statisztika Közgazdasági és Jogi Köyvkiadó 98 Murray R. Spiegel: Statisztika. Elmélet és gyakorlat. Paem McGraw Hill 995 Szűcs Istvá: Alkalmazott statisztika. Agroiform Kiadó 00

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Kísérletek tervezése és értékelése

Kísérletek tervezése és értékelése STATISZTIKAI ALAPOK I. STATISZTIKAI ALAPOK Adatok ábrázolása Yogi Berra: "You ca observe a lot by watchig." I. STATISZTIKAI ALAPOK Mérési adatok ábrázolása: Pot ábrázolás (Dotplot) Dotplot for Y 9 3 Y

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl Közgazdasági Szemle, LII. évf., 2005. júius (576 598. o.) BUGÁR GYÖNGYI UZSOKI MÁTÉ Nemzetközi részvéy befektetési lehetõségek Közép- és Kelet-Európa új európai uiós tagállamaiak szemszögébõl Taulmáyuk

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív Iskolakultúra 202/3 Sátha Kálmá Kodoláyi Jáos Főiskola Neveléstudomáyi Taszék Numerikus problémák a kvalitatív megbízhatósági mutatók meghatározásáál A taulmáy a kvalitatív vizsgálatok megbízhatósági problémáiak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

STATISZTIKA PÉLDATÁR

STATISZTIKA PÉLDATÁR STATISZTIKA PÉLDATÁR www.matektanitas.hu www.matektanitas.hu info@matektanitas.hu 1 Minden feladat csak szöveges válasszal együtt ad teljes értékű megoldást! Becslés 1. feladat Az alábbi táblázat megadja

Részletesebben

Reálbérek és kereseti egyenlõtlenségek, 1986 1996

Reálbérek és kereseti egyenlõtlenségek, 1986 1996 62 Kertesi Gábor Köllõ Jáos Közgazdasági Szemle, XLIV. évf., 997. július augusztus (62 634. o.) Kertesi Gábor Köllõ Jáos Reálbérek és kereseti egyelõtleségek, 986 996 A bérszerkezet átalakulása Magyarországo,

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Sok sikert és jó tanulást kívánok! Előszó

Sok sikert és jó tanulást kívánok! Előszó Előszó A Pézügyi számítások I. a Miskolci Egyetem közgazdász appali, kiegészítő levelező és posztgraduális kurzusai oktatott pézügyi tárgyak feladatgyűjteméyéek az első darabja. Tematikája elsősorba a

Részletesebben

CIVIL VERDIKT. ELMÉLETILEGnn. Elõzmények. CIVIL SZEMLE n 2007/1 n n n n n n n19. Márkus Eszter. Az egyesületek nyilvántartásba vétele

CIVIL VERDIKT. ELMÉLETILEGnn. Elõzmények. CIVIL SZEMLE n 2007/1 n n n n n n n19. Márkus Eszter. Az egyesületek nyilvántartásba vétele csz10 elm 2 birosag.qxd 2007. 02. 25. 17:56 Page 19 ELMÉLETILEG CIVIL VERDIKT Az egyesületek yilvátartásba vétele Márkus Eszter Ilye eddig még em volt. A megyei bíróságok, ítélõtáblák és fõügyészségek

Részletesebben

Egyenes-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyenese?

Egyenes-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyenese? Közgazdasági Szemle, LVII. évf., 1. március (1 1. o.) ERDŐS PÉTER ORMOS MIHÁLY ZIBRICZKY DÁVID Egyees-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyeese? Taulmáyuk egyrészt

Részletesebben

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez [ξ ] Módszertai kísérlet az életpálya fogalmáak formalizálására Előtaulmáy a fiatal biológusok életpályakutatását célzó támogatott projekthez Soós Sádor ssoos@colbud.hu; 2009/9 http://www.mtakszi.hu/kszi_aktak/

Részletesebben

Kontra József A pedagógiai kutatások módszertana

Kontra József A pedagógiai kutatások módszertana Kotra József A pedagógiai kutatások módszertaa egyetemi jegyzet A kiadváyt A kompetecia-alapú pedagógusképzés regioális szervezeti, tartalmi és módszertai fejlesztése (TÁMOP - 4.1..-08/1/B-009-0003) című

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

Vác Város Önkormányzat 11 /2004. (IV.30.) számú rendelet az önkormányzati beruházások és felújítások rendjéről

Vác Város Önkormányzat 11 /2004. (IV.30.) számú rendelet az önkormányzati beruházások és felújítások rendjéről Vác Város Ökormáyzat 11 /2004. (IV.30.) számú redelet az ökormáyzati beruházások és felújítások redjéről Vác Város Képviselőtestülete az ökormáyzati beruházások és felújítások egységes szemléletű gyors

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek:

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek: Az araymetszés és a Fiboacci számok mideütt Tuzso Zoltá Araymetszésrl beszélük, amikor egy meyiséget, illetve egy adott szakaszt úgy osztuk két részre, hogy a kisebbik rész úgy aráylik a agyobbikhoz, mit

Részletesebben

Hanthy László Tel.: 06 20 9420052

Hanthy László Tel.: 06 20 9420052 Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez)

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez) iíiíi á HlftADÁSfCCHNIKAI TUOOHANfOS EGYíSBLIT (APJA KULCSÁR GÁBOR Híradástechikai Ipari Kutató Itézet Algoritmus poligook lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógép adatelőkészítés patter

Részletesebben

Δ x Δ px 2. V elektromos. nukleáris. neutron proton

Δ x Δ px 2. V elektromos. nukleáris. neutron proton Nukleáris kölcsöhatás: az atommagba számú proto, és N = számú eutro va, és stabil képződméy Mi tartja össze az atommagot? Heiseberg-féle határozatlasági reláció alapjá egy ukleo becsült kietikus eergiája

Részletesebben

Finanszírozás, garanciák

Finanszírozás, garanciák 29..9. Fiaszíozás, gaaciák D. Fakas Szilvesze egyeemi doces SZE Gazdálkodásudomáyi Taszék fakassz@sze.hu hp://d.fakasszilvesze.hu/ Fiaszíozás émaköei. A péz idıééke, jövıéék és jeleéék, speciális pézáamlások

Részletesebben

ISMERETEK ÉS VÉLEMÉNYEK A NONPROFIT SZEKTOR SZERVEZETEIRŐL Egy empirikus kutatás tapasztalatai a Nyugat-Dunántúlon

ISMERETEK ÉS VÉLEMÉNYEK A NONPROFIT SZEKTOR SZERVEZETEIRŐL Egy empirikus kutatás tapasztalatai a Nyugat-Dunántúlon csz23_csz12 skadi.qxd 2010.06.10. 10:58 Page 5 ELMÉLETILEG ISMERETEK ÉS VÉLEMÉNYEK A NONPROFIT SZEKTOR SZERVEZETEIRŐL Egy empirikus kutatás tapasztalatai a Nyugat-Duátúlo Nárai Márta Bevezetés A civil

Részletesebben

Mag SySteM. Padlótisztítás

Mag SySteM. Padlótisztítás HU Mag SySteM Padlótisztítás Mag System Kocepció Egy tartó midehez! Ilye még em volt: a Mag System esetébe egy tartóhoz az összes moptípus alkalmazható. Így helybe bármikor kiválasztható az optimális felmosási

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8.

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8. A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi hiba számítása

Részletesebben

KIMONDHATÓ.?! Magyar Máltai Szeretetszolgálat F o g a d ó P s z i c h o s z o c i á l i s S z o l g á l a t

KIMONDHATÓ.?! Magyar Máltai Szeretetszolgálat F o g a d ó P s z i c h o s z o c i á l i s S z o l g á l a t Az egészséges evelés KIMONDHATÓ.?! Magyar Máltai Szeretetszolgálat F o g a d ó P s z i c h o s z o c i á l i s S z o l g á l a t 8. Előszó Tartalom Mide felőtt volt egyszer gyerek És felő majd az új gyereksereg:

Részletesebben

Általánosított mintavételi tétel és alkalmazása kváziperiodikus jelek leírására

Általánosított mintavételi tétel és alkalmazása kváziperiodikus jelek leírására Általáosított mitavételi tétel és alkalmazása kváziperiodikus jelek leírására Dr. Földvári Rudolf BME Híradástechikai Elektroika Itézet ÖSSZEFOGLALÁS Az általáosított mitavétel külöböző esteiek bemutatása

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

HosszútávúBefektetések Döntései

HosszútávúBefektetések Döntései VállalatgadaságtaII. HossútávúBefektetések Dötései Előadó: Koma Tímea Tatárgyfelelős: Dr. Illés B. Csaba 27. November 9. A hossútávúbefektetések sajátosságai Rövidebb időre sóló befektetés hossabb időtávra

Részletesebben

Valószínûség számítás

Valószínûség számítás Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

HIVATALI FOLYAMATOK FEJLESZTÉSE

HIVATALI FOLYAMATOK FEJLESZTÉSE Cgád Város Ökormáyzat HIVATALI FOLYAMATOK FEJLESZTÉSE MINŐSÉGÜGYI ME 05 1. AZ CÉLJA Az eljárás célja a hvatal folyamatok fejlesztéséek szabályozása. Jele eljárás meghatározza a fejlesztés lefolytatásáak

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy KHF/438-3/008. egedélyszámo 008..0. időpottól taköyvi egedélyt kapott Educatio Kht. Kompeteciafejlesztő oktatási program kerettaterv

Részletesebben

LAKÓPARKOKBAN MŰKÖDŐ CIVIL/NONPROFIT

LAKÓPARKOKBAN MŰKÖDŐ CIVIL/NONPROFIT csz24_csz12 skadi.qxd 2010.10.05. 19:57 Page 46 LAKÓPARKOKBAN MŰKÖDŐ CIVIL/NONPROFIT SZERVEZETEK A BUDAPESTI AGGLOMERÁCIÓBAN 1 Koltay Elvira A civil társadalom fogalma alatt fukcioális megközelítésbe olya

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

Általános Szerződési Feltételek

Általános Szerződési Feltételek Általáos Szerződési Feltételek Hitelszerződésekhez Érvéyes hitelszerződésekre 2011.március 1. apjától, visszavoásig. V. 20100228/20110301 Az Erste Leasig Autófiaszírozási Zrt. a hitelitézetekről és a pézügyi

Részletesebben

EuroOffice Modeller felhasználói útmutató

EuroOffice Modeller felhasználói útmutató EuroOffice Modeller felhasználói útmutató 1 Bevezetés...5 EuroOffice Modeller: ANOVA felhasználói útmutató...5 Előkészítés...5 Egyutas ANOVA...5 Kétutas ANOVA...8 EuroOffice Modeller: Egymintás Z-próba

Részletesebben

2. modul Gazdasági matematika

2. modul Gazdasági matematika Matematika A. évfolyam. modul Gazdasági matematika Készítette: Lövey Éva Matematika A. évfolyam. modul: GAZDASÁGI MATEMATIKA Taári útmutató A modul célja Időkeret Ajálott korosztály Modulkapcsolódási potok

Részletesebben

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy a Nemzeti Fejlesztési Terv Humáerőforrás-fejlesztési Operatív Program 3... közpoti program (Pedagógusok és oktatási szakértők

Részletesebben

1. DIGITÁLIS ADATFELDOLGOZÁS

1. DIGITÁLIS ADATFELDOLGOZÁS 1. DIGITÁLIS ADATFELDOLGOZÁS A médiumok szite midegyike előállítható már digitális formába. Ez az ú. digitális közös evező lehetővé teszi az ilye adatok egységes kezelését. Miél összetettebb egy médium,

Részletesebben

Bevezetés. 1 A pénz időértékének elve. Befektetés pénzáram grafikonja. 1.1. ábra - Befektetés pénzáram grafikonja

Bevezetés. 1 A pénz időértékének elve. Befektetés pénzáram grafikonja. 1.1. ábra - Befektetés pénzáram grafikonja Bevezetés A Pézügyta feladatgyűjteméy a Pézügyta tatágy gyakolataihoz készült példatá első észe. Az oktatási segédlet a pézügyi számítások világába vezeti be az olvasót. Bá az oktatási segédletbe sok képlet

Részletesebben

KÖRÖS TANULMÁNYOK Szent István Egyetem Gazdasági Kar Békéscsaba 2011

KÖRÖS TANULMÁNYOK Szent István Egyetem Gazdasági Kar Békéscsaba 2011 KÖRÖS TANULMÁNYOK Szet Istvá Egyetem Gazdasági Kar Békéscsaba 0 Szerkesztőbizottság HALMAI PÉTER MICHELLER MAGDOLNA PUSKÁS JÁNOS SIMON IMRE SZAKÁCS ATTILA Felelős szerkesztő MICHELLER MAGDOLNA Techikai

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

SPORTPÉNZÜGYEK. r m. A pénz időértéke.

SPORTPÉNZÜGYEK. r m. A pénz időértéke. SPORTPÉNZÜGYEK A péz időétéke. A ai pézösszeg azét étékesebb, it egy későbbi időpotba esedékes pézösszeg, et a befektető eek évé jövedelee, kaata tehet szet Kaat: A péz áa Haszálója azét fizet, et a pézt

Részletesebben

Ki a Köz és mi a haszon és Ki szerint? a Közhasznúság fogalmi és tartalmi deilemmái. a magyar civil crowdsourcing és crowdfunding jó gyakorlatai

Ki a Köz és mi a haszon és Ki szerint? a Közhasznúság fogalmi és tartalmi deilemmái. a magyar civil crowdsourcing és crowdfunding jó gyakorlatai c ivil szemle www.civilszemle.hu X. évfolyam 3. szám ElmélEtilEg Ki a Köz és mi a haszo és Ki szerit? a Közhaszúság fogalmi és tartalmi deilemmái (Sebestéy Istvá) KözösségEK és civil társadalom a magyar

Részletesebben

3. Valószínűségszámítás

3. Valószínűségszámítás Biometria az orvosi gyaorlatba 3. Valószíűségszámítás 3. Valószíűségszámítás 3.. Bevezetés 3.. Kombiatoria 3... Permutáció 3... Variáció 3..3. Kombiáció 3 3.3. Biomiális együttható tulajdoságai 3 3.4.

Részletesebben

Regeneráló bőrápolás

Regeneráló bőrápolás Regeeráló bőrápolás A világ egyik vezető kozmetikai laboratóriumába eltöltött 15 év utá Carole Foussé megalapította saját bőrgyógyászati laboratóriumát, a Laboratoires d Ajou-t, és a CEBELIA termékcsaládot,

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

A BINÁRIS LOGIT MODELLEK HASZNÁLATÁNAK ÉS TESZTELÉSÉNEK ESZKÖZEI

A BINÁRIS LOGIT MODELLEK HASZNÁLATÁNAK ÉS TESZTELÉSÉNEK ESZKÖZEI MÓDSZERTANI TANULMÁNYOK A BINÁRIS LOGIT MODELLEK HASZNÁLATÁNAK ÉS TESZTELÉSÉNEK ESZKÖZEI M FÜLÖP PÉTER A biáris logit modllk az alkalmazott közgazdasági problémák stéb is ig haszos szközk bizoyulak. Haszálatuk

Részletesebben

Logoptimális portfóliók empirikus vizsgálata

Logoptimális portfóliók empirikus vizsgálata Közgazasági Szemle, LVI. évf., 2009. jauár (1 18. o.) ORMOS MIHÁLY URBÁN ANDRÁS ZOLTÁN TAMÁS Logoptimális portfóliók empirikus vizsgálata A logoptimális portfólióelmélet matematikai bizoyítását, valamit

Részletesebben

MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ

MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ 127 128 Műszaki és Természettudomáyi Szekció Kiterjedéssel redelkező autoóm robotok gyülekezése Bolla Kálmá 1, Kovács Tamás 2, Fazekas Gábor 2 1 Iformatika Taszék,

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

A KÉPESSÉ TÉTEL (EMPOWERMENT) LEHETŐSÉGEI A CIVIL TÁRSADALOMBAN

A KÉPESSÉ TÉTEL (EMPOWERMENT) LEHETŐSÉGEI A CIVIL TÁRSADALOMBAN csz23_csz12 skadi.qxd 2010.06.10. 10:58 Page 43 KÖZÖSSÉGEK ÉS CIVIL TÁRSADALOM Bevezetés A KÉPESSÉ TÉTEL (EMPOWERMENT) LEHETŐSÉGEI A CIVIL TÁRSADALOMBAN Lakatos Kiga Jele taulmáyomba megkísérelem körüljári,

Részletesebben

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek Termékjellemzők optmalzálásáál haszálatos formácós módszerta 1 Bevezetés Koczor Zoltá, Némethé Erdőd Katal, Kertész Zoltá, Szecz Péter Óbuda Egyetem, RKK, Mőségráyítás és Techológa Szakcsoport Napjak aktuáls

Részletesebben

Magyarországon a pedagógia csak

Magyarországon a pedagógia csak Nem-paraméteres statisztikai módszerek alkalmazási lehetõségei a pedagógiai kutatásban A társadalomtudományok, így a pedagógia is, igen széles körben használnak matematikai statisztikai módszereket. A

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

Pénzügyi vezető feladatai. Pénzügyi vezető feladatai II. Pénzügyi vezető feladatai I. Beruházás-értékelési módszerek és alkalmazásuk

Pénzügyi vezető feladatai. Pénzügyi vezető feladatai II. Pénzügyi vezető feladatai I. Beruházás-értékelési módszerek és alkalmazásuk Eseti Pézügyi vezető feladatai Beruházási (Vagyomaximalizálás) Folyamatos Eszköz-oldal Forrásoldal Forgótőke-gazdálkodás (likviditás biztosítása) Fiaszírozási (Fiaszírozási elvek érvéyesítése) A pézügyi

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Folyadékkal mûködõ áramlástechnikai gépek

Folyadékkal mûködõ áramlástechnikai gépek 3. ÖRVÉNYSZIVATTYÚK A folyadékkal működő gépeket több szempot szerit lehet csoportokba osztai. Az egyik fő csoportjuk a folyadékba rejlő mukavégző képességet haszálja fel, és alakítja át a folyadék eergiáját,

Részletesebben

MINŐSÉGÜGYI ELJÁRÁS SZOCIÁLIS, EGÉSZSÉGÜGYI ÉS GYERMEKVÉDELMI IRODA FOLYAMATSZABÁLYOZÁSA

MINŐSÉGÜGYI ELJÁRÁS SZOCIÁLIS, EGÉSZSÉGÜGYI ÉS GYERMEKVÉDELMI IRODA FOLYAMATSZABÁLYOZÁSA SZOCIÁLIS, EGÉSZSÉGÜGYI ÉS GYERMEKVÉDELMI IRODA FOLYAMATSZABÁLYOZÁSA 1 1. AZ ELJÁRÁS CÉLJA: Az eljárás célja, hogy végrehajtásra kerüljeek a Polgármester Hvatal Szocáls, Egészségügy és Gyermekvédelm Iroda

Részletesebben

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970 Dr. Herma Sádor Dr. Rédey Katal Statsztka I. PÉCSI TUDOMÁNYEGYETEM KTK Közgazdaságtudomáy Kar Alapítva: 97 Mde jog fetartva. Jele köyvet vagy aak részletet a szerző egedélye élkül bármlye formába vagy

Részletesebben

A SOKASÁGI ARÁNY MEGHATÁROZÁSÁRA IRÁNYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS MINTÁK ESETÉN LOLBERT TAMÁS 1

A SOKASÁGI ARÁNY MEGHATÁROZÁSÁRA IRÁNYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS MINTÁK ESETÉN LOLBERT TAMÁS 1 ÓDSZERTAI TAULÁYOK A SOKASÁGI ARÁY EGHATÁROZÁSÁRA IRÁYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS ITÁK ESETÉ LOLBERT TAÁS 1 A ckk ő célja aak vzsgálata, hogy az elleőrzés gyakorlatba széles körbe haszált

Részletesebben

STATISZTIKAI MÓDSZEREK

STATISZTIKAI MÓDSZEREK HAJTMAN BÉLA STATISZTIKAI MÓDSZEREK Egetem egzet Pázmá Péter Katolkus Egetem, Bölcsészettudomá Kar Plscsaba, 0. Bevezetés Az első félévbe (Bostatsztka) a statsztka alapat smertük meg. Természetese ez

Részletesebben

Adatelemzés az R-ben. 2014. április 25.

Adatelemzés az R-ben. 2014. április 25. Adatelemzés az R-ben 2014. április 25. Kísérleti adatok elemzése Kísérlet célja: valamilyen álĺıtás vagy megfigyelés empirikus és szisztematikus tesztelése. Pl. a nők többet beszélnek, mint a férfiak,

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben