KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN"

Átírás

1 KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest

2 Lektorálta: Zukál Edre

3 Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések 5.. A valószíűség fogalma 6... Eseméyek közötti műveletek és összefüggések 6... Eseméyalgebrai műveletek A valószíűségre voatkozó éháy tétel Feltételes valószíűség, függetle eseméyek Teljes valószíűség tétele, Bayes tétel 8.3. Valószíűségi változó 9.4. Valószíűségi változó eloszlásfüggéye és sűrűségfüggvéye 9.5. Valószíűségi változó főbb jellemzői Várható érték (M) Szórás (σ).6. Stadardizált valószíűségi változó.7. Csebisev egyelőtleség.8. A valószíűségi eloszlás általáos jellemzői 3.9. A valószíűségi eloszlás paramétereiek becslése 4. VALÓSZÍNŰSÉGI ELOSZLÁSOK 5.. Diszkrét eloszlások 5... Egyeletes eloszlás 5... Biomiális (Beroulli) eloszlás Hipergeometrikus eloszlás Poisso eloszlás 9.. Folytoos eloszlások... Normális eloszlás... Studet eloszlás χ eloszlás F eloszlás Expoeciális eloszlás 6 3. STATISZTIKAI BECSLÉSEK A mita statisztikai jellemzői Tapasztalati eloszlás meghatározása Várható érték becslésére szplgáló jellemzők Szórás becslésére szolgáló jellemzők Az alapsokaság paramétereiek becslése Normális eloszlású alapsokaság paramétereiek becslése Biomiális eloszlás paramétereiek becslése Poisso eloszlás λ paraméteréek becslése Kofidecia-itervallum számítások Normál eloszlással kapcsolatos kofidecia-itervallum számítások 43 i

4 Várható érték kofidecia-itervalluma ismert szórás eseté Szórás és várható érték kofidecia-itervalluma ismeretle szórás eseté Biomiális eloszlással kapcsolatos kofidecia-itervallum számítások Poisso eloszlással kapcsolatos kofidecia-itervallum számítások HIPOTÉZIS VIZSGÁLATOK, STATISZTIKAI PRÓBÁK Egymitás statisztikai próbák Szórás összehasolítása elméleti értékkel Poisso eloszlású sokaság várható értékéek statisztikai próbái Normál eloszlású sokaság várható értékéek statisztikai próbái Ismert szórású ormál eloszlású sokaság statisztikai próbája Ismeretle szórású ormál eloszlású sokaság statisztikai próbája Kétmitás statisztikai próbák Két számított szórás összehasolítása Poisso eloszlású sokaságok várható értékéek összehasolítása Normál eloszlású sokaságok várható értékéek összehasolítása Azoos szórású ormál eloszlású sokaságok összehasolítása Eltérő szórású ormál eloszlású sokaságok összehasolítása Párosított adatok eltérésére voatkozó statisztikai próba Többmitás statisztikai próbák Poisso eloszlású gyakoriságok összehasolítása Szórások összehasolítása Várható értékek összehasolítása variacia aalízissel Egyszempotos variacia aalízis Kétszempotos variacia aalízis Kétszempotos variacia-aalízis ismétlések élküli elredezéssel Kétszempotos variacia-aalízis kezelése belüli párhuzamosokkal LINEÁRIS REGRESSZIÓ 7 6. ÉLŐSEJTSZÁM MEGHATÁROZÁSI MÓDSZEREK HIBÁJA Határhígításos (MPN) módszer Lemezötéses és felületi szélesztéses módszer Határhígításos és lemezötéses módszerek összehasolítása Módszer ismételhetőségéek és reprodukálhatóságáak meghatározása 86 MATEMATIKAI-STATISZTIKAI TÁBLÁZATOK 95 IRODALOM ii

5 BEVEZETÉS A laboratóriumi gyakorlatba a kísérlettervezés és -értékelés célja a valóság "kihámozása" a mérési (megfigyelési) adatokból, eszköztára a matematikai-statisztika, amely a valószíűségszámításból, aak speciális területekét alakult ki. A valószíűségszámítás véletle tömegjeleségekkel foglalkozik. Véletle tömegjeleségek alatt olya jeleségeket, eseméyeket értük, amelyek azoos körülméyek között agyo agy számba fordulak elő (akár egyidejűleg, vagy időbe egymásutá), illetőleg elvileg tetszőlegese sokszor megismételhetők. Az első csoportba sorolhatók be pl. a tömeggyártás sorá előállított termékek (csomagolt élelmiszerek, stb.) raktározott tételeiek egyedei, vagy a gyártó gépről lejövő egyes darabjai. A második csoport jellegzetes képviselői a laboratóriumi mérési eredméyek. A tömegjeleség véletle volta azt jeleti, hogy a megfigyelés, mérés (a továbbiakba kísérlet) eredméyét agyo sok téyező befolyásolja. Eze téyezők esetleg ismertek, vagy ismeretleek, s legalább egy részük időbe változik. A kísérlet eredméye a befolyásoló téyezők együttes hatásakét, véletleszerűe alakul ki. Ameyibe az eredméyt befolyásoló téyezők időbe változatlaok, em okozak véletleszerű igadozást. A kísérlettervezés és - értékelés célja agyo sok esetbe éppe ezekek az álladó (redszeres) hatásokak a véletle hatásoktól való elválasztása, illetve kimutatása. A kísérleti eredméyek matematikai-statisztikai kiértékelése lehetővé teszi számukra, hogy mérési eredméyeik alapjá meghatározzuk a véletlere visszavezethető igadozások mértékét, s eek figyelembevételével hozzuk meg dötéseiket. Ezek a dötéseik elméletileg sohasem 00%-os biztoságúak, midig magukba rejtik a tévedés bizoyos valószíűségét. Hogy ez a tévedési valószíűség milye mértékű, azt a kísérleti elredezés és a mért jellemző véletle igadozása határozza meg. A kísérleti eredméyek kiértékelésébe alkalmazott számítási módszerek általába függetleek a kísérletek fizikai, kémiai, biológiai jellegétől, a mért jellemzőtől, ezért a matematikai-statisztika teljese öállóa, mit a matematika egyik résztudomáyága kezelhető. A matematikai-statisztikai eljárások azoba valószíűség-számítási alapjaik miatt csak olya esetbe vezetek korrekt következtetésekre, amikor az alapadatkét felhaszált jellemző megfelel bizoyos matematikai feltételekek. Ha ezek a feltételek em teljesülek, a kiértékelés eredméye, s az ebből levoható következtetések redkívül félrevezetőek lehetek. A tudomáyos kutatásba, vagy a ruti laboratóriumi mukába a kísérletek célja midig valamilye kérdésre adadó válasz meghatározása, vagy valamely összefüggés megállapítása (mekkora egy fermetlé ezimaktivitása, cukortartalma, va-e külöbség két táptalajo meghatározott mikrobaszám között, megfelel-e a vizsgált termék az érvéybe lévő miőségi előírásokak, hogya függ egy mikroba hőpusztulási ideje a hőmérséklettől, stb.). Költséges, időigéyes kísérleti módszerek eseté egyáltalá em midegy, hogy háy méréssel, ill. meyi idő alatt és milye megbízhatósággal adjuk meg a választ a feltett kérdésekre, ezért léyeges, hogy milye kísérleti elredezést alkalmazuk. A jó kísérleti elredezés ige agy mértékbe megöveli a kiértékelés hatékoyságát, illetve jeletőse csökketi az adott biztoságú dötéshez szükséges mérések számát. 3

6 A kísérleti eredméyek feldolgozásába és kiértékelésébe ma már egyre elterjedtebbe alkalmazzák a számítógépes eljárásokat, amelyek ige agy mértékbe megköyítik a számításokat. Vitathatatla előyeik elleére a statisztikai szubrutiok gépies alkalmazása két alapvető veszélyforrást is rejt magába: A kísérleti elredezés kiválasztásába agyo sokszor em aak célszerűsége, haem a redelkezésre álló matematikai-statisztikai szubruti jellege a dötő. Ez a kiértékelés hatékoyságáak (a dötés biztoságáak) csökkeéséhez, vagy a kísérletek számáak felesleges öveléséhez vezethet. A kiértékelésbe bevot alapadatokál agyo sok esetbe elmarad az alkalmazott számítási módszer által megkívát feltételek teljesüléséek vizsgálata, s eek eredméyekét a levot következtetések tévesek lehetek. A feti két hibaforrás bármely (em csak a számítógépes) matematikai-statisztikai kiértékelésél előfordulhat, ezért a továbbiakba midvégig súlyt fektetük a számítási eljárások alapfeltételeiek ismertetésére, valamit az esetekéti leghatékoyabb kísérleti elredezés bemutatására. A matematikai-statisztikai módszerek, - ahogy azt már előzőleg említettük, - általáos érvéyel haszálhatók az általáos laboratóriumi gyakorlatba, mikrobiológiai adatokra voatkozóa azoba éháy alapvető szempotra szükséges felhívi a figyelmet. A fizikai, kémiai jellemzők (tömeg, kocetráció, vezetőképesség, stb.) igadozása a külső körülméyek stadardizálásával agy mértékbe csökkethető. Ezzel szembe a mikrobiológiai jellegű mérésekél egy plusz "bizoytalasági" téyező midig megmarad, ami a méredő paraméter biológiai jellegéből fakad. Ebből eredőe a mikrobiológiai mérések véletle igadozása relatíve jeletőse agyobb a fizikai-kémiai jellegű paraméterek igadozásáál. Mikrobaszám meghatározása esetébe a mért tartomáy redkívül agy lehet (esetekét sejt/ml), összehasolítva pl. a kémiai paraméterek - agyságred szélességű változásával. A fizikai és kémiai jellegű mérések eredméyei általába teljesítik a matematikai-statisztikai módszerek alkalmazásáak alapadatokra voatkozó feltételeit. Ugyaez mikrobiológiai eredméyek esetébe a legritkábba fordul elő. A mikrobaszámokat feldolgozás előtt matematikailag traszformáli kell, s a számításokat ezekkel az (általába log-traszformált) adatokkal kell elvégezi. Az előbbiekbe ismertetett tulajdoságok csupá a mikrobiológiai eredméyek kissé külöleges voltára utalak, de mit már említettük, megfelelő figyelembevételük utá az általáos érvéyű matematikai-statisztikai eljárások teljes körűe alkalmazhatók. Bevezetésükbe végül egy ige fotos szempotra kívájuk felhívi a figyelmet. A matematikai-statisztikai módszerek alkalmazása a dötéshozásba ige hatékoy segédeszköz, de sohasem válhat öcélúvá, em helyettesítheti a szakmai dötéseket. A matematikaistatisztikai dötések arról adak felvilágosítást, hogy véletle tömegjeleségkét kezelt kísérleti eredméyek valószíűségszámítási megfotolások figyelembevételével hogya értelmezhetők. Az eredméyek alapjá hozott szakmai dötéseket a matematikai értékelés em helyettesíti, csupá alátámasztja. 4

7 . VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK.. KOMBINATORIKAI ALAPÖSSZEFÜGGÉSEK A kombiatorika alapösszefüggései, melyeket a valószíűségszámításba ige gyakra felhaszáluk, külöböző, esetleg részbe azoos elemek elredezhetőségéek szabályaival foglalkozik (pl. háyféleképpe választható ki elemű tételből k db. mita, stb.) Fejezetükbe csupá az alapösszefüggéseket ismertetjük, azok levezetése az irodalomjegyzékbe megadott köyvekbe részletese megtalálható. Permutáció Ismétlés élküli permutáció külöböző elem külöböző sorredjéek a számát (P ) adja meg: P = 3 =! (olvasd: faktoriális) (../.) Ismétléses permutáció Ha az eleme belül k, k,... k l darab egyező va, az elem ismétléses permutációiak száma: k, k,... kl! P = (../.) k! k! k! Variáció Ismétlés élküli variáció külöböző elemből k db. külöbözőt kiválasztuk (k ) és mide lehetséges sorredbe állítjuk, akkor az így keletkező variációk száma: l V,k = (-)(-) (-k+) (../3.) Ismétléses variáció Ha a kiválasztásál ismétlődést is megegedük, az ismétléses variációk száma: V = ism k, k (../4.) Kombiáció Ismétlés élküli kombiáció Ha külöböző elemből k db-ot kiválasztuk (k ), de a kiválasztott elemeket em rakjuk külöböző sorredbe, a keletkező kombiációk száma: ( )( )...( k + ) = =, (../5.) 3 k k C k Megegyezés szerit 0 =. (../6.). = (../7.) 5

8 Ismétléses kombiáció Ha elemből k db-ot kiválasztuk úgy, hogy az egyes elemeket többször is kiválaszthatjuk, az így kapható ismétléses kombiációk száma: + k, = (../8.) k C ism k.. A VALÓSZÍNŰSÉG FOGALMA A valószíűségszámítás véletle tömegjeleségekkel foglalkozik. A véletle jeleségek megfigyelésére szolgál a kísérlet, melyek lehetséges kimeeteleit (eredméyeit) eseméyekek evezzük. A továbbiakba csak olya kísérletekkel foglalkozuk, melyek azoos körülméyek között elvileg végtele sokszor megismételhetők. A kísérletek eredméyekét kapott eseméyek lehetek miőségileg külöbözőek (pl. egy kártyacsomag külöböző lapjai, egy termék megfelelő vagy selejtes volta), vagy azoos miőségű, de eltérő meyiségek (pl. a kockadobás eredméye, egy sűrítméy cukortartalma). Ha egy alkalommal elvégzett kísérletből a kiszemelt A eseméy k-szor következik be, akkor a k szám az A eseméy gyakorisága, k/ pedig a relatív gyakorisága. A kísérlet véletle jellege abba yilvául meg, hogy a kísérletsorozatot azoos körülméyek között többször megismételve, az A eseméy relatív gyakoriságára eltérő értékeket kapuk. Ezek a relatív gyakoriságok egy meghatározott számérték körül igadozak, mégpedig aál kisebb mértékbe, miél agyobb az értéke. Az A eseméy relatív gyakoriságáak ezt a várható számértékét az A eseméy valószíűségéek P(A) evezzük. Matematikai megfogalmazással a relatív gyakoriság határértéke a valószíűség. A relatív gyakoriság és a valószíűség 0 és közé eső számok. A biztos eseméy valószíűsége, a lehetetleé 0. A kísérlet mide egyes kimeeteléhez kiszámítható a relatív gyakoriság, amely az adott eseméy valószíűségéek becslésére szolgál.... Eseméyek közötti műveletek és összefüggések Egy kísérlet lehetséges eredméyeit elemi eseméyekek evezzük. Az elemi eseméyek halmaza az I eseméytér. Az eseméy az eseméytér egy részhalmaza. Ilye értelmezésbe a kísérleti eredméyekre is alkalmazhatóak az eseméyalgebra összefüggései. Az eseméyek jelölésére általába agybetűket haszáluk (pl. A eseméy, B, B, B eseméyek, stb.). Az összes eseméyt tartalmazó halmazak az I biztos eseméy felel meg. Egy A eseméy elletéte az A eseméy, amely kizárólag akkor következik be, ha A em következik be A biztos eseméy elletéte a lehetetle eseméy 6

9 Az A, A, A 3..., A eseméyek teljes eseméyredszert alkotak, ha egyikük biztosa bekövetkezik, és ha egymást párokét kizárják. Az eseméytér összes lehetséges elemi eseméye teljes eseméyredszert alkot.... Eseméyalgebrai műveletek Összeadás: Szorzás: Kivoás: Az A+B eseméy bekövetkezése azt jeleti, hogy vagy A, vagy B eseméy bekövetkezik, vagy midkettő. Az A B eseméy bekövetkezik, ha A is és B is bekövetkezik Az A-B eseméy akkor következik be, ha A bekövetkezik, de B em, azaz: ( A B = A B). Eseméyalgebrai műveleti azoosságok a./ A+B = B+A; A B = B A b./ A+(B+C) = (A+B)+C; A (B C) = (AB) C c./ A (B+C) = A B+A C; A+B C = (A+B) (A+C) d./ A+A = A A A = A e./ A = A f./ A+ = A; A = g./ A+I = I; A I = A h./ A + A = I ; A A = 0 i./ A + B = A + B, A B = A + B..3. A valószíűségre voatkozó éháy tulajdoság a./ A lehetetle eseméy valószíűsége ulla: P( ) = 0 A biztos eseméy valószíűsége egy: P( I ) = b./ Elletétes eseméyek valószíűségeiek összege egy: P(A) + P( A ) = c./ Ha A részhalmaza B-ek, A B: P(A) P(B) d./ Két tetszőleges eseméy összegéek valószíűsége: P(A+B)=P(A)+P(B)-P(A B) Ha A és B egymást kizáró eseméyek: P(A+B)=P(A)+P(B), mert A B= 7

10 ..4. Feltételes valószíűség, függetle eseméyek. Legyeek A és B egy kísérlettel kapcsolatos eseméyek. Ha N kísérletet végezve a B eseméy -szer fordul elő, s eze belül k esetbe B-vel együtt A is bekövetkezik, akkor a k/ háyadost az A eseméyek B feltételre voatkozó feltételes relatív gyakoriságáak evezzük. A feltételes relatív gyakoriság határértéke a feltételes valószíűség. Jelölje P(AB) az A és B eseméy együttes bekövetkeztéek valószíűségét, P(B) a B eseméy bekövetkeztéek valószíűségét. Ha P(B) > 0, akkor az A eseméy B feltétel melletti feltételes valószíűsége: P( AB) P ( A B) = (../.) P( B) Az összefüggés köye értelmezhető, ha figyelembe vesszük, hogy a kedvező esetek azok, amikor A és B együtt következett be, amiek valószíűsége P(AB). A B-re voatkozó feltétel teljesülését eredméyező összes lehetséges eset valószíűsége P(B). Az A és B eseméyek egymástól függetleek, ha az egyik eseméyek a másikra voatkozó feltételes valószíűsége megegyezik az eseméy feltétel élküli valószíűségével: P(A B) = P(A) (../.) Függetle eseméyek együttes bekövetkezéséek valószíűsége az../. és../. összefüggések egybevetése alapjá: P(AB) = P(A) P(B) (../3.)..5. Teljes valószíűség tétele, Bayes tétel. Ha A, A,... A teljes eseméyredszert alkotak és P(A i ) > 0 mide egyes eseméyre, akkor egy tetszőleges B eseméy valószíűsége a teljes valószíűség tétele szerit P( B) = P( B A ) P( ) (../4.) j= j A j A Bayes tétel az A i eseméy valószíűségét adja meg a B eseméy feltétele mellett. P(A i B) = P( B A ) P( A ) j= i P( B A ) P( A ) j i j (../5.) 8

11 .3. VALÓSZÍNŰSÉGI VÁLTOZÓ A véletle tömegjeleségeket alkotó eseméyhalmazok elemeihez egy-egy számértéket redelük, az így kapott, véletletől függő változót valószíűségi változóak evezzük. (Jelölése a továbbiakba: ξ). Ha ξ felvett értékei a számegyees meté diszkrét értékek (véges, vagy megszámlálhatóa végtele halmazt alkotak), akkor ξ diszkrét valószíűségi változó. Az olya valószíűségi változót, melyek értékei a számegyees egy teljes itervallumát (általáos esetbe a teljes számegyeest) kitöltik, folytoos valószíűségi változóak evezzük. Diszkrét valószíűségi változók. Laboratóriumi gyakorlatba általába ide sorolhatók a számláláso alapuló mérési módszerek (pl. Howard-szám, Petri-csészé megjeleő telepszám, határhígításos módszerrel meghatározott legvalószíűbb élősejtszám, stb), valamit a potozásos érzékszervi vizsgálatok eredméyei. Folytoos valószíűségi változók. Laboratóriumi gyakorlatba általába ide sorolhatók a fizikai és kémiai aalítikai eredméyek (tömeg, ph, vezetőképesség, kocetráció, stb.) Szigorú matematikai szempotból tulajdoképpe a fizikai, kémiai aalitikai eredméyek sem tekithetők folytoos változóak, hisze eze valóba folytoos jellemzők méréséek lehetséges eredméyei a műszerek felbotóképessége által meghatározott diszkrét értékekből származak. Egy valószíűségi változó folytooskét való kezelhetőségét a gyakorlatba a változó értéktartomáyáak és diszkrét értékközeiek egymáshoz való viszoya döti el. Ilye értelembe majdem midig folytoos változókét kezelhetők az aalitikai eredméyek és sok esetbe az érzékszervi potszámok, mikrobaszámok is..4. VALÓSZÍNŰSÉGI VÁLTOZÓ ELOSZLÁSFÜGGVÉNYE ÉS SŰRŰSÉGFÜGGVÉNYE Mide valószíűségi változóra értelmezhető egy F(x) eloszlásfüggvéy, amely megadja aak a valószíűségét, hogy a ξ valószíűségi változó az x értékél kisebb. F(x) = P(ξ<x) (.4/.) Miél agyobb x értéke, aál agyobb a valószíűsége, hogy ξ értéke ezt em éri el. Határesetbe: ha x, lim F(x) = ha x -, lim F(x) = 0 Az F(x) eloszlásfüggvéy mooto ő. Diszkrét valószíűségi változó eloszlásfüggvéye lépcsőzetes alakú. Az eloszlásfüggvéy ismeretébe köyű meghatározi aak a valószíűségét, hogy a ξ valószíűségi változó az a és b értékek közé esik. Feltéve, hogy a < b : P(a ξ < b) = F(b) F(a) (.4./.) 9

12 Az a-b itervallumot tetszőlegese változtatva, folytoos valószíűségi változóra megadható, hogy ξ milye valószíűséggel esik egy adott itervallumba. Ha az eloszlásfüggvéy folytoos és differeciálható, akkor aak deriválásával a sűrűségfüggvéy meghatározható. df = f (x) (.4./3) dx Az eloszlásfüggvéy midekori értékét a sűrűségfüggvéy itegrálja adja meg: x F ( x) = f ( x) dx (.4./4.) illetve: f ( x) dx = (.4./5.) + Diszkrét valószíűségi változók esetébe a sűrűségfüggvéy természetese em értelmezhető. Ebbe az esetbe azt a függvéyt, amely megadja, hogy a valószíűségi változó milye (p i ) valószíűséggel veszi fel az adott (x i ) értéket, valószíűségi eloszlásak evezzük. p i = P(ξ = x i ) (.4./6.) Az eloszlás- és sűrűségfüggvéyek alakját a kokrét valószíűségi eloszlások tárgyalásáál mutatjuk be..5. A VALÓSZÍNŰSÉGI VÁLTOZÓ FŐBB JELLEMZŐI.5.. Várható érték (M) Diszkrét eloszlású valószíűségi változó várható értéke: M(ξ) = Σp i x i (.5./.) ahol x i a ξ valószíűségi változó lehetséges értékeit jeleti, p i pedig a hozzájuk tartozó pi=p(ξ=xi) valószíűségeket. Folytoos eloszlású, sűrűségfüggvéyel redelkező valószíűségi változó várható értéke: + M(ξ) = x f(x)dx (.5./.) A valószíűségi változó várható értékéek becslésére szolgál a megfigyelt értékek számtai átlaga. A várható értékre voatkozó éháy tétel a./ Ha c=kostas, M( c ) = c M(c ξ) = c M(ξ) 0

13 b./ Ha a és b = kostas M(a ξ + b) = a M(ξ) + b c./ Tetszőleges x és y valószíűségi változókra: M(x ± y) = M(x) ± M(y) d./ M[M(ξ)] = M(ξ) e./ Ha x és y függetle valószíűségi változók: M(xy) = M(x) M(y).5.. Szórás (D) A szórás (D) a valószíűségi változó várható érték körüli igadozásáak a mértékszáma. Meghatározása a szóráségyzetből (D ) törtéik. A szóráségyzet a valószíűségi változó várható értéktől való eltérése égyzetéek várható értéke. Matematikai megfogalmazásba sokkal egyszerűbb: Diszkrét eloszlású valószíűségi változó szóráségyzete: D (ξ) = M [(ξ - M(ξ)) ] = Σ(x i M(ξ)) p i (.5/3.) Folytoos eloszlású valószíűségi változó szóráségyzete: + D (ξ) = M [(ξ - M(ξ)) ] = (x M(ξ)) f(x)dx (.5./4.) A szóráségyzetre levezethető tétel, amely számítástechikailag sokkal köyebbe alkalmazható összefüggéshez vezet: D (ξ) = M (ξ ) [M(ξ)] (.5./5.) vagyis a szóráségyzet a valószíűségi változó égyzetéek várható értéke és a várható érték égyzetéek a külöbsége. A szórás a szóráségyzet pozitív égyzetgyökekét számítható: D = D (.5./6) D( ξ ) ξ = M[ ξ M ( )] (.5/7.)

14 A szóráségyzetre voatkozó éháy tétel a./ D (ξ) = M (ξ ) M (ξ) b./ Ha c=kostas, D (cξ) = c D (ξ) c./ Ha x és y függetle valószíűségi változók: D (x ± y) = D (x) + D (y) d./ Ha x db. valószíűségi változó számtai közepe: D ( x) D ( x) = e./ Ha a és b= kostas D (a ξ + b) = a D (ξ).6. STANDARDIZÁLT VALÓSZÍNŰSÉGI VÁLTOZÓ Az olya valószíűségi változót, amelyek várható értéke 0 és szórása, stadard (stadardizált) valószíűségi változóak evezzük. Bármely x valószíűségi változóból stadard valószíűségi változó (u) hozható létre az alábbi traszformációval: x M ( x) u = (.6./.) D( x) Az összefüggésből a várható értékre és a szóráségyzetekre voatkozó tételekkel levezethető: M(u) = 0 D (u) =.7. CSEBISEV EGYENLŐTLENSÉG A Csebisev egyelőtleség egy valószíűségi változó várható értéktől való eltéréséek valószíűségére ad becslést. Aak a valószíűsége, hogy a ξ valószíűségi változó értéke egy adott α számál jobba térje el a várható értékétől, legfeljebb D /α. ahol α = k D és k >. P( ξ - M(ξ) > α) D /α (.7./) Az összefüggésből kiolvasható, hogy a várható értéktől való eltérés öveléséhez csökkeő valószíűségek tartozak.

15 .8. A VALÓSZÍNŰSÉGI ELOSZLÁS ÁLTALÁNOS JELLEMZŐI Mometumok r Az r-ed redű mometum: M r ( ξ ) = x f ( x) dx, r =,,... (.8./) Az r-ed redű abszolút mometum: M r ( ξ ) = x f ( x) dx, r =,,... (.8./) r Az r-ed redű cetrális mometum: µ r ( ξ ) = [ x M ( ξ)] f ( x) dx, r =,,... (.8./3) Az elsőredű mometum a valószíűségi változó várható értéke. A másodredű cetrális mometum a valószíűségi változó szóráségyzete. Eek pozitív égyzetgyöke a szórás (D) Ferdeség µ 3 Nem szimmetrikus folytoos eloszlás esetébe a ferdeségi együttható: γ = 3 D Lapultság Az eloszlás- ill. a sűrűségfüggvéy lapultságát jellemző együttható: µ 4 γ = 3 D 4 r Mediá A ξ valószíűségi változó mediája (m e ) az a szám, amely alatt és felett egyforma (50%) valószíűséggel találhatók értékek, azaz F( m ) = e m e f ( x) dx = Kvatilis: A ξ valószíűségi változó q kvatilisé azt az x q számot értjük, amely alá q, fölé pedig - q valószíűséggel esik változó: F(x q ) = q Módusz: Folytoos eloszlásál a valószíűségi változó mide olya értéke, ahol a sűrűségfüggvéyek helyi maximuma va. Diszkrét eloszlásál a valószíűségi változó azo értéke, ahol a p i valószíűségek a köryezetébe lévő valószíűségekhez képest maximuma va. 3

16 .9. A VALÓSZÍNŰSÉGI ELOSZLÁS PARAMÉTEREINEK BECSLÉSE A valószíűségi változó ismeretle paramétereit a mitából számított értékekkel becsüljük. Ilye értelembe mitáak számítaak a kísérleti eredméyek is. A becslés (a becslési eljárás eredméye) és a paraméter valódi értéke között általába eltérés va. A valódi érték és a becslés közötti eltérés egyik része abból ered, hogy a becslés maga is valószíűségi változó, ezért értékét véletle igadozások befolyásolják. Ez a fajta véletle eltérés a kofidecia számítások segítségével behatárolható és a számításhoz felhaszált adatok számáak övelésével csökkethető. Az eltérés em véletleszerű része a torzítás. A torzítás forrásai az alábbiak lehetek: Nem megfelelő a mitavétel, (kísérleti elredezés), a miták, (kísérleti eredméyek) em reprezetálják a vizsgált sokaságot (a mitavétel torzított). Nem megfelelő a vizsgálati eljárás (a vizsgálati módszer torzított). Nem megfelelő számítási eljárást haszáluk a paraméter becslésére (a becslés matematikai eljárása torzított). A torzítás matematikailag közvetleül em ismerhető fel az eredméyekből, csupá szakmai megfotolások alapjá gyaítható. A torzítás a vizsgálati adatok számáak övelésével em csökkethető. A mitavételi torzítás a véletle mitavételre voatkozó szabályok betartásával, illetve megfelelő kísérlettervezéssel kerülhető el. A vizsgálati módszerek torzítását más módszerekkel való összehasolítással, valamit azoos mitákkal végzett külöböző laboratóriumok közötti összehasolító vizsgálatokkal lehet megállapítai. Eek eredméyekét a torzított eredméyt adó módszerek kiszűrhetők, vagy a torzítás forrása feltárható. A em megfelelő matematikai módszer alkalmazásából eredő torzítás a megfelelő becslési eljárás kiválasztásával kerülhető el. Ez sokszor komoly matematikai megfotolásokat igéyel. Mide becslés valószíűségi változó, s eek megfelelőe eloszlása és eloszlásfüggvéye va. A matematikai-statisztikába alkalmazott legfotosabb valószíűségi eloszlásokat a következő,. fejezet tárgyalja. 4

17 . VALÓSZÍNŰSÉGI ELOSZLÁSOK A valószíűségi eloszlások tárgyalásáál a kombiatorikai levezetéseket em ismertetjük, azok a megadott szakirodalmi forrásokba részletese megtalálhatók. A valószíűségi eloszlások közül azokkal foglalkozuk, amelyekek a matematikaistatisztikai számítások, illetve a miőségelleőrzéssel kapcsolatosa jeletőségük va, de emellett tárgykörükhöz kapcsolódó éháy speciális eloszlásra is utaluk. A valószíűségi eloszlások várható értékéek és szórásáak az.5. fejezetbe ismertetett összefüggések alapjá törtéő levezetéseit köyvük em tárgyalja, azok az irodalomjegyzékbe szereplő taköyvekbe megtalálhatók... DISZKRÉT ELOSZLÁSOK... Egyeletes eloszlás Ha a ξ valószíűségi változó külöböző értékeket egyforma valószíűséggel vehet fel, akkor a ξ egyeletes eloszlású diszkrét valószíűségi változó. Valószíűségi függvéy: P(ξ=x i ) = p i = / Várható érték: Szóráségyzet: M (ξ ) = x i (../.) i= ) xi i= D ( ξ = xi (../) i= Számítási példa egyeletes eloszlásra Mi a valószíűsége aak, hogy egy 5 elemű sorszámozott tételből egy bizoyos sorszámú elemet veszük ki. Feltételezzük, hogy a mitavétel véletleszerű. Megoldás: Bármely elem kivételéek azoos a valószíűsége: p i = / = /5 =

18 ... Biomiális (Beroulli) eloszlás Ha egy kísérletek két lehetséges kimeetele va, és ezek kölcsööse kizárják egymást (pl. megfelel, em felel meg), akkor ezek teljes eseméyredszert alkotak. Jelöljük A-val és A - vel az alteratív eseméyeket, ekkor A + A = I Ha a P(A) = p, és P( A ) = q jelölést haszáljuk, akkor p + q = (../3.) Ismételjük meg -szer a kísérletet és számítsuk ki aak a valószíűségét, hogy az A eseméy k- szor következik be, míg A (-k)-szor. Aak a valószíűsége, hogy az i és í,... és i k -adik kísérletél A bekövetkezik, és a többiél A em következik be, tekitettel arra, hogy ezek az eseméyek függetleek egymástól: p k q -k. kísérletből k eset kiválasztásáak lehetséges száma (../5. összefüggés szerit) k. Aak a valószíűségét, hogy kísérletből az A eseméy k-szor következik be, az eseméyek lehetséges számáak és a bekövetkezés valószíűségéek a szorzata adja meg: P (k) = k pk q -k (../4.) Ha ξ valószíűségi változó azo kísérletek száma, amelyekél az A eseméy bekövetkezett, akkor a../4. összefüggéssel leírt P (k) = P (ξ=k) valószíűségek diszkrét eloszlást adak, amelyet Beroulli, vagy biomiális eloszlásak evezük. A biomiális elevezést az eloszlás az alábbi összefüggés miatt kapta: k k P (ξ = k) = p q = ( p + q) = (../5.) k = k = k 0 0 A P (ξ=k) valószíűségek a p+q biom -edik hatváyáak a tagjai. Valószíűségi függvéy: p k = P k) = p k q k k (ξ = (k=0,,...,) (../6.) Eloszlásfüggvéy: F(ξ ) = p = k k< x k< x k 0 k p q k ha x 0 ha 0 < x ha x > (../7.) A biomiális eloszlás két paramétere: p és, amelyek az eloszlást egyértelműe meghatározzák. 6

19 A biomiális eloszlás várható értéke és szórása: µ = p (../8.) D = p ( p) (../9.) A biomiális eloszlás feti levezetése szigorúa véve csak akkor teljesül, ha az egyes mitavételek sorá a kivett mitaelemek száma (k) em befolyásolja az A eseméy bekövetkeztéek valószíűségét (p). Ez általába teljesül, ha a mitaelemek száma () elhayagolható az alapsokaság elemeiek számához viszoyítva, vagy ha a kivett mitaelemet midig visszatesszük a következő elem kivétele előtt. Mide olya esetbe, amikor egy eseméy bekövetkezését vizsgáljuk, az eseméy bekövetkezéséek száma, mit valószíűségi változó, biomiális eloszlást követ. A biomiális eloszlásak redkívül fotos szerepe va a miőségelleőrzési mitavételi tervek kialakításába. Kellőe agy mitaszám eseté a biomiális eloszlás jól közelíthető a µ = p várható értékű és D = p ( p) szórású ormális eloszlással. Számítási példák biomiális eloszlásra. Példa Mi a valószíűsége aak, hogy egy 0% kifogásolt miőségű terméket tartalmazó tételből 5 elemű mitát kivéve, abba Megoldás a./ em találuk hibás elemet b./ db. hibás elemet találuk c./ a hibás elemek száma em haladja meg a -t. Számítsuk ki az eloszlás várható értékét és szórását. A hibás elem előfordulási valószíűsége: p = 0, (-p) = 0,9 A mitaelemek száma: = 5 A hibás elemek megegedett száma: k Alkalmazva a biomiális eloszlásra voatkozó../4. összefüggést. P (k) = -k pk q k a./ k = 0 P 5 (ξ=0) = 5 0 0,0 0,9 5 = 0,9 5 = 0,5905 b./ k =. P 5 (ξ=) = 5 0, 0,9 3 = c./ k P ( ξ = k) = k= 0 k= 0 5 k p q k 5 4 0,0 0,790 = 0,079 k 7

20 P 5 (ξ=) = 5 0, 0,9 4 = 5 0, 0,9 4 = 0,38 P 5 (ξ ) = P 5 (ξ=0) + P 5 (ξ=) + P 5 (ξ=) = 0, ,38 + 0,079 = 0,995 Várható érték: µ = p = 5 0, = 0,5 Szórás: D = p ( p) = 5 0. ( 0.) = = 0,6708. Példa. Az élelmiszerek mikrobiológiai miősítése sorá patogé mikroorgaizmusok jeleléte em megegedett. Tételmiősítés sorá 0 elemű mitát veszek és mide egyes elemet megvizsgálak. Megfelelőek miősítik a tételt, ha patogé mikroba jeleléte egy mitaelemből sem mutatható ki. Mi a valószíűsége aak, hogy egy 0%-ba fertőzött tételt a feti eljárás elfogadhatóak miősít. Megoldás A hibás elem előfordulási valószíűsége: p = 0, (-p) = 0,8 A mitaelemek száma: = 0 A hibás elemek megegedett száma: k = 0 Alkalmazva a biomiális eloszlásra voatkozó../4. összefüggést. P 0 (ξ=0) = 0 0, 0 0,8 0 = 0,8 0 = 0,074 0 A hibás miősítés valószíűsége meghaladja a 0%-ot!! A feti példába szereplő biomiális eloszlás valószíűségi függvéyét és eloszlásfüggvéyét a../ ábra szemlélteti. P(x) Valószíűségi függvéy F(x) Eloszlásfüggvéy X X../. ábra. Biomiális eloszlás (=0, p=0,0) valószíűségi- és eloszlásfüggvéye. 8

21 ..3. Hipergeometrikus eloszlás Azokba az esetekbe, amikor az N elemű alapsokaságból visszatevés élkül végezzük a mitavételt, aak a valószíűsége, hogy az elemű mitába k db. em megfelelő kerül hipergeometrikus eloszlást követ. Ha az alapsokaság száma N, amelybe a selejtaráy p, akkor az egész sokaságba N p=m db. em megfelelő egyed va. M N M k - k P(ξ = k) =../0. N A hipergeometrikus eloszlás határértéke, ha N és p = M/N a biomiális eloszlás. N 50 viszoy teljesülése eseté a hipergeometrikus eloszlás már biomiális eloszlással helyettesíthető a számításokba. A hipergeometrikus eloszlás várható értéke és szóráségyzete: M µ = = p../. N D N = p (-p) N../. A hipergeometrikus eloszlást egyértelműe meghatározó három paraméter: N,, p A hipergeometrikus eloszlás várható értéke teljese megegyezik a biomiális eloszlás várható értékével. A szóráségyzetre voatkozó../. kifejezés pedig N övelésével alulról közelíti a biomiális eloszlás szóráségyzetét. Egyetle mitaelem (=) kivétele eseté a két eloszlás szórása megegyezik. (Egyetle mitaelem vizsgálatakor ics jeletősége a tétel agyságáak, illetve a visszatevések, ilyekor a biomiális eloszlás mide esetbe alkalmazható.) A hipergeometrikus eloszlásak a miőségelleőrzésbe a kis tételek (N < 00) mitavételi, illetve miősítési terveiek kialakításába va szerepe...4. Poisso eloszlás A laboratóriumi gyakorlatba agyo sokszor előfordul, hogy egyes eseméyekek egy időtartamo, térfogato, vagy felülete belüli bekövetkezési gyakoriságát vizsgáljuk. Példa erre a radioaktív bomlások időegység alatti száma, a Bürker kamrás mikroszkópos sejtszámlálás, a Petri csészéke megjeleő telepek száma, stb. Ezekbe az esetekbe a vizsgált valószíűségi változó (időegység alatti beütésszám, látómezőkéti sejtszám, Petri csészékéti telepszám, stb.) Poisso eloszlást követ. Az eloszlást a k eseméy megfigyelés alatti átlagos értéke (λ) jellemzi. 9

22 A Poisso eloszlás a biomiális eloszlás határesete, ha, miközbe p = λ kostas marad. A gyakorlatba, ha p<0, és >0, a biomiális eloszlás helyettesíthető a Poisso eloszlással. Aak a valószíűsége, hogy a ξ változó a k értéket veszi fel: Valószíűségi függvéy: P λ k! k λ ( ξ = k) = pk = e (../3.) Várható érték: µ = λ (../4.) Szóráségyzet: D = λ (../5.) A Poisso eloszlás egyetle paramétere: λ Számítási példa Poisso eloszlásra Lemezötéses élősejtszám meghatározásál a törzsszuszpezió élősejtszáma 0 sejt/ml. Hasolítsuk össze a törzsszuszpezióból és aak tízszeres hígításából végzett ml mita várható élősejtszám eloszlását. (Feltételezzük, hogy a hígítás tökéletes volt.) P(x) λ = sejt/ml P(x) λ = 0 sejt/ml X ( j / l) X ( j / l)../. ábra. Telepképző egységek elméletileg várható Poisso eloszlása Összehasolítva a két eloszlást, jól látható, hogy λ = várható érték eseté a sejtszám eloszlása erőse aszimmetrikus, míg λ = 0 várható értékél már ige jó közelítéssel szimmetrikus. Általába λ = k/ > 5 értékekél a Poisso eloszlás már szimmetrikussá válik és helyettesíthető egy µ = λ várható értékű és D = λ szórású ormális eloszlással. 0

23 .. FOLYTONOS ELOSZLÁSOK... Normális eloszlás A matematikai-statisztikába elméletileg és gyakorlatilag is egyarát legfotosabb eloszlás a ormális-, vagy Gauss-eloszlás. A haraggörbe alakú eloszlás jeletőségét az alábbi törvéyszerűségekek köszöheti: A véletle hibák a legtöbb esetbe ormális eloszlást követek (ie ered az eloszlás esetekéti hibatörvéy, illetve hibaeloszlás elevezése). A ormális eloszlású sokaságból származó miták eloszlása is ormális. A cetrális határeloszlás tétele szerit agy számú függetle valószíűségi változó összege közelítőleg ormális eloszlású, feltéve hogy az összeg mide egyes tagjáak igadozása kicsi az egész összeg igadozásához képest. Ez a gyakorlatba azt jeleti, hogy már három mita átlaga is jó közelítéssel ormális eloszlást eredméyez, még akkor is, ha az eredeti eloszlás jeletőse eltér a ormálistól (pl. kétpupú eloszlás). A cetrális határeloszlás tétele következtébe a mita elemszám övelésével az eredetileg biomiális és Poisso eloszlású sokaságokra is alkalmazhatóak a ormális eloszlásra kidolgozott statisztikai próbák. Sűrűségfüggvéy: ( x µ ) σ f ( x) = e ; (- < x < + ) (../.) σ π Eloszlásfüggvéy: x ( t µ ) σ F( x) = e dt (../.) σ π Várható érték: M(X) = µ Szóráségyzet: D (x) = σ A ormális eloszlás két paramétere: µ és σ, amelyek az eloszlást egyértelműe meghatározzák. A ormális eloszlás közpoti jeletősége miatt a statisztikai próbák egységes alkalmazhatósága érdekébe bevezették a stadardizált ormális eloszlást, amelyek változója: u = x µ (../3.) σ

24 A (../3.) összefüggés alapjá bármely µ és σ paraméterű ormális eloszlás stadardizálható, így a matematikai-statisztikai számításokhoz elegedő a stadard ormális eloszlás táblázatait haszáli. A stadardizált ormális eloszlás sűrűségfüggvéye: u ϕ ( u) = e ; ϕ(-u) = ϕ(u) (../4.) π A stadardizált ormális eloszlás eloszlásfüggvéye: x u φ ( u) = e du ; φ(-u) = -φ(u) (../5.) π Várható értéke: µ = 0 Szórása: σ = A stadardizált ormális eloszlás sűrűség- és eloszlásfüggvéyét a../. ábra szemlélteti. f(u) Sűrűségfüggvéy F(u) Eloszlásfüggvéy u u../. ábra. Stadardizált ormális eloszlás sűrűség- és eloszlás függvéye

25 ... Studet eloszlás A Studet eloszlás az átlagérték- és kofidecia-itervallumok becslésekor játszik ige fotos szerepet azokba az esetekbe, amikor a vizsgált sokaság szórását és várható értékét is a mitából becsüljük. Az számú (m = - szabadsági fokú x 0, x,... x m ) függetle, 0 várható értékű, σ szórású ormális eloszlású valószíűségi változóból képzett t = x 0 (../6.) ( m x x x m ) valószíüségi változók m szabadsági fokú Studet (t) eloszlást követek. Az eloszlás sűrűségfüggvéye: f(t) = mπ m! m t! + m m+ (../7.) Várható értéke: µ = 0 Szóráségyzete: D = m/(m-) X../. ábra. Studet féle t eloszlás, 5 és 30-as szabadsági fokhoz tartozó sűrűségfüggvéyei. 3

26 A sűrűségfüggvéy t=0-ra ézve szimmetrikus, alakja hasoló a stadardizált ormális eloszláshoz. Várható értéke 0, szóráségyzete a szabadsági fok (m) övelésével felülről közelít -hez. Ha m > 30, akkor a t-eloszlás ige jól közelíthető a stadardizált ormális eloszlással: t p u p. A Studet féle t eloszlást szemléltető../. ábrá jól látható, hogy az 5-ös szabadsági fokhoz tartozó sűrűség-függvéy már viszoylag jól közelíti a 30-as szabadsági fokhoz tartozó függvéyt...3. χ eloszlás A χ eloszlás a szóráségyzetekkel kapcsolatos statisztikai próbákál, valamit illeszkedés-vizsgálatokál játszik szerepet Ha x, x,... x m függetle, ormális eloszlású valószíűségi változók, és u k = (x k - ζ k )/σ k stadardizáltjaik, akkor a χ m = u k valószíűségi változó m szabadsági fokú χ k = eloszlást követ, melyek sűrűségfüggvéye: f(χ ) = m! m χ ( χ ) e (../8.) Várható értéke: µ = m Szóráségyzete: D = m f(x) χ eloszlás sűrűségfüggvéye m= m=5 0. m= m= X../3. ábra. χ eloszlás sűrűségfüggvéye (m =, 5, 0, 30) Ha a χ eloszlás szabadsági foka ő, az eloszlás m várható értékű és m szóráségyzetű ormális eloszláshoz közelít, amit a../3. ábra szemléltet. 4

27 ..4. F eloszlás Az F eloszlás szóráségyzetek összehasolításába, illetve az erre visszavezethető statisztikai próbákba (pl. variaciaaalízis) játszik fotos szerepet. Két χ eloszlású m, ill. szabadsági fokú függetle valószíűségi változóból képzett F = ( m x + x x m ) ( y + y y ) (../9.) háyados, valószíűségi változó (m, ) szabadsági fokú F eloszlást követ, melyek sűrűségfüggvéye: f(f) = m +! F m m!!( + mf) m m m+ (../0.) Várható értéke: µ = ( 3) Szóráségyzete: D = ( m + ) m ( ) ( 4) ( 5) A külöböző szabadsági fokokhoz tartozó sűrűségfüggvéyeket a../4. ábra szemlélteti f(x) F eloszlás sűrűségfüggvéyei. (30, 30) (0, 0) (5, ) X../4. ábra. F eloszlás sűrűségfüggvéyei (m, = 30,30; 0,0; 5,) 5

28 ..5. Expoeciális eloszlás Az expoeciális eloszlás a higítási soroko alapuló élősejtszám-meghatározási módszerekbe, eltarthatósági vizsgálatokba, miőségelleőrzési jelleggörbék kialakításába játszik fotos szerepet. Az expoeciális eloszlás sűrűség- és eloszlásfüggvéye (csak pozitív x értékekre értelmezve): Sűrűségfüggvéy: Eloszlásfüggvéy: f(x) = λ e -λ x F(x) = e -λ x Az expoeciális eloszlás várható értéke és szórása megegyezik. Várható érték: µ = /λ Szórás D = /λ f(x) Sűrűségfüggvéy 0. F(x) Eloszlásfüggvéy X X..5. ábra. Expoeciális eloszlás sűrűség- és eloszlásfüggvéye (λ = 0,) 6

29 3. STATISZTIKAI BECSLÉSEK A statisztika empirikus adatok összegzése alapjá a vizsgált sokaságra voatkozóa következtetéseket vo le és feltevéseket elleőriz (umerikus becslések, összefüggésekre voatkozó feltevések, előrejelzések, dötések). Eek megfelelőe a statisztika feladata:. A megfigyelt sokaság statisztikai leírása, statisztikai jellemzők kiszámítása.. A valószíűségre alapuló megfelelő matematikai modell (elméleti eloszlás) feltételezése, (vagy felállítása) és elleőrzése illeszkedésvizsgálattal. 3. A feltételezett valószíűségi modell alapjá következtetések levoása, előrejelzések és dötések meghozatala. Hipotézisvizsgálatok. A megfigyelt sokaság statisztikai leírása (.) a gyakorlatba a mitából meghatározott éháy jellemző (átlagérték, relatív gyakoriság, szórás, terjedelem, stb.) meghatározását jeleti. Ezek a paraméterek a továbbiakba alapul szolgálhatak a megfigyelt sokaság valószíűségi eloszlásáak (matematikai modell) feltételezésére, valamit a feltételezés helyességéek elleőrzésére (.). Ameyibe a mitából meghatározott jellemzők alapjá elvégzett statisztikai próbák em modaak ellet a megmitázott sokaságra voatkozó hipotéziseikek, a feltételezett elméleti eloszlásra voatkozó matematikai apparátus felhaszálásával elvégezhetjük a szükséges statisztikai próbákat az alapsokaságra, vagy összehasolítadó alapsokaságokra voatkozó feltételezéseik elleőrzésére, dötéseik és előrejelzéseik meghozatalára (3.). A gyakorlatba agyo sok esetbe előzetes iformációk alapjá, vagy elméleti megfotolásokból kiidulva ismertek tekitjük a megfigyelt sokaság eloszlását, ezért a statisztikai kiértékelés sorá a. potba foglalt lépések kihagyásra kerülek. Az eloszlásra voatkozó hipotézis helytele volta azoba agyo súlyos dötési hibákhoz vezethet. A megfigyelt sokaság statisztikai jellemzőit midig a mita alapjá becsüljük, s eek következtébe - mit ahogy arra az.9. fejezetbe utaltuk -, a becslési eljárás eredméye és a paraméter valódi értéke között eltérés lehetséges. Az alapsokaság (általuk ismeretle) statisztikai jellemzői adottak. (Egy kozerv készítméy grammokéti aerob spóraszáma, Salmoella jelelét/hiáy egy tejpor-tételbe, stb.) Ezeket a valós és kokrét értékű jellemzőket becsüljük a mitából meghatározott értékek alapjá. A becslés eredméye egy adott mitából meghatározva szité kokrét érték, de ez az érték ismételt mitavétel eseté, vagy egyes mitaelemeket kihagyva, illetve további mitaelemeket bevova az értékelésbe, a vizsgált jellemző valószíűségi változó volta miatt igadozik. A matematikai-statisztikai kiértékelés célja soha em lehet (mert gyakorlatilag em is lehetséges) a becsült jellemző alapsokaságo belüli értékéek teljes potosságú meghatározása. Becslési eljárásuk eredméyekét csupá azt tudjuk megadi, hogy a vizsgált jellemzőek az alapsokaságo belüli átlagértéke, szórása, gyakorisága, stb. egy adott valószíűséggel milye határok között va. Eek az u. kofidecia-itervallumak a szélessége viszot a kísérlettervezéstől és értékelési módtól függőe (általába a mitaszám övelése révé) csökkethető. Több sokaság (pl. külöböző táptalajoko, vagy eltérő módszerrel meghatározott mikrobaszámok, külöböző gyártási tételek mikrobás fertőzöttsége, stb.) összehasolításakor általába az egyes sokaságokból vett miták statisztikai jellemzőit hasolítjuk össze. Ezekbe az esetekbe kérdésfeltevésük em az, hogy az egyes sokaságok vizsgált jellemzői megegyezeke egymással, haem az, hogy a köztük lévő eltérés meghaladja-e a véletle igadozásból eredő mértéket. A véletle igadozás mértékét meghaladó külöbségeket szigifikásak evezzük. 7

30 Általáosságba a mita statisztikai jellemzőiek kiértékelésé alapuló dötésük helyes megfogalmazása szerit az összehasolított sokaságok statisztikai jellemzői, vagy egyes statisztikai jellemzők becsült és feltételezett értékei között meghatározott (kiszámított) külöbség szigifikás, vagy em szigifikás. A matematikailag szigifikásak bizoyuló eltérések azoba em jeleteek feltétleül szakmailag is jeletős külöbséget. (Pl. lemezötéses és felületi szélesztéses mikrobaszámmeghatározási módszerek szórása, és éha átlagértéke között is szigifikás külöbség mutatható ki. Ez a külöbség szakmailag csupá akkor jeletős, ha a mikrobaszám egy agyságrede belüli változását kívájuk potosa yomoköveti. Több agyságredyi változás mérésére a két módszer egyformá alkalmazható.) A vizsgált valószíűségi változó valódi értéke és becslése közötti eltérések forrásairól (véletle eltérés és torzítás) az.9. fejezetbe már szóltuk. A továbbiakba csupá a statisztikai becsléssel kapcsolatos elvárásokat ismertetjük Az alapsokaság ismeretle (de kokrét, a értékű) paraméterére voatkozó statisztikai becsléssel (α) szembei elvárásaik a következőkbe foglalhatók össze. A statisztikai becslés legye: Torzítatla. legye. Hatékoy. Kozisztes. Elégséges. A becslési eljárás várható értéke a keresett paraméter valódi értéke M(α)=a. Az α statisztika szórásáak a köryezetébe miimuma legye. A mitaszám övekedésével a paraméter becsült értéke közelítse a sokaságo belüli valódi értékhez. Tartalmazzo mide iformációt, amely a mitából az ismeretle a paraméterre yerhető. A statisztikai becslések alapjá hozott dötések midig a sokaságra (és em a mitára) voatkozak és kockázatot rejteek magukba. Eek a kockázatak az eredete, a vizsgált jellemző valószíűségi változó volta. Előfordulhat, hogy az alapsokaság olya részéből veszük mitát, amely csak ige kis gyakorisággal szerepel (pl. ormális eloszlásak csak a széléből). Ilye esetekbe a mitából számított becsült értékek alapjá a sokaságra voatkozóa téves következtetést vohatuk le. Az alapsokaságra voatkozó feltételezésük (ullhipotézis, H 0 ) a valóságba vagy feáll, vagy em. A ullhipotézisre voatkozóa a mita alapjá hozzuk meg dötésüket, ami vagy helyes, vagy téves. A mita alapjá hozott dötések lehetséges eseteit a Dötési táblázatba foglaltuk össze. Dötési táblázat. Becslési eljárás alapjá hozott dötések lehetséges esetei. Dötésük szerit Az alapfeltevés a valóságba az alapfeltevés Teljesül Nem teljesül Teljesül Helyes dötés Hibás dötés β másodfajú hiba Nem teljesül Hibás dötés α elsőfajú hiba Helyes dötés 8

31 A Dötési táblázatból kitűik, hogy dötéseik sorá kétféle hibát követhetük el: első- és másodfajú hibát Elsőfajú hiba α valószíűséggel jeleti azt az esetet, amikor dötésük szerit a ullhipotézis em teljesül, a valóságba azoba feáll az alapfeltételezés. (Pl. egy valójába megfelelő tételt hibásak miősítük.) Az elsőfajú hibát a matematikai-statisztikai számítások sorá előre meg tudjuk határozi, ki tudjuk választai, hogy dötésüket milye P = - α biztosággal kívájuk meghozi. Ez gyakorlatilag azt jeleti, hogy a vizsgált jellemzőek csak azt az értéktartomáyát fogadjuk el, amely P = - α valószíűséggel az eloszláso belül va. Az eloszláshoz tartozó értékekek azt az α töredékét, amely eze az értékhatáro kívül va, elutasítjuk, em tekitjük az eloszláshoz tartozóak. Tekitettel arra, hogy a valószíűségi változó sűrűségfüggvéye alatti teljes terület agysága, az elsőfajú hiba mértékét a P = - α valószíűséget meghaladó terület reprezetálja. Attól függőe, hogy az elutasítás az eloszlás midkét szélére, vagy csak az egyik oldalára voatkozik, beszélük kétoldali, vagy egyoldali elsőfajú hibáról. Kétoldali elsőfajú hiba azt jeleti, hogy az eloszlás midkét széléről elutasítjuk az α/ területhez tartozó értékeket és elfogadjuk a közéjük eső értéktartomáyt. Jellegzetese idetartozak a kofidecia-itervallum számítások, amikor azt állítjuk, hogy a mért jellemző sokaságo belüli értéke P = - α valószíűséggel a mitába meghatározott érték ± (számított) köryezetébe helyezkedik el. Kétoldali elsőfajú hiba megegedésével az összehasolítadó sokaságok jellemzői közötti kétiráyú eltérések szigifikaciáját vizsgáljuk. Egyoldali elsőfajú hiba eseté csupá az eloszlás egyik oldalát utasítjuk el. Az elutasított értéktartomáyhoz tartozik az eloszlási görbe alatti terület α része. Egyoldali elsőfajú hiba azo dötéseikre jellemző, melyekbe azt vizsgáljuk, hogy egy jellemző becsült értéke a sokaságba meghalad-e (vagy kisebb-e) egy megadott értékél. Egyoldali elsőfajú hiba esetébe csak az egyiráyú eltérés szigifikaciáját vizsgáljuk. Az elsőfajú hibát stadardizált ormál eloszlás eseté a 3./. és 3./. ábrával szemléltetjük. f(u) α egyoldali elsőfajú hiba 0.4 f(u) α kétoldali elsőfajú hiba α 0. - α α α/ α/ u u 3./. ábra. Egyoladali és kétoldali elsőfajú hiba sűrűségfüggvéyekkel szemléltetve 9

32 F(u) α egyoldali elsőfajú hiba F(u) α kétoldali elsőfajú hiba α α/ α - α α/ u u 3./. ábra. Egyoladali és kétoldali elsőfajú hiba eloszlásfüggvéyekkel szemléltetve Másodfajú hiba β valószíűséggel jeleti azt az esetet, amikor dötésük szerit a ullhipotézis teljesül, a valóságba azoba em áll fe az alapfeltételezés. (Pl. egy valójába kifogásoladó tételt megfelelőek miősítük.) A másodfajú hibát dötéseikbe speciális esetektől eltekitve em tudjuk előíri és általába ki sem tudjuk számítai. A kétféle hiba általába együttese mozog, ha α agy lehet, akkor β csökke és fordítva. Együttes csökketésük csak a mitaelemszám övelésével érhető el. 3.. A MINTA STATISZTIKAI JELLEMZŐI A matematikai statisztika értelmezése szerit a megfigyelési adatokból számított mide értéket (átlag, szórás, terjedelem, stb.) statisztikáak evezük. Tekitettel arra, hogy a mitaelemek valószíűségi változók, yilvávaló, hogy a belőlük számított statisztikák is valószíűségi változók leszek, s eek megfelelőe azok eloszlását az alapsokaság eloszlása, az ú. mitaeloszlás határozza meg. A mitaeloszlásra voatkozóa általába redelkezük előzetes feltevésekkel (ormális-, Poisso-eloszlás, stb.). Ameyibe ilye ismereteik icseek, korrekt kiértékelés csak a tapasztalati mitaeloszlás meghatározása utá végezhető el Tapasztalati eloszlás meghatározása Az alapsokaság eloszlását a belőle vett miták tapasztalati eloszlása alapjá becsüljük. A tapsztalati eloszlás alakjából következtetük az alapsokaság-beli valódi eloszlásra, és feltételezésükre voatkozóa statisztikai próbákat végzük. A tapsztalati eloszlás a meghatározásához felhaszált mitaelemek számáak övelésével egyre ikább közelít az alapsokaság valódi eloszlásához. A tapasztalati eloszlás felvételéhez 30

33 legalább 00 körüli adat szükséges. A tapasztalati eloszlás meghatározásáak a meete a következő. Véletleszerű mitavétellel kiveszük az alapsokaságból lehetőleg miél több (de legalább 00) mitaelemet, amelyből meghatározzuk a vizsgáli kívát paramétert. (Ilye értelembe mitavételek tekithető egy mérés agyo sokszori megismétlése is, ahol a mitaelemeket az egyes mérési eredméyek jeletik.) Kiválasztjuk a mérési eredméyek közül a legagyobb és legkisebb értéket, ezek külöbsége a terjedelem. A terjedelmet értékközökre osztjuk fel. Az értékközök (itervallumok) számára voatkozó általáos előírás ics. A gyakorlatba 0-5 azoos szélességű értékközt szokás megadi, a terjedelem és a mérési módszer által szolgáltatott diszkrét értékek egymáshoz való viszoyáak figyelembevételével. (Ha egy mérleg csak 0, g potosságú adatokat ad, akkor az,5 g szélességű tartomáyt ics értelme 5-él több osztályra felosztai.). Nagy adatszámok eseté az értékközök célszerű száma =,5 4 adatszám Az értékközök határáak kijelöléséél célszerű úgy eljári, hogy az adatok besorolása egyértelmű legye. (A határra eső adatokat következetese vagy a kisebbik, vagy a agyobbik értékközbe soroljuk.) Meghatározzuk, hogy háy adat tartozik az egyes értékközökbe, (osztályokba), azaz kiszámítjuk az egyes értékközökhöz tartozó gyakoriságot. Megszerkesztjük a gyakoriságokat az értékközök függvéyébe ábrázoló gyakorisági hisztogrammot, vagy a relatív gyakorisági hisztogrammot. (A relatív gyakoriság a gyakoriság és az összes adatszám háyadosa.) Folytoos valószíűségi változó esetébe a skála fiomításával csökke a gyakoriság. Eek kiküszöbölése érdekébe em az osztályközökéti relatív gyakoriságokat, haem a belőlük származtatott relatív gyakoriság-sűrűség hisztogrammot határozzuk meg. Relatív gyakoriság sűrüség = Relatív gyakoriság / Osztályszélesség Köye bizoyítható, hogy a relatív gyakoriság-sűrűség hisztogram alatti terület. Ha az értékközök száma túlságosa agy, a tapasztalati eloszlás véletle okozta, gyakorlati szempotból jeletéktele igadozásai túlzotta érvéyesülek, ha az értékközök száma túl kicsiy, az eloszlás jellege em mutatkozik kellőképpe. A gyakorisági értékeket összegezve a kumulatív gyakoriságokat kapjuk eredméyül. Hasoló módo meghatározható a kumulatív relatív gyakoriság is. A kumulatív gyakoriságok, vagy relatív gyakoriságokat ábrázolva a hozzájuk tartozó osztályközök függvéyébe, kapjuk a tapasztalati eloszlás-függvéyt. A tapasztalati eloszlás meghatározására ma már általába számítógépes eljárásokat alkalmazuk, amelyek em csupá a hisztogramok felvételét köyítik meg, haem egyúttal az eloszlásra voatkozó statisztikai próbákat, valamit a teljes matematikai-statisztikai kiértékelést is elvégzik. A tapasztalati eloszlás vizsgálatát egy mitapéldá keresztül szemléltetjük, amelyre a továbbiakba még többször visszatérük. 3

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 8. Valószíűségszámítás ESEMÉNYEK 174 Eseméyek formális leírása, műveletek 175 Feladatok 176 A VALÓSZÍNŰSÉG FOGALMA 177 A valószíűség tulajdoságai 178 Mitapéldák 179 Feladatok 181 VALÓSZÍNŰSÉGI VÁLTOZÓK

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószí ségszámítás és statisztika oktatási segédayag Kupá Pál Tartalomjegyzék fejezet Valószí ségszámítási alapfogalmak 5 Eseméyek 5 M veletek eseméyekkel 5 2 A valószí ség fogalma 7 3 Valószí ségi változók

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

6. feladatsor. Statisztika december 6. és 8.

6. feladatsor. Statisztika december 6. és 8. 6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR

VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR védőeryő az ismeretleek záporába VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR www.matektaitas.hu www.matektaitas.hu ifo@matektaitas.hu 1 védőeryő az ismeretleek záporába Kombiatorika Permutáció Ismétlés élküli permutáció

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula. Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

3. Valószínűségszámítás

3. Valószínűségszámítás Biometria az orvosi gyaorlatba 3. Valószíűségszámítás 3. Valószíűségszámítás 3.. Bevezetés 3.. Kombiatoria 3... Permutáció 3... Variáció 3..3. Kombiáció 3 3.3. Biomiális együttható tulajdoságai 3 3.4.

Részletesebben

VII.Valószínűségszámítási, statisztikai, gráfelméleti alapfogalmak

VII.Valószínűségszámítási, statisztikai, gráfelméleti alapfogalmak VII.Valószíűségszámítási, statisztikai, gráfelméleti alapfogalmak VII..A valószíűségszámítás elemei A valószíűségszámítás a véletle tömegjeleségeket taulmáyozó, kb. 300 éves tudomáy. Véletle jeleség: em

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Valószínûség számítás

Valószínûség számítás Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/ 5 öveli a traszformátorok öveli a traszformátorok A techológia előyei A költségek csökketéseek folyamatos kéyszere és a zavartala eergiaellátás ehézségei szükségessé teszik a traszformátorok tervezett

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Kísérletek tervezése és értékelése

Kísérletek tervezése és értékelése STATISZTIKAI ALAPOK I. STATISZTIKAI ALAPOK Adatok ábrázolása Yogi Berra: "You ca observe a lot by watchig." I. STATISZTIKAI ALAPOK Mérési adatok ábrázolása: Pot ábrázolás (Dotplot) Dotplot for Y 9 3 Y

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Rádiókommunikációs hálózatok

Rádiókommunikációs hálózatok Rádiókommuikációs hálózatok Készült az NJSZT Számítógéphálózat modellek Tavaszi Iskola elöadás-sorozataihoz. 977-980. Gyarmati Péter IBM Research, USA; Budapest Föváros Taácsa. I this paper we show a somewhat

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Átfolyó-rendszerű gázvízmelegítő teljesítményének és hatásfokának meghatározása Gazdaságossági számításokhoz

Átfolyó-rendszerű gázvízmelegítő teljesítményének és hatásfokának meghatározása Gazdaságossági számításokhoz Átfolyó-redszerű gázvízmelegítő teljesítméyéek és hatásfokáak meghatározása Gazdaságossági számításokhoz Szuyog Istvá 005 Készült az OTKA T-0464 kutatási projekt keretébe A Gázipari oktatási laboratórium

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék æ MATEMATIKAI STATISZTIKA Dr. Bolla Mariaa, Matematika Itézet, Sztochasztika Taszék Leíró statisztika Ω, A, P) statisztikai mező, ahol a P mértékcsalád olya P eloszlásokból áll, melyekkel Ω, A, P) valószíűségi

Részletesebben