ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!"

Átírás

1 ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet Egyéb példák 36,7 C 36,7 C RBC: 4,5x /l (3,9-5 x /l) ormál tartomáy? 36,9 C 36,9 C Az új terápás eljárás hatékoyabb mt a rég? 36,6 C. Mérés potatlaség.. Időbel gadozások!!! 36,5 C 3. Bológa változatosság!!! Hogya gazolható egy lázcsllapító hatásossága? A megfgyelt értékek em álladóak! Mért érték: 37, C. Egészséges vagy beteg? Kérdések!

2 Hogya válaszolható meg? A gyógyszer hatásos.?. Dt <. Dt >= A gyógyszer em hatásos: fluktuácó, a beteg jobba lesz, stb. Változók változó tartomáy típus A változó típusa magasság ~5 cm ~5 cm valós szám folytoos umerkus fogak száma.. 3 egész szám dszkrét vércsoport A, B, AB, betűk a rák stáduma 4 egész szám kategóráls omáls ordáls Következméy: A válasz em egyszerű és em mdg egyértelmű! (Nem csak a gyógyszer befolyásolhatja a test hőmérsékletet.) A gyógyszer em hatásos. A gyógyszer hatásos: fluktuácó, em emelkedk tovább, stb. Leíró statsztka! A változó leírása Numerkus változók Típusa Lehetséges értékek Az értékek előfordulása Név folytoos dszkrét Defícó Példa Végtele sok érték lehetséges, egy adott tartomáyba Magasság, testhőmérséklet Véges számú lehetséges érték A fogak száma, a gyerekek száma

3 Kategoráls változók A lehetséges értékek megadása Név Nomáls Ordáls Folytoos : megadjuk a lehetséges tartomáyt.» pl. magasság: ~6 cm - ~ 5 cm Defícó Ncs sorred Létezk természetes sorred Egyéb: felsoroljuk az értékeket, ha lehetséges» pl. vércsoport: A, B, AB, Példa em, vércsoport A betegség súlyossága, a fájdalom agysága Előfordulás Megfgyelés: Az értékek előfordulása em azoos mértékű! Populácó Háy kísérletre va szükség? Amey csak lehetséges. Kísérlet: mérés, megfgyelés, kkérdezés... Csak olya esetekkel foglalkozuk, amelyekbe a kísérlet megsmételhető! Kmeetel: Egy kísérlet eredméye. (pl.: egy hallgató magassága) Ideáls eset: pl. az összes ember populácó 3

4 Mta Egy ksebb, véges számú háyad a populácóból. A mta kválasztása Alapelv: véletle mta. : az elemek száma a mtába. x: a vzsgált meység x : egy elem a mtából Orvos statsztka: ha cs egyéb kzáró ok, akkor véletle legye a kválasztás! Előfordulás Gyakorság (k): egy adott érték előfordulásáak a száma. k : az -edk érték előfordulása. k Gyakorság eloszlás A gyakorság a változó értékeek a függvéyébe. Vércsoport A B AB összes gyakorság 7 5 4

5 gyakorság Megjeleítés A megjeleítés csapdá A vércsoport gyakorság eloszlása 5 5 oszlop dagramm 5 O A B AB O A B AB kördagramm Relatív gyakorság Valószíűség (P) A gyakorság aráya a teljes elemszámhoz vszoyítva. k k Gyakra százalékos formába adjuk meg: k % A valószíűség a relatív gyakorság értéke, ha tart a végtelehez. 5

6 százalék Valószíűség eloszlás A valószíűség tulajdosága P P = - sohasem fordul elő P = - mdg előfordul példa: vércsoport P P A B P AB P (ha, egymást kzáró eseméyek) P Valószíűség és relatív gyakorság Megjeleítés Mta véges! relatív gyakorság Populácó valószíűség 5% 45% 4% 35% 3% 5% % 5% % 5% % Vércsoportok eloszlása Magyarországo O A B AB 5,5%,9% A valószíűség agyo gyakra em smert! A gyakorlatba a relatív valószíűséget haszáljuk helyette. 44,7% 36,9% O A B AB 6

7 gyakorság gyakorság Folytoos változó Egy példa Végtele sok lehetséges érték!!! 6 cm osztály k Osztály: egy ks tervallum a teljes értéktartomáyo belül. Osztályszélesség: Az tervallum hossza. Gyakorság: azo elemek száma, amelyek az adott tervallumba esek. Olya, mtha dszkrét értékek leéek! 8 cm 3 75 cm 4 63 cm 5 65 cm 6 79 cm 7 64 cm 8 85 cm 9 77 cm 68 cm Megjeleítés Fomabb felosztás 5 5 gyakorság eloszlás (5 cm) magasság (cm) gyakorság eloszlás ( cm) magasság (cm)

8 probablty desty probablty desty valószíűség sűrűség gyakorság Megjeleítés Normáls eloszlás gyakorság eloszlás ( cm) magasság (cm),6,5,4,3 Ha az osztályszélesség végteleül kcs és az elemszám végteleül agy! ormáls eloszlás (m=7, s=8) Valóba teljes leíráshoz akkor jutuk, ha az elemszám végtele agy!,, magasság (cm) Elmélet eloszlás Normáls vagy Gauss-eloszlás g xm s ( x) e s Elmélet leírás Normáls vagy Gauss-eloszlás g xm s ( x) e s Paraméterek: m várható érték,6,5,4,3, Normal dstrbuto (m=7, s=8) Paraméterek: m várható érték, vagy elmélet átlag,6,5,4,3, Normal dstrbuto (m=7, s=8) s elmélet szórás, Heght (cm) s elmélet szórás, Heght (cm) 8

9 Tulajdosága, a paraméterek jeletése Sűrűségfüggvéy, eloszlás függvéy A --től a + -g terjed, szmmetrkus, A görbe alatt terület. Sűrűségfüggvéy Eloszlásfüggvéy m: a görbe maxmumához tartozó érték. s: az adatok átlagos eltérése a m-től. A valószíűség jeletése Elmélet szórás (m±s) ~ 68% (m±s) ~ 95% (m±3s) ~ 99,5% P aak a valószíűsége, hogy az x érték az (a,b) tervallumba esk, ll. az adatok P%-a tartozk ehhez az tervallumhoz. 9

10 Normáls eloszlás A m becslése Elmélet eloszlás! A populácó egészére jellemző. A gyakorlatba általába em smerjük a paraméteret. Általába csak egy vagy több véletle mták va a teljes populácóból. átlag: az elemekhez képest középe kell elhelyezkede. x x x x A s becslése A (tapasztalat) szórás s = Az adatok átlagos eltérése a m-től. s (tapasztalat szórás) = az elemek átlagos eltérése az átlagtól. s Qx s: az elemek átlagos eltérése az átlagtól. -: a szabadság fok Q x x x (x±s) ~ 68% (x±s) ~ 95% (x±3s) ~ 99,5% Példa: 3 szám átlaga =. Melyk ez a három szám? Mta. szám. szám 3. szám (8+5) = (3+4) = (+) = 5

11 A mta és a populácó kapcsolata A hét kérdése mta populácó átlag s m s Hogya becsülhetjük meg a m és a s értékét?

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok Bevezetés a hpotézs vzsgálatba Lásd előadás ayagát. Kétoldal és egyoldal hpotézsek Hpotézsvzsgálatok Ebbe a ejezetbe egyajta határozókulcsot szereték ad a hpotézsvzsgálatba haszált próbákhoz. Először dötsük

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

STATISZTIKA I. Mekkora? Viszonyszá m = Viszonyszám. sa: 1. Két t statisztikai adat arány. egyik főf. csoportját t alkotják,

STATISZTIKA I. Mekkora? Viszonyszá m = Viszonyszám. sa: 1. Két t statisztikai adat arány. egyik főf. csoportját t alkotják, Mekkora? STATISZTIKA I. 3. Előad adás, Vszoyszámok Előad adó: Dr. Huzsva LászlL szló egyetem doces Vszoyszámok. Két t statsztka adat aráy yát kfejező számok, 2. Az ú. leszármaztatott számok egyk főf csoportját

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Ökonometria. /Elméleti jegyzet/

Ökonometria. /Elméleti jegyzet/ Ökoometra /Elmélet jegyzet/ Ökoometra /Elmélet jegyzet/ Szerző: Nagy Lajos Debrece Egyetem Gazdálkodástudomáy és Vdékfejlesztés Kar (1.,., 3., 4., 5., 6., és 9. fejezet) Balogh Péter Debrece Egyetem Gazdálkodástudomáy

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak Geostatsztka I. BSc geográfus alapszak hallgatóak Dr. Szabó Norbert Péter egyetem adjuktus Mskolc Egyetem Geofzka Itézet Taszék e-mal: orbert.szabo.phd@gmal.com Ajálott rodalom Steer Ferec, 990. A geostatsztka

Részletesebben

Szerven belül egyenetlen dóziseloszlások és az LNT-modell

Szerven belül egyenetlen dóziseloszlások és az LNT-modell Szerven belül egyenetlen dózseloszlások és az LNT-modell Madas Balázs Gergely, Balásházy Imre MTA Energatudomány Kutatóközpont XXXVIII. Sugárvédelm Továbbképző Tanfolyam Hunguest Hotel Béke 2013. áprls

Részletesebben

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra) BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE EG FÁZISÚ ÖBBOMPONENS RENDSZERE: AZ ELEGE ÉPZDÉSE AZ ELEGÉPZDÉS ERMODINAMIÁJA: GÁZO Általáos megfotolások ülöböz kéma mség komoesek keveredésekor változás törték a molekulárs kölcsöhatásokba és a molekulák

Részletesebben

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Laboratóriumi mérések

Laboratóriumi mérések Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

Valószínűségszámítás és matematikai statisztika. Ketskeméty László

Valószínűségszámítás és matematikai statisztika. Ketskeméty László Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Statisztika II. előadás és gyakorlat 2. rész

Statisztika II. előadás és gyakorlat 2. rész előadás és gyakorlat. rész T.Nagy Judt Ajálott rodalom: Ilyésé Molár Emese Lovasé Avató Judt: Feladatgyűjteméy, Perekt, 006. Korpás Attláé (szerk.): Általáos, Nemzet Taköyvkadó, 1997. Molár Mátéé Tóth

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

3. Valószínűségszámítás

3. Valószínűségszámítás Biometria az orvosi gyaorlatba 3. Valószíűségszámítás 3. Valószíűségszámítás 3.. Bevezetés 3.. Kombiatoria 3... Permutáció 3... Variáció 3..3. Kombiáció 3 3.3. Biomiális együttható tulajdoságai 3 3.4.

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Sorbanállási modellek

Sorbanállási modellek VIII. előadás Sorbaállási modellek Sorbaállás: A sorbaállás, a várakozás általáos probléma közlekedés, vásárlás, takolás, étterem, javításra várás, stb. Eze feladatok elmélete és gyakorlata a matematikai

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970 Dr. Herma Sádor Dr. Rédey Katal Statsztka I. PÉCSI TUDOMÁNYEGYETEM KTK Közgazdaságtudomáy Kar Alapítva: 97 Mde jog fetartva. Jele köyvet vagy aak részletet a szerző egedélye élkül bármlye formába vagy

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar LOGO Kvatum-tömörítés Gyögyösi László BME Villamosméröki és Iformatikai Kar Iformációelméleti alaok összefoglalása A kódolási eljárás Az iformáció átadás hűsége és gazdaságossága a kódolástól függ Az iformáció

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Változók közötti kapcsolatok vizsgálata

Változók közötti kapcsolatok vizsgálata ) Eseméek függetlesége: p(ab) p(a) p(b) ) Koelácó: vö. az tutív tatalommal Változók között kapcsolatok vzsgálata Akko poztív, ha és átlagosa ugaaa az áa té el a saját váható étékétől, egatív ha elletétes

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 8. Valószíűségszámítás ESEMÉNYEK 174 Eseméyek formális leírása, műveletek 175 Feladatok 176 A VALÓSZÍNŰSÉG FOGALMA 177 A valószíűség tulajdoságai 178 Mitapéldák 179 Feladatok 181 VALÓSZÍNŰSÉGI VÁLTOZÓK

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

2.10. Az elegyek termodinamikája

2.10. Az elegyek termodinamikája Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,

Részletesebben

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke: A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i . konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton

Részletesebben

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben