Lineáris regresszió. Statisztika I., 4. alkalom

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Lineáris regresszió. Statisztika I., 4. alkalom"

Átírás

1 Lneárs regresszó Statsztka I., 4. alkalom

2 Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı és független változó kválasztására, de ez nem jelent okság kapcsolatot! Azt sem jelent, hogy megértettük volna a kapcsolatot, de az összefüggés segíthet a megértését a kapcsolatnak és legfıképp releváns elırejelzésenk lehetnek. Példák: Évszakok váltakozása és az ókor görögök. Képességteszt és adott pozícóban való beválás. Felvétel vzsgapontszám és egyetem elımenetel. Adott áruckkel szemben atttőd és vásárlás hajlandóság. Kapcsolat szubjektív erıssége és nterakcók het gyakorsága. Ha az elırejelzés egy változó segítségével történk, akkor egyváltozós lneárs regresszó számításnak nevezzük az eljárást.

3 Lneárs regresszó Mnél szorosabb két változó kapcsolata, annál ksebb lesz az elırejelzés hbája. Pl. Egy varrónıvel szemben elégedettséget szeretnénk elıre jelezn egy varrás gyorsaság teszt alapján. Számos már dolgozó varrónıvel elvégezzük a tesztet, és nformálódunk fınökük munkájukkal való elégedettségérıl. Pl. korrelácóval megvzsgáljuk, hogy a számszerősített két változó összefügg-e egymással. Amennyben a teszt használhatónak tőnk, regresszós egyenest llesztünk az adatokra, hogy a teszt alapján a fınök elégedettségét bármely teszt érték esetén elıre jelezhessük X Ábra a Máth jegyzetbıl. X1

4 Lneárs regresszó A lneárs kapcsolat természetesen egy egyenessel ragadható meg a legjobban. Ezt regresszós egyenesnek nevezzük. Az általános képlete egy egyenesnek:: Y = β X + β1 β β 1 konstans, az a pont ahol az egyenes metsz az y tengelyt, az az érték, am a legjobb becslés x= esetén a változó súlya, azt fejez k, hogy x egységny változása mekkora növekedést déz elı y becslésében A becslés csak tökéletes kapcsolat esetén lenne hbamentes (r=1 vagy r= -1). Az eljárás elnevezésének háttere: Sr Francs Galton a 19. században kutatta gyermekek genetkus meghatározottságát. Úgy fogalmazta meg eredményet, hogy a gyermekek magassága a szülık magasságához képest regredál az átlagosság rányába. A jelenség generalzálható teszt-reteszt sztuácókra, ez s mutatja, hogy a regresszós hatás egy természetes jelenség.

5 Lneárs regresszó A becslés csak tökéletes kapcsolat esetén lenne hbamentes (r=1 vagy r= -1). = β + β X + ε Y 1 A lehetı legksebb hbájú becslés a cél. A hbáról feltételezzük, hogy független X-tıl és átlaga nulla. A négyzetes hba mnmalzálására épülı legksebb négyzetek segítségével számolhatjuk becslését. A becslések normáls eloszlásúak, így tesztelhetı, hogy nullával egyenlıek-e a populácó szntjén. β = 1 ( X X )( Y ( X β = Y X 1 β X ) Y ) SE( β ) = σ 1 SE( β ) = σ 1 ( N 1) s x 1 X + N ( N 1) s x ˆ σ = ) Y Y N

6 Két változó kapcsolata Ha két változó normáls eloszlású, akkor csak lneárs kapcsolat képzelhetı el közöttük, azaz, ha nncs közöttük lneárs kapcsolat, akkor függetlenek egymástól. Ha két változó normáls eloszlású és korrelácójuk nulla, akkor függetlenek egymástól, ha korrelácójuk nullától különbözk, akkor lneárs kapcsolatban vannak, és ez a kapcsolat egy egyenessel megragadható. Fontos a korrelácó mértéke s (r=.1) A regresszós egyenes segítségével egyk változó értékének smeretében a másk változó értékét elıre jelezhetjük. Meg kell határoznunk a függı és független változót, k kell számítanunk a regresszós együtthatókat (, és β ). β 1 Ha a független változó értéke köz nem szerepel egy érték, de a megfgyelt tartományban van (megfgyelt mn. és max. érték között), akkor következtethetünk a függı változó értékére (nterpolácó), ha a megfgyelt tartományon kívül van, akkor ezt nem tehetjük meg (extrapolácó). β 1 Ha a független változó súlya ( ) a populácó szntjén különbözk nullától, akkor a független változó hatása szgnfkáns.

7 Lneárs regresszó A lneárs regresszó termnológája megtévesztı: -függı változó -független változó -változó hatása Csak akkor beszélhetünk okság kapcsolatról, ha random kísérletbıl származó adatokkal dolgozunk és mnden más, a vzsgált kapcsolat szempontjából releváns, tényezıt kontrollálunk. (A független változót m manpuláljuk és a személyeket random módon soroltuk a függı változó szernt csoportokba). Ha megfgyelésrıl van szó, számos külsı tényezı befolyással lehet mnd a függı, mnd a független változóra, okság kapcsolatról megfgyelés esetén nem beszélhetünk.

8 Lneárs regresszó Ha a regresszó tökéletes elırejelzésre ad lehetıséget, azaz a megfgyelt értékek, pontdagrammon ábrázolva tökéletesen lleszkednek egy egyenesre, akkor szokás függvénykapcsolatról beszéln. Pl. Eladott termék száma, eladásból származó bevétel. Az esetek döntı többségében azonban csak úgynevezett statsztka kapcsolatról van szó, ahol az elırejelzés nem tökéletes, az elırejelzés hbája vzuálsan a pontok távolsága az llesztett egyenestıl. Pl. az anya ntellgencájával próbáljuk bejósoln a gyermek ntellgencáját.

9 Lneárs regresszó Az általános képlete egy egyenesnek: β β 1 Y = β + β1x az a pont ahol az egyenes metsz az y tengelyt azt fejez k, hogy x egységny változása mekkora növekedést déz elı y-ban ˆ =β ˆ + ˆ β X Y = Y X 1 ε = Y ˆ ˆ β ( β + 1X ) = Y Yˆ Y ˆ β ˆ + ε = + β1x A becslés csak tökéletes kapcsolat esetén lenne hbamentes (r=1 vagy r= -1). a becslés hbája. ε A lehetı legksebb hbájú becslés a cél. A hbáról feltételezzük, hogy független X-tıl és átlaga nulla. A négyzetes hba mnmalzálására épülı legksebb négyzetek eljárás segítségével számolhatjuk és becslését. β β 1

10 Lneárs regresszó A becslés hbája: ε = Y ˆ ˆ β ( β + 1X ) = Y Yˆ A regresszós egyenes hbája, az ún. rezduáls hba vagy hbavaranca: ˆ Res = E[( Y Y ) ] = E[ ε ] = E[( ε ) ] = σ ε σ = σ + σ Y ˆ Y ε ss Y = ss Yˆ + ss ε R = ss ss Yˆ Y Az R négyzet érték, a determnácós együttható, azt mutatja meg, hogy az Y változó varancájának mekkora részét tudjuk megragadn az y becsült értékével. Ez pontosan a korrelácó négyzete lesz.

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Statisztika feladatok

Statisztika feladatok Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Kísérlettervezési alapfogalmak:

Kísérlettervezési alapfogalmak: Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás

Részletesebben

OLS regresszió - ismétlés Mikroökonometria, 1. hét Bíró Anikó A tantárgy tartalma

OLS regresszió - ismétlés Mikroökonometria, 1. hét Bíró Anikó A tantárgy tartalma OLS regresszó - smétlés Mroöonometra,. hét Bíró Anó A tantárg tartalma Leggaorbb mroöonometra problémá és azo ezeléséne megsmerése Egén vag vállalat adato Keresztmetszet és panel elemzés Vállalat, pacelemzés

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl

Részletesebben

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések Gakorló feladatok a Kísérletek tervezése és értékelése c. tárgból Lneárs regresszó, smétlés nélkül mérések 1. példa Az alább táblázat eg kalbrácós egenes felvételekor mért adatokat tartalmazza: x 1.8 3

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i . konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1. Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Foglalkoztatáspolitika. Modellek, mérés.

Foglalkoztatáspolitika. Modellek, mérés. Foglalkoztatáspoltka. Modellek, mérés. Galas Péter Budapest, 20 Galas Péter, 20 Kézrat lezárva: 20. júnus Bevezetés A tananyag célja a foglalkoztatáspoltka közgazdaságtan szempontú elemzésében és értékelésében

Részletesebben

OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június

OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június OKTATÁSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék az MTA Közgazdaságtudomány

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA Készült a TÁMOP-4..-08//A/KMR-009-004pálázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék az MTA Közgazdaságtudomán Intézet

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

ÁLTALÁNOS STATISZTIKA

ÁLTALÁNOS STATISZTIKA Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Empirikus nehézségek. Termelési és költségfüggvények - elmélet. Termelési és költségfüggvények elmélet, folyt. Becslés három megközelítés

Empirikus nehézségek. Termelési és költségfüggvények - elmélet. Termelési és költségfüggvények elmélet, folyt. Becslés három megközelítés Panel elemzés alkalmazása termelés függvények becslése Mkroökonometra, 5. hét Bíró Ankó A tananyag a Gazdaság Versenyhvatal Versenykultúra özpontja és a udás-ökonóma Alapítvány támogatásával készült az

Részletesebben

Pénzügyi menedzsment

Pénzügyi menedzsment Pénzügy menedzsment Várható hozam és kockázat mérése uvárható hozam mérése számtan átlag mértan átlag medán módusz ukockázat mérése medán abszolút eltérés szórás ferdeség Egy portfóló hozamanak torzult

Részletesebben

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus)

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus) Valószínűségszámítás Valószínűség (probablty) 0 és 1 között valós szám, amely egy esemény bekövetkezésének esélyét fejez k: 0 - (sznte) lehetetlen, 0.5 - azonos eséllyel gen vagy nem, 1 - (sznte) bztos

Részletesebben

Fizikai és kémiai tulajdonságok számolása

Fizikai és kémiai tulajdonságok számolása Fzka és kéma tulajdonságok számolása Objektum: molekula vagy molekulák rendszere Egy lehetséges csoportosítás: Addtvtáson alapuló becslések Molekulamechanka számolások Kvantumkéma számolások 2009. áprls

Részletesebben

A DETERMINÁCIÓS EGYÜTTHATÓRÓL

A DETERMINÁCIÓS EGYÜTTHATÓRÓL VITA A DETERMIÁCIÓS EGYÜTTHATÓRÓL HUYADI LÁSZLÓ Egyes vélekedések szernt a regresszós modellek (többszörös) determnácós együtthatója nem jó mutatószám, hszen sok olyan hányossága van, amelyek folytán alkalmazása

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intellgenca MI Egyszerű döntés. Tanuljuk meg! Dobroweck Tadeusz Eredcs Péter, és mások BME I.E. 437, 463-28-99 dobroweck@mt.bme.hu, http://www.mt.bme.hu/general/staff/tade Neuron doktrna: S.

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés (levelező tagozat) Témakörök. Statisztikai alapfogalmak. Statisztika fogalma. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés (levelező tagozat) Témakörök. Statisztikai alapfogalmak. Statisztika fogalma. Statisztika fogalma Témakörök Statsztka Sortszerező BSc kézés (leelező tagozat) 2-2-es tané félé Oktató: Dr Csáfor Hajnalka főskola docens Vállalkozás-gazdaságtan Tsz E-mal: hcsafor@ektfhu Statsztka fogalmak Statsztka elemzések

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Keresztkorreláció vizsgálata statisztikai teszttel

Keresztkorreláció vizsgálata statisztikai teszttel SZAKDOLGOZAT Keresztkorrelácó vzsgálata statsztka teszttel Készítette: Balogh Bertalan kéma BSc szakos hallgató Témavezető: Tóth Gergely egyetem docens Eötvös Loránd Tudományegyetem, Természettudomány

Részletesebben

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell Budapest Műszak és Gazdaságtudomány Egyetem Közlekedésmérnök és Járműmérnök Kar Közlekedésüzem Tanszék HÁLÓZATTERVEZÉSI MESTERISKOLA BEVEZETÉS A KÖZLEKEDÉS MODELLEZÉSI FOLYAMATÁBA Dr. Csszár Csaba egyetem

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

STATISZTIKA III. Oktatási segédlet

STATISZTIKA III. Oktatási segédlet MISKOLCI EGYETEM Gazdaságtudomány Kar Üzlet Informácógazdálkodás és Módszertan Intézet Üzlet Statsztka és Előrejelzés Tanszék STATISZTIKA III. Oktatás segédlet 003. MISKOLCI EGYETEM Gazdaságtudomány Kar

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

10. Alakzatok és minták detektálása

10. Alakzatok és minták detektálása 0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát

Részletesebben

PhD értekezés. Gyarmati József

PhD értekezés. Gyarmati József 2 PhD értekezés Gyarmat József 2003 3 ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM Hadtechnka és mnõségügy tanszék PhD értekezés Gyarmat József Többszempontos döntéselmélet alkalmazása a hadtechnka eszközök összehasonlításában

Részletesebben

Egy negyedrendű rekurzív sorozatcsaládról

Egy negyedrendű rekurzív sorozatcsaládról Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok) Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)./ Egy televízió készülék meghibásodásainak átlagos száma óra alatt. A meghibásodások száma a vizsgált időtartam hosszától függ. Határozzuk

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Darupályák ellenőrző mérése

Darupályák ellenőrző mérése Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

The original laser distance meter. The original laser distance meter

The original laser distance meter. The original laser distance meter Leca Leca DISTO DISTO TM TM D510 X310 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - -

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

AZ ARCHASADÉKOK EPIDEMIOLÓGIAI VIZSGÁLATA. Doktori (Ph.D.) értekezés HORVÁTH-PUHÓ ERZSÉBET

AZ ARCHASADÉKOK EPIDEMIOLÓGIAI VIZSGÁLATA. Doktori (Ph.D.) értekezés HORVÁTH-PUHÓ ERZSÉBET PÉCSI TUDOMÁNYEGYETEM EGÉSZSÉGTUDOMÁNYI KAR EGÉSZSÉGTUDOMÁNYI DOKTORI ISKOLA Vezető: Prof. Dr. Bóds József egyetem tanár, dékán AZ ARCHASADÉKOK EPIDEMIOLÓGIAI VIZSGÁLATA Doktor (Ph.D.) értekezés HORVÁTH-PUHÓ

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Termelés- és szolgáltatásmenedzsment

Termelés- és szolgáltatásmenedzsment Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése

Részletesebben

11. előadás PIACI KERESLET (2)

11. előadás PIACI KERESLET (2) . előadás PIACI KERESLET (2) Kertes Gábor Varan 5. feezete erősen átdolgozva . Állandó rugalmasságú kereslet görbe Olyan kereslet görbe, amt technkalag könnyű kezeln. Ezért szeretk a közgazdászok. Hogyan

Részletesebben

Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK. Doktori (PhD) értekezés

Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK. Doktori (PhD) értekezés Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK FELHASZNÁLÁSÁVAL Doktor (PhD) értekezés Témavezető: Dr. Erdély József DSc. egyetem tanár Nyugat-Magyarország

Részletesebben

Jövedelem és szubjektív jóllét: az elemzési módszer megválasztásának hatása a levonható következtetésekre

Jövedelem és szubjektív jóllét: az elemzési módszer megválasztásának hatása a levonható következtetésekre Tanulmányok Jövedelem és szubjektív jóllét: az elemzés módszer megválasztásának hatása a levonható következtetésekre Hajdu Tamás, az MTA Közgazdaságés Regonáls Tudomány Kutatóközpont Közgazdaságtudomány

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

1. Gauss-eloszlás, természetes szórás

1. Gauss-eloszlás, természetes szórás 1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális

Részletesebben

Hely és elmozdulás - meghatározás távolságméréssel

Hely és elmozdulás - meghatározás távolságméréssel Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja

Részletesebben

4. A méréses ellenırzı kártyák szerkesztése

4. A méréses ellenırzı kártyák szerkesztése 4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

Gyakorló feladatok a 2. zh-ra MM hallgatók számára

Gyakorló feladatok a 2. zh-ra MM hallgatók számára Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a

Részletesebben

Alapmőveletek koncentrált erıkkel

Alapmőveletek koncentrált erıkkel Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban

Részletesebben

Reakciókinetikai adatsor kiértékelése (mechanizmusvizsgálat kémia alapszakosoknak) feladatleírás, pontozási útmutató és megjegyzések 2014.

Reakciókinetikai adatsor kiértékelése (mechanizmusvizsgálat kémia alapszakosoknak) feladatleírás, pontozási útmutató és megjegyzések 2014. Reakóknetka adatsor kértékelése (mehanzmusvzsgálat kéma alapszakosoknak) feladatleírás, pontozás útmutató és megjegyzések 4. A feladat egy mért adatsor reakóknetka kértékelése. Az adatsor gényléséhez a

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kdolgozott feladatok a nemparaméteres statsztka témaköréből A táékozódást mndenféle színkódok segítk. A feladatok eredet szövege zöld, a megoldások fekete, a fgyelmeztető, magyarázó elemek pros színűek.

Részletesebben

Boros Daniella Nappali tagozat Kereskedelem és marketing 2. évfolyam Gödöllő Neptun kód: OIPGB9

Boros Daniella Nappali tagozat Kereskedelem és marketing 2. évfolyam Gödöllő Neptun kód: OIPGB9 Szent István Egetem Gazdaság- és Tásadalomtudomán Ka -------------------------------------------------------------------------------------------- Koelácó- és egesszó analízs ----------------------------------------------------------------------------------------------------------------------

Részletesebben

Varianciaanalízis. Egytényezős kísérletek (Más néven: egyutas osztályozás, egyszempontos varianciaanalízis ANOVA)

Varianciaanalízis. Egytényezős kísérletek (Más néven: egyutas osztályozás, egyszempontos varianciaanalízis ANOVA) Varancaanalízs A varancaanalízs során kettőnél több sokaság középértékenek mnta alapán történő összehasonlítása történk zért nevezk a kétmntás t-próba általánosításának A nullhpotézs eldöntéséhez használuk

Részletesebben

Tökéletes verseny. Tökéletes verseny árképzése. Monopólium. Korábban tanult piacszerkezeti fogalmak áttekintése. ( q) Modern piacelmélet

Tökéletes verseny. Tökéletes verseny árképzése. Monopólium. Korábban tanult piacszerkezeti fogalmak áttekintése. ( q) Modern piacelmélet Modern pacelmélet Modern pacelmélet acszerkezet fogalmak ELTE TáTK Közgazdaságtudomány Tanszék Sele Adrenn ELTE TáTK Közgazdaságtudomány Tanszék Készítette: Hd János A tananyag a Gazdaság Versenyhvatal

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1

Részletesebben

3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2?

3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2? Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat A tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a hajóba. Rögtön mőködésbe hoztak

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

1.Tartalomjegyzék 1. 1.Tartalomjegyzék

1.Tartalomjegyzék 1. 1.Tartalomjegyzék 1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

MEGBÍZHATÓSÁG-ELMÉLET

MEGBÍZHATÓSÁG-ELMÉLET PHARE HU3/IB/E3-L MEGBÍZHAÓSÁG-ELMÉLE Defnícók A legszélesebb körben elfogadott defnícó szernt a megbízhatóság egy elem (termék, rendszer stb.) képessége arra, hogy meghatározott működés feltételek mellett

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

II. Rákóczi Ferenc Kárpátaljai Magyar Fıiskola. Pataki Gábor. STATISZTIKA I. Jegyzet

II. Rákóczi Ferenc Kárpátaljai Magyar Fıiskola. Pataki Gábor. STATISZTIKA I. Jegyzet II. Rákócz Ferenc Kárátalja Magyar Fıskola Patak Gábor STATISZTIKA I. Jegyzet 23 Tartalomjegyzék evezetés... 3 I. Statsztka alafogalmak... 4. Statsztka kalakulása, tudománytörténet összefüggése... 4.2

Részletesebben

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények Korreláció és Regresszió (folytatás) 11. elıadás (21-22. lecke) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények 21. lecke Linearitás ellenırzésének egyéb lehetıségei Konfidencia

Részletesebben

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK ELTE Regonáls Földrajz Tanszék 2005. 1 2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK 2.1 Terület statsztka és térelemzés A kutatás cél, a főbb vzsgálat témakörök (hpotézsek) meghatározása, a

Részletesebben