= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05"

Átírás

1 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em írhtó le z értékek és vlószíűségek felsorolásávl, mit diszkrét esete, mivel z értékek hlmz em megszámlálhtó végtele. A vlószíűségeket lehetséges értéktrtomáyokhoz tudjuk megdi sűrűségfüggvéyel vgy z eloszlásfüggvéyel. Sűrűségfüggvéy: oly függvéy, melyek függvéygöre ltti területe (itegrálj) ármely trtomáyo egyelő változók hhoz trtomáyhoz trtozó vlószíűségével: ( < < ) = f( ) d A vlószíűség tuljdoságiól következik, hogy egy sűrűségfüggvéy sehol sem egtív: f(), teljes trtomáyo (--től +-ig) z itegrálj : ( ) f d=. éld: Az [,] itervllumo folytoos egyeletes eloszlású változó sűrűségfüggvéye f ( ) =, h, egyékét. < d= d= ( < ) = f( ) ( ). (h ) Az eloszlásfüggvéy -eli értéke (, ) végtele itervllumhoz trtozó vlószíűség F() = ( < ) Eől következik, hogy ármely, érték-párr ( < ) = F( ) F( ) éld: Az [,] itervllumo folytoos egyeletes eloszlású változó eloszlásfüggvéye F ( ) = ( ) ( ) h < h < h Az eloszlásfüggvéy tuljdosági ( vlószíűség tuljdoságiól következek): mooto övő htárértéke -e, -e folytoos vlószíűségi változór folytoos

2 ,45,4,35,3,5,,5,, ,45,4,35,3,5,,5,, Az eloszlásfüggvéy és sűrűségfüggvéy kpcsolt Eloszlásfüggvéye mide vlószíűségi változók v, sűrűségfüggvéye em (de melyekről tuli foguk, zokk v). H v sűrűségfüggvéy, kkor itegrálfüggvéye z eloszlásfüggvéy: F ( ) = f ( t) dt H z eloszlásfüggvéy deriválhtó, kkor deriváltj sűrűségfüggvéy: f() = F () Várhtó érték Helyzeti muttók folytoos változókr Ahol diszkrét esete összegezi kellett, ott folytoos esete itegráli kell: Módusz E ( ) f( ) = d Az z érték, melyre változó sűrűségfüggvéyéek lokális mimum v. Folytoos változókr sem midig egyértelmű, z eloszlás itt is lehet imodális vgy multimodális. Mediá és kvtilisek A mediá z z érték, melyre (<) = (>) = /, p-kvtilis pedig oly érték, melyre (<) = p, (>) = -p.,45,45 Szóráségyzet Szóródási muttók folytoos változókr A várhtó értékhez hsoló z összegzés helyett itegráluk:,4,4,35,3,5,,5,,35,3,5,,5, vr ( ) = ( E( ) ) f( ) d= f( ) d E( ),5, Kvrtilisek Alsó kvrtilis, Q, vgy LQ (lower qurtile) vgy LH (lower hige): ¼-kvtilis Felső kvrtilis, Q 3, vgy UQ (upper qurtile) vgy UH (upper hige): ¾-kvtilis Szórás Iterkvrtilis terjedelem S ( ) = vr( ) Iterkvrtilis terjedelem, (iterqurtile rge) IQR=Q 3 -Q

3 A ormális eloszlás A legfotos, gykorlt leggykr hszált folytoos eloszlás ormális eloszlás vgy Guss-eloszlás. Kétprmétes cslád. A sűrűségfüggvéy képlete: f ( ) = ( µ ) e σ, πσ hol µ és σ z eloszlás prméterei, ~ N( µ,σ ). Jegyezzük meg, hogy µ épp várhtó érték, σ pedig vrici (tehát σ szórás). A csládtgokt zoosíthtjuk µ és σ helyett µ-vel és σ-vl is, csk kokrét számok eseté egyértelmű legye, hogy pl. σ = vgy σ = közül melyikre godoluk. A sűrűségfüggvéy göréje z úgyevezett hrggöre vgy Guss-göre. szimmetrikus (közepe µ = várhtó érték = módusz = mediá) e gyságrede közeledik -hoz midkét oldlo -hoz közeledés seessége σ -tól függ (zz szórástól) Külööző µ és σ prméter-értékekhez trtozó hrggörék: µ =- µ = µ = σ=5 σ= - µ A cslád µ =, σ = prméterű tgj stdrd ormális eloszlás. Eloszlástáláztot csk ehhez készítettek, töi mid egyszerűe visszvezethető stdrd ormálisr. Ez stdrdizálás. Ugyis h ormális eloszlású vlószíűségi változó µ és σ prméterekkel, kkor Y = + is ormális eloszlású µ = µ + és σ = σ prméterekkel. H ormális eloszlású vlószíűségi változó µ és σ prméterekkel, kkor µ Z = stdrd ormális eloszlású. Vissztrszformálás: = σ Z+ µ. σ Közpoti htáreloszlás tétel: Miért fotos ormális eloszlás? Legye H = , hol,,..., oly vlószíűségi változók, melyek egymástól függetleek és zoos eloszlásúk. Ekkor H közelítőleg ormális eloszlású (h, kkor H eloszlás trt ormális eloszláshoz eél potos em modjuk ki). éldák: Emerek mgsság gyo sok geetiki és köryezeti változó összege, ezért közelítőleg ormális eloszlású. Sok kockát douk egyszerre. A doott számok összege közelítőleg ormális eloszlású.

4 Normális eloszlású változók összege és számti közepe. Normális eloszlású változók összege is ormális eloszlású, és mid várhtó értékek, mid vriciák összedódk, pl. két változó eseté + Y µ +Y = µ +µ Y és σ = σ + σ. Normális eloszlású változók számti közepe is ormális eloszlású, várhtó értéke és vriciáj pedig µ i σ µ = és σ = 3. H változók eloszlás zoos (zz közös µ és σ), kkor számti közép várhtó értéke és vriciáj µ σ σ σ µ = = µ és σ = =, ho σ = i Y éld: Csörgőkígyók hossz közelítőleg ormális eloszlást követ.4 m átlggl és. m szórássl. Meyi vlószíűsége, hogy 5 tlálomr válsztott példáy hosszák átlg gyo.5 méterél? Megoldás: tehát ormális eloszlású, µ =µ =.4 σ σ. = = =. 4 5 Továik szokásos módo: µ σ. 5 µ σ (. 5) > = > = ( Z >. 5) =. 6,45,4,35,3,5,,5,, Meyit tuduk egy változóról, h csk z átlgát és szórását ismerjük? Mekkor vlószíűség trtozik z E ( ) ± S( ), zz z átlg ± szórás trtomáyhoz? ( E( ) S( ) S( + Mekkor vlószíűség trtozik z E( ) ± S( ), zz z átlg ± szórás trtomáyhoz? és így tová... E ( ) H változó ormális eloszlású tetszőleges ( E( ) S( ) + S( k. /3 em tudi ( E( ) S( ) + S( k. 95% 3 4 ( E( ) 3 S( ) + 3S( szite iztos 8 9 M M ( E( ) ks( ) ks( + empirikus szály (empiricl rule) k Cseisevegyelőtleség

5 Epoeciális eloszlás Folytoos eloszlás (-cslád, egy prméterrel, mit λ-vl jelölük), legtöször időtrtmok modellezésére hszálják: két eseméy / meghiásodás / st. között eltelt idő, h z eseméyeket z öregedés em efolyásolj éld: Villykörte, h em kpcsolgtják, st. (mikor meghiásodások em öregedéssel, kopássl, elhszálódássl kpcsoltosk) Eloszlásfüggvéye: F( ) = ( < ) e λ h > = egyékét.5.5 λ =.5: λ = Sűrűségfüggvéye: f( ) = F' ( ) e λ λ h > = egyékét.5 λ =.5: -5 5 λ = Várhtó értéke és szórás (itegrálássl kijö): E ( ) =, vr ( ) = λ λ

Matematika A1 vizsga elméleti kérdések

Matematika A1 vizsga elméleti kérdések Mtemtik A1 vizsg elméleti kérdések Deiíciók Forrás: Szirmi Jeő elődásvázltok, Szász Gáor: Mtemtik 1. tköyv Gépre vitte: Atli Máté 1. Peo-xiómák A természetes számok hlmzát N Peo-xiómák segítségével deiiáljuk.

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

A valós számok halmaza

A valós számok halmaza A vlós számok hlmz VA A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Kocsis Imre, DE MFK) egedélyével hszálhtók fel! A vlós számok hlmz VA A vlós számok hlmzák lpvető tuljdosági A vlós

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

Analízis. Glashütter Andrea

Analízis. Glashütter Andrea Alízis Glshütter Adre Alízis Hlmzok I. Hlmzok Deiíció (hlmz) elemek összessége. Megdás. elemek elsorolásávl (z összes elemet elsorolom, vgy leglá yit, hogy z lpjá következteti lehesse töi elemre); pl A{,,4,7,4,8}..

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

II. ALGEBRA ÉS SZÁMELMÉLET

II. ALGEBRA ÉS SZÁMELMÉLET MATEMATIKA FELADATSOR 9. évolym Elézést tegezésért! I. HALMAZOK Számegyeesek, itervllumok. Töltsd ki táláztot! Mide sor egy-egy itervllum hároméle megdás szerepelje!. Add meg következő itervllumokt! A

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + +

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + + LINEÁRIS ALGEBRA Mit evezük másodredő determiásk? Másodredő determiásk evezzük égy elem, két sor és két oszlop redezett táláztát, melyhez z lái módo redelük értéket: = d c c d Mit evezük egy determiás,

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

Matematika II. Műszaki informatikai mérnökasszisztens. Galambos Gábor JGYPK

Matematika II. Műszaki informatikai mérnökasszisztens. Galambos Gábor JGYPK ..7. Mtemtik II. Műszki iformtiki méröksszisztes http://jgypk.u-szeged.hu/tszek/szmtech/oktts/mtemtik-.pdf Glmos Gáor JGYPK - Mtemtik II. A Mtemtik II. fő témái: Itervllum, távolság, köryezet Vlós függvéyek

Részletesebben

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban? BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Matematika A2a - Vektorfüggvények elméleti kérdései

Matematika A2a - Vektorfüggvények elméleti kérdései Mtemtik A2 - Vektorfüggvéyek elméleti kérdései (műszki meedzser szk, 2018. tvsz) Első típusú improprius itegrál: Végtele trtomáyo korlátos függvéy Legye f itegrálhtó mide β > eseté z [, β]-. H β β és véges,

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

ACTA CAROLUS ROBERTUS

ACTA CAROLUS ROBERTUS ACTA CAROLUS ROBERTUS Károly Róbert Főisol tudomáyos özleméyei Alpítv: ( ACTA CAROLUS ROBERTUS ( Mtemti szeció AZ INTEGRÁLSZÁMÍTÁS OKTATÁSÁRÓL KÖRTESI PÉTER Összefogllás A htározott itegrál értelmezése

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

1. Primitív függvények (határozatlan integrálok)

1. Primitív függvények (határozatlan integrálok) . Primitív függvéyekhtároztl itegrálok 7. Primitív függvéyek htároztl itegrálok.. A defiíciók egyszerű következméyei F. Htározz meg z lábbi függvéyek összes primitív függvéyét: f :, + ; b f :, ; c f :,

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Közelítő és szimbolikus számítások haladóknak. 9. előadás Numerikus integrálás, Gauss-kvadratúra

Közelítő és szimbolikus számítások haladóknak. 9. előadás Numerikus integrálás, Gauss-kvadratúra Közelítő és szimolikus számítások hldókk 9. elődás Numerikus itegrálás, Guss-kvdrtúr Numerikus itegrálás Numerikus itegrálás Newto-Leiiz szály def I f f d F F Htározott Riem-itegrálok umerikus módszerekkel

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Itegrálszámítás Gykorló feldtok Progrmtervező mtemtikus szkos hllgtókk z Alízis. című tárgyhoz Összeállított Bese Atl, Csillg Dávid, Kiss Blázs, Mátyás Gergely, Szili László 4. október Trtlomjegyzék I.

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra . Adott z =, =,3, + 3 soozt. Számíts ki lim 3 htáétéket. Megoldás: Előszö lkítsuk át z k kifejezést: k = + k 3 = k3 k 3 + = (k (k + k + (k + (k k + = k k + k + k + k k +, k =,3, Ez lpjá z szozt átíhtó

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

WEKERLE SÁNDOR ÜZLETI FŐISKOLA. Gazdaságmatematika 1 Analízis. Oktatási segédanyag Készítette: Pór Andrásné

WEKERLE SÁNDOR ÜZLETI FŐISKOLA. Gazdaságmatematika 1 Analízis. Oktatási segédanyag Készítette: Pór Andrásné WEKERLE SÁNDOR ÜZLETI FŐISKOLA Gzdságmtemtik Alízis Okttási segédyg Készítette: Pór Adrásé 203 Trtlomjegyzék HALMAZOK... 3 FÜGGVÉNYEK... 0 SOROZATOK... 24 FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA... 29

Részletesebben

Lineáris programozás

Lineáris programozás LP LP 2 Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek egységár és z, hogy z egyes termékek egy egységéek előállításához

Részletesebben

Kardos Montágh verseny Feladatok

Kardos Montágh verseny Feladatok Krdos Motágh versey Feldtok Az ABC háromszög hozzáírt köreiek középpotji O, P, Q, beírt köréek középpotj K Melyik állítás igz z lábbik közül? K z OPQ háromszög A) súlypotj B) mgsságpotj C) szögfelezőiek

Részletesebben

IV. A HATÁROZOTT INTEGRÁL

IV. A HATÁROZOTT INTEGRÁL 86 A htározott itegrál IV A HATÁROZOTT INTEGRÁL Bevezető feldto Feldt Számítsu i z f :, [ ], f függvéy grfius épe, z, és z O tegely áltl htárolt síidom területét Megoldás Árázolju függvéyt A XI y osztály

Részletesebben

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak ábr: Ábr Bodó Be, Simoé Szbó Klár Mtemtik. közgzdászokk IV. modul: Számsoroztok 8. lecke: Számsorozt foglm és tuljdosági Tulási cél: A számsorozt foglmák és elemi tuljdoságik megismerése. A mootoitás,

Részletesebben

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus)

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus) A htváyoz yozás s iverz műveletei. m (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté Def.: egy oly téyezős szorzt, melyek mide téyezője. htváylp : kitevő: htváyérték: A htváyozás zoossági:

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

A valós számok halmaza

A valós számok halmaza Vlós számok, komplex számok A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Dr. Kocsis Imre, DE Műszki Kr) egedélyével hszálhtók fel! Vlós számok, komplex számok A vlós számok hlmzák

Részletesebben

A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai

A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji Szkgyógyszerész-jelöltek képzése Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi

Részletesebben

Metrikus terek. továbbra is.

Metrikus terek. továbbra is. Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d

Részletesebben

Valószínőségszámítás

Valószínőségszámítás Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2 Nevezetes zoosságok: mteksoft.hu ( + ) + + ( x + ) x + 6 x + 9 ( x + y) 4x + 1xy + 9y ( ) + ( x ) x 6 x + 9 ( x y) 4x 1xy + 9y ( + + c) + + c + + c + c ( x + y + ) x + y + 4 + xy + 4x + 4y Htváyozás zoossági

Részletesebben

Emelt szintő érettségi tételek. 10. tétel Számsorozatok

Emelt szintő érettségi tételek. 10. tétel Számsorozatok Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.

Részletesebben

ANALÍZIS II. Bártfai Pál

ANALÍZIS II. Bártfai Pál ANALÍZIS II. Bártfi Pál. Kétváltozós függvéyek.. Deriválás A z = f(x, y) kétváltozós függvéyél z függő változó értékét z x és z y függetle változók értékéől számoljuk ki. A függvéyt háromdimeziós koordiátredszere

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

ALGEBRA. 1. Hatványozás

ALGEBRA. 1. Hatványozás ALGEBRA. Htváyozás kitevő Péld: lp H kitevő természetes szám, kkor db téyező Bármely szám első htváy ömg Bármely ullától külöböző szám ulldik htváy egy. 0 ( 0) (0 0 em értelmezett) Htváyozás számológéppel:

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0

Részletesebben

Aszimmetrikus hibák számítási módszere, a hálózati elemek sorrendi helyettesítő vázlatai. Aszimmetrikus zárlatok számítása.

Aszimmetrikus hibák számítási módszere, a hálózati elemek sorrendi helyettesítő vázlatai. Aszimmetrikus zárlatok számítása. VEL.4 Aszimmetrikus hiák számítási módszere, hálózti elemek sorrendi helyettesítő vázlti. Aszimmetrikus zárltok számítás. Szimmetrikus összetevők módszere Alpelve, hogy ármilyen tetszőleges szimmetrikus

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó

Részletesebben

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet

Részletesebben

Környezetfüggetlen nyelvek

Környezetfüggetlen nyelvek Környezetfüggetlen nyelvek Kiegészítő nyg z Algoritmuselmélet tárgyhoz ( ónyi Ivnyos Szó: Algoritmusok könyv mellé) Friedl Ktlin BM SZI friedl@cs.me.hu 2017. ugusztus 3. A reguláris nyelveket véges utomtákkl

Részletesebben

6. feladatsor. Statisztika december 6. és 8.

6. feladatsor. Statisztika december 6. és 8. 6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak

Részletesebben

2. ALGEBRA ÉS SZÁMELMÉLET

2. ALGEBRA ÉS SZÁMELMÉLET Szkközépiskol 9. osztály Felkészülési jvslt jvítóvizsgár Véges, végtele, üres hlmz oglm Két hlmz egyelősége Részhlmz, vlódi részhlmz oglm Uiverzum, komplemeterhlmz Hlmzműveletek (uió, metszet, külöbség)

Részletesebben

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

I. Sorozatok. I.1. Sorozatok megadása

I. Sorozatok. I.1. Sorozatok megadása Mgyr Zsolt: Alízis özépisoláb I Sorozto oldl Def A pozitív egész számo hlmzá értelmezett számértéű függvéyeet sorozto evezzü Megjegyzés: Egyes tárgylási módob éyelmességi szempotból em N R függvéyeről,

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

FIGYELEM! Ez a kérdőív az adatszolgáltatás teljesítésére nem alkalmas, csak tájékoztatóul szolgál!

FIGYELEM! Ez a kérdőív az adatszolgáltatás teljesítésére nem alkalmas, csak tájékoztatóul szolgál! FIGYELEM! Ez kérdőív z dtszolgálttás teljesítésére nem lklms, csk tájékozttóul szolgál! KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) ekezdése

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Döntéselmélet, döntéshozatal lehetséges útjai

Döntéselmélet, döntéshozatal lehetséges útjai Dötéselmélet, dötéshoztl lehetséges útji AOK - Rezides képzés Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi műveletek (operációk) tudomáyos kuttási

Részletesebben

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π Matematika Ac gyakorlat Vegyzméröki, Bioméröki, Köryezetméröki szakok, 7/8 ősz 4. feladatsor: Fourier-sorok megoldás. Legye fx = ha x, ], fx = ha x, π]. Írjuk fel f Fourier-sorát. Mely potokba állítja

Részletesebben

Szoldatics József, Dunakeszi

Szoldatics József, Dunakeszi Kstérség tehetséggodozás Rekurzív soroztok Szoldtcs József, Dukesz Npjkb egyre több verseye jelek meg rekurzív sorozt. Ezek megoldásához d ötleteket ez z elődás, A feldtok csoportosítv vk megoldás módszerek

Részletesebben

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1 PPKE ITK Algebr és diszkrét mtemtik = DETERMINÁNSOK = 13 = + + 13 13 Bércesé Novák Áges 1 PPKE ITK Algebr és diszkrét mtemtik DETERMINÁNSOK Defiíció: z sorb és m oszlopb elredezett x m (vlós vgy képzetes)

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Sorozatok határértéke

Sorozatok határértéke I. Becsüljük kifejezéseket! Kidolgozott feldtok: Soroztok htárértéke. Számológép hszált élkül djuk becslést z lábbi kifejezések értékére h = 000 000! Hszáljuk közbe gyságredi becsléseket számláló és evező

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Bevezetés az integrálásba

Bevezetés az integrálásba Bevezetés z itegrálásb Horváth Árpád. ovember. Megjegyzés Ez jegyzet összefogllj z itegrálszámításk zokt leglpvetőbb foglmit, mely élkül z itegrálszámítási feldtok megoldás csk képletek mipulációj lee.

Részletesebben

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr. Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy

Részletesebben

A hatványozás első inverz művelete, az n-edik gyökvonás.

A hatványozás első inverz művelete, az n-edik gyökvonás. Ismétlés: Htváozás egész kitevő eseté A htváozás iverz műveletei. (Htvá, gök, logritmus) De.: :... Ol téezős szorzt, melek mide téezője. : htvál : kitevő : htváérték A htváozás zoossági egész kitevő eseté:

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

1. Hibaszámítás Hibaforrások A gépi számok

1. Hibaszámítás Hibaforrások A gépi számok Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi

Részletesebben

II. Lineáris egyenletrendszerek megoldása

II. Lineáris egyenletrendszerek megoldása Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek

Részletesebben

Olimpiai szakkör, Dobos Sándor 2008/2009

Olimpiai szakkör, Dobos Sándor 2008/2009 Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly

Részletesebben

1. Halmazok, relációk és függvények.

1. Halmazok, relációk és függvények. . Hlmzok, relációk és függvéyek. - redezett pár (,b) = { {}, {,b} } hlmzelméleti defiíció; Tuljdoság: (,b) = (c,d) =c és b=d - hlmzok Descrtes-szorztt A x B := {(,b) A, b B} - r hlmzok közötti reláció

Részletesebben

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1 III. Évfolym. szám - 008. úius Gyrmti József Zríyi iklós Nemzetvédelmi Egyetem gyrmti.ozsef@zme.hu SRT, TÖBBSZEPONTÚ DÖNTÉSI PROBÉ EGY EGYSZERŰ EGODÁS bsztrkt cikk egy többszempotú dötési módszert mutt

Részletesebben

Andai Attila: november 13.

Andai Attila: november 13. Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α

Részletesebben

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1.

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1. PROGRAMTERVEZŐ MATEMATIKUS SZAK II. ÉVF. III. FÉLÉV GYAKORLÓ FELADATOK AZ II. ANALÍZIS ZH-RA Primitívfüggvéy keresés. Adja meg az f függvéy egy primitívfüggvéyét: f) = 6 8 + 3 b) f) = + 3 f) = + 5 ) /

Részletesebben

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája?

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája? FELADATOK MÉÉSELMÉLET tárgykörbe. Egy műszer osztálypotosság., végktérése 3 V. Mekkor mérés bszolút hbáj? H Op v / %,*3/ 7, V. A fet műszer V-ot mér. Mekkor mérés reltív hbáj? H h v % 6,% h 3. Egy mérés

Részletesebben

Valószínûség számítás

Valószínûség számítás Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:

Részletesebben

LINEÁRISAN FÜGGETLEN ÉS LINEÁRISAN ÖSSZEFÜGGŐ VEKTOROK. csak úgy teljesül, ha minden 0. úgy is teljesül, hogy van olyan 0

LINEÁRISAN FÜGGETLEN ÉS LINEÁRISAN ÖSSZEFÜGGŐ VEKTOROK. csak úgy teljesül, ha minden 0. úgy is teljesül, hogy van olyan 0 www.esymths.hu mtek ilágos oll Mosózi Arás LINEÁISAN FÜGGETLEN ÉS LINEÁISAN ÖSSZEFÜGGŐ VEKTOOK esymths.hu DEFINÍCIÓ: A... ektorok lieáris összefüggők, h... úgy is teljesül, hogy oly i Nézzük ezekre péákt!

Részletesebben