Emelt szintő érettségi tételek. 10. tétel Számsorozatok

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Emelt szintő érettségi tételek. 10. tétel Számsorozatok"

Átírás

1 Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját. orozt megás: - éplettel ) explicit éplet, pl: ) reurzív éplettel: - szöveggel z -ei pozitív páros szám > orozto ábrázolás: erészögő ooriátreszerbe (e cs potot). orozto jellemzése: mootoitás: { } sorozt mooto övı, h. (szigorú, h < < <.) { } sorozt mooto csöeı, h. (szigorú, h > > >.) { } sorozt mooto, h égy vlmelyiét ielégíti. orlátosság: { } sorozt felülrıl orlátos, h v felsı orlátj, zz K R re K. { } sorozt lulról orlátos, h v lsó orlátj, zz L R re L { } sorozt orlátos, h lulról és felülrıl is orlátos. megjegyzés: - h egy sorozt lulról orlátos, or létezi leggyobb lsó orlátj (ifimum) - h egy sorozt felülrıl orlátos, or létezi legisebb felsı orlátj (szuprémum) htárérté: Az { } sorozt z A számhoz overgál, h ε >0-hoz 0 üszöbiex, hogy > 0 eseté (A ε;aε), zz Jelölés: A, vgy lim A. Pélául: lim 0 A < ε.

2 Mgyr Eszter Emelt szitő érettségi tétele Az { } sorozt végtelehez trt, h K-hoz 0, hogy > 0 eseté >K. Jelölés:, vgy lim. Pélául: lim Az { } sorozt míusz végtelehez trt, h L-hez 0, hogy > 0 eseté <L. Jelölés:, vgy lim. Pélául: lim { } overges, h A R, hogy A, zz h létezi véges htárértée. { } iverges, h em létezi htárértée, vgy h htárértée ±. Pélául iverges. Tétel: Mie overges sorozt orlátos. Tétel: Korlátos és mooto sorozt overges. Tétel: Mooto sorozt miig v htárértée. - H orlátos, or overges (v véges htárértée). - H em orlátos, or vgy -. Htárértée meghtározási mószerei - efiícióvl, becsléssel - reır-elv - ismert htárértéere vló visszvezetéssel - mőveleti szbályo lpjá ( ritius htárértée átlítás) - gyöteleítés, evezı leggyobb tgjávl vló egyszerősítés zámti sorozt: Defiíció: sorozt számti sorozt, h szomszéos tgji ülöbsége álló, zz: > re álló (iffereci). zz: (reurzív éplet) h >0 : szigorú mooto ı, < < < 4 < h 0 : osts, 4 h <0 : szigorú mooto csöe, > > > 4 > Állítás: Bizoyítás: teljes iucióvl. -re -re (ef). Tegyü fel, hogy: r igz zz: ell, hogy re is igz legye, zz: efiíció iuciós feltétel

3 Mgyr Eszter Emelt szitő érettségi tétele Állítás:, vgyis Bizoyítás: Állítás: Egy számti sorozt három szomszéos tgj özül özépsı ét szélsı számti özepe, zz: ( > eseté) Bizoyítás: (efiíció lpjá) Megjegyzés: ez szimmetrius tgor szité igz: h > Állítás: Egy számti sorozt elsı tgjá összege Bizoyítás: Guss-mószere lpjá. viszot: r Tehát, mibıl ói tétel. Mérti sorozt: Defiíció: sorozt mérti sorozt, h szomszéos tgji háyos álló, zz: álló re > (vócies), hol 0 és 0. Tehát: (reurzív éplet) - h > és >, or szigorú mooto ı és így lulról orlátos és <, or szigorú mooto csöe és így felülrıl orlátos - h, or osts (orlátos és mooto) - h 0<< és >0, or szigorú mooto csöe és orlátos és <0, or szigorú mooto ı és orlátos - h - <0, or em mooto, e orlátos - h <-, or em mooto, és em is orlátos

4 Mgyr Eszter Emelt szitő érettségi tétele Állítás: Bizoyítás: teljes iucióvl. -re -re (ef). Tegyü fel, hogy: r igz zz: ell, hogy re is igz legye, zz: efiíció iuciós feltétel Állítás:, vgyis Bizoyítás: : mivel 0 ezért eloszthtju z egyeleteet Tétel: Egy mérti sorozt három szomszéos tgj özül özépsı bszolút értée ét szélsı mérti özepe, zz:, vgy iább Bizoyítás: / (efiíció lpjá) Megjegyzés: ez szimmetrius tgor szité igz: h > Állítás: Egy mérti sorozt elsı tgjá összege persze h Bizoyítás: /, zz 4 ebbıl ivov -t, így mivel Megjegyzés:, h

5 Mgyr Eszter Emelt szitő érettségi tétele Nevezetes sorozto: ) Fibocci-sorozto: oly sorozto, melyél z elsı ét tg ott, és mie zt övetı tg z elızı ettı összege. > eseté. ) H és, or speciel c, htárértée e, illetve c lim e (jj) Allmzáso: - virágszirmo szám gyr Fibocci-szám (liliom, vrózs 5; vérpipcs 8, örömvirág, cióri, útilpú 4) - feyıtoboz, ász, rfiol, mál Fibocci spirálb reezıi - btériumo szporoás Fibocci-sorozt szerit törtéhet - mtszámítás - összegzési problémá - pézügyi számításob - mtos mt számításor - törlesztés évi részletée számításáb - épességöveeés (mérti sorozt)

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

I. Sorozatok. I.1. Sorozatok megadása

I. Sorozatok. I.1. Sorozatok megadása Mgyr Zsolt: Alízis özépisoláb I Sorozto oldl Def A pozitív egész számo hlmzá értelmezett számértéű függvéyeet sorozto evezzü Megjegyzés: Egyes tárgylási módob éyelmességi szempotból em N R függvéyeről,

Részletesebben

n -adik hatványa ahol n q és c n Ekkor szeretnénk, ha a < a < a is teljesülne. (Így majd az exponenciális függvény monoton marad.

n -adik hatványa ahol n q és c n Ekkor szeretnénk, ha a < a < a is teljesülne. (Így majd az exponenciális függvény monoton marad. Mgr Eszter Emelt szitő érettségi tétele 6. tétel: A ritmus, z epoeciális és ritmusfüggvé és tuljdosági A htváozás iterjesztése: ) Törtitevıjő htváo Eg pozitív vlós szám htváá -di göe. Azz: -di htvá hol

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

A valós számok halmaza

A valós számok halmaza A vlós számok hlmz VA A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Kocsis Imre, DE MFK) egedélyével hszálhtók fel! A vlós számok hlmz VA A vlós számok hlmzák lpvető tuljdosági A vlós

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

24. tétel Kombinatorika. Gráfok.

24. tétel Kombinatorika. Gráfok. Mgyr Eszter Emelt szitő érettségi tétele 4. tétel Komitori. Gráfo. Komitori: A mtemti zo elméleti területe, mely egy véges hlmz elemeie csoportosításávl, iválsztásávl vgy sorrederásávl fogllozi. Permutáció

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

Analízis I. Kidolgozta: Ábrahám Róbert Dr. Szili László előadásai alapján július 10.

Analízis I. Kidolgozta: Ábrahám Róbert Dr. Szili László előadásai alapján július 10. Alízis I. Kidolgozt: Ábrhám Róbert Dr. Szili László elődási lpjá 200. július 0. Trtlomjegyzék. A vlós számok struktúráj 3.. Az R Dedekid-féle xiómredszere (872:................................ 3.2. R részhlmzi:................................................

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

x + 3 sorozat első hat tagját, ha

x + 3 sorozat első hat tagját, ha Soroztok, soroztok megdás rekurzív módo.. Az ( ) soroztot rekurzív módo dtuk meg 7 -, sorozt első két tgj ( < ) egybe gyökei következő egyeletek: sorozt első öt tgját. y.adott ( ). Írd fel ( ) x 0 x. Htározd

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

2. Egy csökkenő mértani sorozat második tagja 192, negyedik tagja 48. Számítsd ki az első 5 tag összegét! (10 pont)

2. Egy csökkenő mértani sorozat második tagja 192, negyedik tagja 48. Számítsd ki az első 5 tag összegét! (10 pont) Mtemtik A. évfolym I. egyedév témzáró A csoport. Egy utci futóversey eredméyhirdetésé összese 60 csokoládét osztk ki z első 0 helyezett között, úgy, hogy kiosztott csokoládék szám helyezettről-helyezettre

Részletesebben

Olimpiai szakkör, Dobos Sándor 2008/2009

Olimpiai szakkör, Dobos Sándor 2008/2009 Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly

Részletesebben

1. Fejezet A sorozat fogalmának intuitív megközelítése

1. Fejezet A sorozat fogalmának intuitív megközelítése SOROZATOK SZÁMTANI, MÉRTANI ÉS HARMONIKUS HALADVÁNYOK Körtesi Péter, Szigeti Jeő. Fejezet A sorozt foglmák ituitív megközelítése A sorozt számok egy redezett felsorolás, számokt sorozt tgjik evezzük. Egy

Részletesebben

IV. Algebra. Algebrai átalakítások. Polinomok

IV. Algebra. Algebrai átalakítások. Polinomok Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2009. jnuár 29. MATEMATIKA FELADATLAP 8. évfolymosok számár 2009. jnuár 29. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

Ö ő ü ő Í ó ő ü ó ó ó ó ó ő ő ü ő ó ó ő ő ü ó ó ő í ó ó ó ó ó ü ü ó í ő ő ő ü í í ő í í ó í í ó ő ő ú ó ó ő ú Í í í ó í í ó ő í ő ő ü í í ü í ó í ő ü ő ó í ó í í ü ő í í í ó í í í í í ó ü í ő ó ú ő ó ő

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

Absztrakt vektorterek

Absztrakt vektorterek Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

n természetes szám esetén. Kovács Béla, Szatmárnémeti

n természetes szám esetén. Kovács Béla, Szatmárnémeti osztály Igzolju, hogy 3 < ármely természetes szám eseté Kovács Bél, Sztmárémeti Az összeg egy tetszőleges tgj: Ezt ővítjü és lítju úgy, hogy felothssu ét tört összegére ) )( ( ) ( ) )( ( ) )( ( ) )( (

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

XXIV. ERDÉLYI MAGYAR MATEMATIKAVERSENY Megyei szakasz, november 30. IX. osztály

XXIV. ERDÉLYI MAGYAR MATEMATIKAVERSENY Megyei szakasz, november 30. IX. osztály XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember. IX. ostály. Feldt Sbdo egedü 4 pllgót egy tégltest lú helységbe melye mérete 5 m 4 m m. Boyítsu be hogy bármely plltb léte ét oly pllgó melye távolság

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2008. jnuár 26. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 26. 11:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

Ú í ú ő í í ő ö ö í őí ő ö ű í ő í ő ő í ö ő ü ő ö ü ö ő Ú ö ű ő ö ű ö ő ö ő ú í í ö ő ö ő ő ő ö ű ö í ö ő ő í ő ú ö ő ü ü ő ö ő ü í ú ő ú ő ö ő ü ö ű

Ú í ú ő í í ő ö ö í őí ő ö ű í ő í ő ő í ö ő ü ő ö ü ö ő Ú ö ű ő ö ű ö ő ö ő ú í í ö ő ö ő ő ő ö ű ö í ö ő ő í ő ú ö ő ü ü ő ö ő ü í ú ő ú ő ö ő ü ö ű ö ű ú ő ő ő ö ő ő ö ő ú í ő ő ö ö ő ö ő ö ö ő ő ö ú ö ű ú ő ő ő ő ö ő ö ő ö í őí ő ő ü ő í ő ő ú í ö ő ü ő ú Ú í ú ő í í ő ö ö í őí ő ö ű í ő í ő ő í ö ő ü ő ö ü ö ő Ú ö ű ő ö ű ö ő ö ő ú í í ö ő ö ő ő

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK

I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK Sorozto, számti és mérti hldváyo 5 I FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK 7 Gyorlto és feldto ( oldl) Vjo milye törvéyszerűség lpjá épeztü z lábbi soroztot? Az áltld tlált szbályszerűség

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt2 feltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2015. jnuár 22. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

ö ö ő ö ű ö ű ö í ö ű ő ö ö ö ü őí ő ö ő ö ű ö ű ö í ő ó ö ö ó ö ő ö ö ü ö ó ü í ö ű ö ű ö í ö ó í ö ű ö ű ö í í ó ö ó ö ö ó ö ö ö ö ö ű ö ű ö í ö ű í

ö ö ő ö ű ö ű ö í ö ű ő ö ö ö ü őí ő ö ő ö ű ö ű ö í ő ó ö ö ó ö ő ö ö ü ö ó ü í ö ű ö ű ö í ö ó í ö ű ö ű ö í í ó ö ó ö ö ó ö ö ö ö ö ű ö ű ö í ö ű í ö Ö ő ü ö Ö ű ö ű ö í ö ű í ó ö ó ö Ö ő ü ö ó ö í ó ó ó ö ö ö ő ö ö ű ö ű ö í ö ű í ö ü ő ö ü ö ö ü ö ű ö ű ö í ö ű í ó ö ó ó Ö ö ü ö ü ő í ó í ö ó í ó ö ű ö ű ö í ű í í ó ö ő ó ö ó ó ó Ö ö ö ő ő ő ó ö

Részletesebben

A valós számok halmaza

A valós számok halmaza Vlós számok, komplex számok A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Dr. Kocsis Imre, DE Műszki Kr) egedélyével hszálhtók fel! Vlós számok, komplex számok A vlós számok hlmzák

Részletesebben

Ú Í Ó ő óí Ú ő Ó Ü

Ú Í Ó ő óí Ú ő Ó Ü Ü Ö Ú ó ó ó ó Ó ő ó Ú Í Ó ő óí Ú ő Ó Ü Í Ö Ó ó ó Ó Ö ő Ó Ó Ö Ó ó ó ö Ó Í Í Ö ó ó ó ö ó Ó Ö Ő Ó Ö Ó Ó ö Ó Í ó Í ű ó Ó ű ö ó ő ö Í Ö ó Ö Ö Ó ó Ó Ó Ö Ö Ó ő Ö ó ő Ó ő ó Ö Ó ó Ö Ö Ö ó Ó ő Ó ó ó Ó Ó Ó Ő Ő Ö

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése íbel culó zeezete egyeúlyozáá éáy édée íbel culó zeezete egyeúlyozáá éáy édée DR BENKŐJÁNO gátudoáy Egyete Gödöllő Mg Gépt Itézet gyoozgáú gépzeezete tevezéée foto lépée z egyelete, ezgéete üzeet bztoító

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

ALKALMAZÁSI SZINTEK I. ALKALMAZÁS MEGÉRTÉS MAGASABB RENDŐ MŐVELETEK. 1. változat ISMERET

ALKALMAZÁSI SZINTEK I. ALKALMAZÁS MEGÉRTÉS MAGASABB RENDŐ MŐVELETEK. 1. változat ISMERET ALKALMAZÁSI SZINTEK I. ALKALMAZÁS MEGÉRTÉS MAGASABB RENDŐ MŐVELETEK ISMERET 1. változt KOGNITÍV KÖVETELMÉNYEK ISMERET MEGÉRTÉS ALKALMAZÁS MAGASABB RENDŐ MŐVELETEK TÉNYEK ÉS ELEMI INFORMÁCIÓK ISMERETE FOGALMAK,

Részletesebben

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr. Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy

Részletesebben

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2 Nevezetes zoosságok: mteksoft.hu ( + ) + + ( x + ) x + 6 x + 9 ( x + y) 4x + 1xy + 9y ( ) + ( x ) x 6 x + 9 ( x y) 4x 1xy + 9y ( + + c) + + c + + c + c ( x + y + ) x + y + 4 + xy + 4x + 4y Htváyozás zoossági

Részletesebben

Á É Í ő ő ő ó ő ó ő í ü ó í ó í Í ő í ó í í í ö ő ő ű í ő ö ő ő ó ó ő í ő ő ó í ő ó ő í ü ü ó ú ő í ő ó ö ö ő ü ö ő í ő ő í í ő ö ő ü ö ő ő ő í ó ő ő í ő í ő ü ü ö ö ü ó ő í í Í í í Ó ö ö ő ő ó ö í ö ö

Részletesebben

ő ő ö ő ü ö ő ő ö Ö ő ü ő ő ő ö ő ü ő ö í ö ő ő ö ö ö ő ő ő ü ő ő ü í ő ő ö ő ü ő ö ő ü ö ő ü ö ő ü ü í Ő ü ö ö ö í Ő ü ö ő ö ö í ö ü í í ö í ő í ö ö ö ő ő ü ö ő ü ő ü ú í ü ö ő ö í ö í ö ö í őí ü í ü

Részletesebben

ú ő ú ú í ö ú ö ű ű ö ő í í Ú ó í ö í ő ő ü ű ö ő í ü ü ű ö ő ű ó í ö ö ü ú ö ö ő ó ü ú ő ű í ő ű í ü ö ú ó ő ü ő ü ö ö ő í ő ü ö ú ö ö ő í ü í ő ú ő í ö ö ú í í í ú ő í ö ú ő ő Á Á ó ö ú í ó ö ó ó őí

Részletesebben

ö ú Á ő ö í ő ú í ő ö Ö ő ü ö Ö ő í ő ü ő ő í ő ő ü ü í í ő ü ű í ö ú í ö ö Ö ü ű ő ő í ö ő ű ő ö ő ü ö í Í ü ö ő ö ö ő í ű ö ö ű ö ü ö ő í ú ű ű ű ö ő ü ő ü ö ő í í í ő ö í ő Í Ö Ö Ü ő ő í ő Ő ő ő í ü

Részletesebben

ü í í ű ű í ü ü í ő ú ü í ő ú í í ü í ü í ő ü í í ő ő ü í í ú ú ő ő ü ú ü ű ű í ű í ü ű ú ü í ü í ő ő ű ő ő í ű í ő í ő ü ő ű ű í ű ú ű í ú í ő ü ú ú ő ő í ü ú ü ő ő ő ü í ú ő ő í í ő ú ú ő ú ő ü ő í ő

Részletesebben

Á í Á í ó í í ó ö ö ő ő ő ö í í ó É Á í ó í ó ó ü ű ö í ó í ő ö ö ö ü í ó ü ü ü ö í í ő í ő í í Á í í í í ő ő í í ú í ó ö ö ö í ó í í ő ó í ű ö ö ó í ö ő ö ú ö ö ű ő ő ő ö ö ó í ő ó í ű ű ö ő ű ó í ű ő

Részletesebben

ó ü Á Ó Ó ó ó ú ó ú í ó ű ü í ú í ő í ú í ó ö ó ó ő ő ö É í ú í ű ő ű í ü í ó ö í í í ő ó ö í ú ó ó ö í ó í ó í ü í ó í í í ű í ú ű í ö ő í í í í í í ő ö ö í í í í í í ó ö ő í ü ü ö í í ó ó ó í ö ű ű ó

Részletesebben

ő Ú Ú ú ó ú Ó í ő ő ű ú ó ő ú ü ü ő ő ő ó í ó ü ó ő í ű ő ű í ó ü ű ő Ü ő ő ű ő ó í í ű ű ó í ű Ü ó ű Ü ű ű ó Ü ő ű ő í ó ó í ó ó Ü ó ó ó ó í ő ú ű ó ó ő ő ő ő ó í ő ó ó ó í ó í Ü ő ó ú í ó ő ü ú ő ű í

Részletesebben

Ü Á í É Ü Ó Ü Ü ú ú Ó í Ű Ó ö ű Ö Ó Ó Ú ű Ü í ö Ó Ó ö Ü ü ő Ó Ó í í Ú í Ú Ü Ö ő Ő ő ú Ó Ó ü ö ö ö ö ú í ő ő ő ú í ü ő ő ő ő ő Á Ő ú í í ő ü ö ö ö ü ü ü ő í ő ű ö Í ú ü ú ú ö ü ö ő ü ü Ó Ó ö ö ö ú ő ő

Részletesebben

ű ö ö ő ő ő ö í ő ö ö Ö Ö ő ő ö ő ö ű í ő ö ö í ő ö ü í ő ö í ű ő ö ő ő ő ö ő ü ü Í ő ö í ő í ö ö í ö ö ű ö ő ő ő ő í ü ö ö ő ü ő ő ő ö ő í ö ö ö í ő ű ő í í ö ü í ő ő ö ű Á í ö ö ö ü í ő ö ü ő ő ö ő í

Részletesebben

í ő í ü í í í ú ű í í í ü í ő í Í í í ő í ő Í ü Ó ő í ő í Ü í í í ú ű í í í í Ó í Ö ő ü í ü Ö Ö ő í ő í ü ő í ő ü ő ü ü í í ü í ü í ő ő őí í í í í ü í ő ú ű í í ő ü ü í Ö Ú ú í Á É Ö Ö ű Ü í Ö í Ö ő ő

Részletesebben

ő ö ő ő ö ő ő ö ö ő ő ü ő ö ő í ő í ö ő ö ö ü í ő ö ö ü ö Í ő ö ő ú ő ü ü ő ő ű í ö ö í ü Ö ő í ö ő ő ö ű ö ű ö ö ü ő ö ő ő ö ö ű ú ö ű ő ő í ő í ő ú ő ő ö í ő ú í ő ő ö ű í ö ő ú í ü ö ű í ú ö ű í ő í

Részletesebben

ó ó É Á É ü ű ő ő ó í ő ő ő í ó ó ő í ő ő ő Í ő ő í ü ü Í í ő ó í ő ő ó ű ü ő ó í ő ó ó í ó í ű ő ő ő í í ő ő ó ő í ü ű ó í ő í ú ő ó ő ű í ő ő ú ő ó í ő ű ó í ő ő í ő ó í ő ő Í ű í ó ő ó ő ő í ű ó í ó

Részletesebben

Á É É Í Ü É É Á Ú É É É É Í Ü Ü ő É Ü Ü Ú ő í í ő í ü Á í Í ü ű í í í í í ő ö í ü í ú í í í ő ü ő Ü í ö ő ű ó ű ü ú í í ú ő ő ő í ó ő ő ő í ő í í í ő í ő ű ő ő ö ü ő ő ú í Ü ő ü Í ő ö ö í ó ó ó í í í ú

Részletesebben

ö Ö ő ö ó ö Ö ő ö ó ö ő ő ó ó ö ö ó ó ó ö ö Á ó ö ű ő ű ő ő ö Ö ö É ő ő Á ű ő ú Ú ő ó ö ő ó ö ú ő ő ó ó ó ó ő ó ö ö ö ö ö ú ő ö ö ű ó ó ö ő ó ó ó ő ő ó ó ó ö ő ó ó ó ó ö ő ó ö ő ő ö Á ő ó ó ó ó ó ö ő ő

Részletesebben

Ü ű ő Á Í ü ű ő ő ő ő ó ó ü ü ő ű í ő ó ü ű ő ó ó ü í ó ó ő ő ő ű ő í í í í ó ő ú ó í ű ü í ü ő ő í í ó ó ó ó ő ő ő ő ü ő í ő ó ó ő ő ó ó ü ú ó ő ő í ó ü ó í ő ó ü ű ő í ő ü ő í ő í ő ő ó ü í ü Í í ü í

Részletesebben

ó ó ó ű ó í ő í Á ő ű ő ő í í ű ó ú ő ű ő ő ú ő ő ó í ő ű í ű ű ő ó ó ő ő ó ó í ű ú ű í ű ű ű í ó í ó ó í ő ó ű ű í ő ű ő ó ű ű í ű í í í ó ű ő í í ó ű ő ő í ű ű ű í ú í ó ó í ű ó ú ű ó ő ó ő ő ó ó ó ó

Részletesebben

Ú Ö Ú Ü ú í í ú í ú í í ú ő í í ő ú í ű í ő í ő ő ő ő í í Ö í Ü í Ö í Í Í í Ö Ö Í ő Ö Ö Ö ú í ű í í ő ő ő ő í ő Ő Ó Ö Ö í Ú Ú Ö Ú Ö í í Í í ő ú Í ű í í ő ő ő ő í í í í ű í ű í í í ű ű í í Í í í Ó Ó ú Ü

Részletesebben

Í Ö ő ő ó Í ü ü ü ó ű ő ó ű ű ü ü ü ó ó ü ó ó ü ú ó ó ü ó ó ó É ó Ö Í ó ü ó ű ó ó ü ő ó ü ü ó Í ó Í ó ó ó ó ó ű ó É ó ű ő ó ő ó ű Í ó ó ő ü ő ó ó Í ő ó ő ő Á Ö ő ő ü ő ú ó ú ü ő ü ő ó Í ú ő ő ű Á ü ü ó

Részletesebben

ú í ő ö ö ö ö ö ő í ö ö ö ő ő ö ő ö ú ö ő ö ú í ő ö ö ő őí ü ú ő ü ő ö ü í ő ü ü í ő ö ő ü í ő ö ö í ű ú ö ö ö ő ő í ő Ű ő ü ő ő ö ö ő í í ö ö ü ö ű ö ö ö ü ő ö ö ü Á í ő ö í ü ő ő ü ö ű ö ö ö ű ö ö ö

Részletesebben

Á Á Ü Ö Ú Á É í Ú Á Ö Á Ü É ó ü ó ó ó őí ő ű í ó í ő ü ő ú ó í ő ő ő í ü ü í í ő ú ő ú ő ő ó í ú í ü ő ő ú ő ü í ó ó ü ó ő ü ő í ú ú ő ő ú ő ő ü ú ő ó í ü ű í í í ü ú ó ő ő ő ő ő ő ű í ó í í ó ő í ó ő

Részletesebben

Á Á Á í ő Ö Ö Á Á Ó Ö Á Ő ő ü ő ő ő Ö Í ő ő ő ő Ö ú Ö ő í ő Ö ü ű ú ő í Ü Ö Í Ö Ö ő ő ű Ő ű ő ü ű ő í ő í ő ü Ö Ü Ö ő Ö ő Ő ő í ű É Ű Ö ő ő í ő ü ő í ű ü ő ő ü ő Ü ő ő ü ű ő ú ü í ő ü ü Ö ő í Ü ő í ü ő

Részletesebben

Ö Ő Ő Ő Ő Ö Ö Ő Í Í Á Ö Ő Ö Ú ŐÍ Ú Í Ő É É Í Í Í É Ő ö Ú Í Ő ö É É É Í É Ő Í Í Í Í ö Í Í Ö Í Ö É Í É É É Í Í ö É Ö Ö Í Í É É Ő Í É Ő Ö É ÖÍ Í Í Ő Í Í Ö Í É Ő Í Í ü É É É ö É É É ö Í É ö Í Ő Ő Ö É É Í Í

Részletesebben

ö ű é ö é é é é é ő Ö é ö é í ű ö é é é é é é é ö é é é ű ö é í ű ö é é í é í é é é é é é ő ö é é é ő é ö ő ő Ü ő ö é Ü ő é í é ö ö é é Ü ő é Ü é ö ű é í ö é é ü ű ö é é ö Ü ö ű é é Ü Ü ö í é ö é ö ű é

Részletesebben

É É ó í í ö ö Í ö ó ó ó ó ó Á ö ú í ó Ö ó ö ö ó ó ö ö í ö É ö Á ú Á ö ú ö ú ű ú ú í ö ö í Ü í í Ó ö ú Ü í Ü í í Ú ö ö í Í ü Ó ö Ü ú ü ü í Ó í ö í ó Ó ó ö ó ö ó ű ö ú Í í ü ö í í Í í ü í ó Ó í ó Ó Ó Í Ó

Részletesebben

Ó Ü ö ö ö ö ö ű ö ü ü ö í ö ö Ü ö í ű ö í ö Ö í ü ö ö ö ü ü ü í ú ö ú ú í ö ö í ö ö ö ö í í ú ö í ö í ö ü ú í í í í ú í ü ö ö í í í ö í ú í í í í ö ö ö ö í ú ö ö ü ö ö ö ö ö ö Ö ú ü í ü ü ü ö ö í ü í ö

Részletesebben

Ö ó Ö í ó ú ő ö ó Ö ő ü ú ü ő ü ő ő ő ö Ö ö ó ő ü Ö ö ó ó ó í ő ő ó Ö ö ö ő ó í ő ó ó ö Ö ő ú ö ő ó ó ó ő ú í ö ó ú ö ü ü í í Ö ü ü ö ő í ó ő í ö ő ü ö ő ö ü ö í ö ö ö ú í ö ő ö ő ó ö Ö ü í ö í ő ő ű ö

Részletesebben

ö ő ü É Ü É ö ö ő ö Ö ő ü ó Í ö ő ő ő ö ö ö ő ó ó ö í ö ó ö ő ö ő Á ö ó ü ő ő ó ö ő Í í ö ű ó ö ű í ó ö ő Í ü ö ö ó ü ő ü ü ó ü ő ó ü ö ü ö ü í ö í ó ő ó ó ö ü ö ő ö ü ú ö ü í ó í í í ö ü ő ö ö ő í ő ö

Részletesebben

Ü Ú ö ö ö ö ö ö ö Ó Ó Ó ö Í Ó ö Ó ö ö Ó ö ö Ó ű Ó ő Ó Í ű ö Ó ú ő Í ö Ó ű ö ö Ó ő ő ő ű Í ő ö ö ű Ű ú ő ö ö ú ö ű ő Í ő Ó Í Ú ő Ó ő ö ő ö ü Ó Ó ö Í Ú ő ű ű ő ő Ó Í ú Ú ú ú Ó Ó Ó Ó ö ú ö ü ö Í ö Ü ö Í Í

Részletesebben

ö ő ő ő ó ő ő ü ó ü ö ö ó í ö ö ü ő ű ö ő ő ö ő Ó ő ó ó ü ű ö ó í ö ő ő ü í ú ö ú ü ó ó ő í ú ó ö ö ü í ő ő í ő í í ó ő ő í ő ű ő ó ü ű ő í ő ü ő í ő í ű ő í ű ő ű ű ű ó ü ő í ü ő ó ó ó ó í ő ő ö ó ó ü

Részletesebben

ö ó ü ö ö ű ö ű ű ó ö ó ö Ö ü ö Ö Ű ö ű ű ó ö ó Ö Ö ó ó ó ö ö ö ó ó ó ö ó ö ö ó ü ö ö ü ö ű ö ű ö ö ö ö ö ü Ó ö ű ó ö Ö Ö ö ó ö ö ó ó ö ö ü ö ű ö ű ö ö ö ö ö ó ö ö ö ü ö ű Ö ö ű ó ö ó ö ö ö ö ö ö ö ö ö

Részletesebben

ő ú Á Á É ö ő ő ő É í ő ő ő ő ö ö ő ö ö í ő ő í í ő ű ö ű ő ű í ő í ő ö ü ü í ű í ő ü ö ü í ü ü í ő ő í ű í ő ö Á ö ö í í ő ő ő í ő ö ő ű ú ö ü ö ö ö ö ö ő ü ö ö ő í ü ö ú ö ü ő í ö ö ő ő ő í ö Á ö í ű

Részletesebben

Á Á ö Á ö ö ö ő őí ö ö ö ő ö ö ő ü ö ó ő ő ö í Ö ö ő í ó ö ő ő ö ö ö ő í í ó ó ö ö ő ó ő ö í ő ö ö ő ő ö ő ö ü ü Ö Ö Ö Ö ö ó ő í ő ő ő ö ö ő őí ő ő ö ö ú ö ő í ő í í ó ó ö ö í Á Á ó ö ó ö ó ö ő ö ö ó ö

Részletesebben

ő ő ő ü É Á Á É ő ő ő ü í ő ű í í í í í í í í Í Í ű Í ü Í ű í ü í ő ő ü ő í í í ő ű í ő ő ü ő ő ü í ő í í ő ü í ő ő őí í í ő í ő í Ü ü í ő ü í í í ő í ő í ü ú í ő ü Í ő ő ő ő É Ó Ó É Í É í Í Í őí ő ő Ó

Részletesebben

Á Ü Ü ó É ű ö ő Á ű ö ó í Á í ó ó ö ő Á ö ó í ó ö í ó ó ó Á í ó ő ő ü ó í ó ü ü ő ó í ü ű ö ó í ó ő ű ö ó ű ö ő ő ó ű ö ó ű ö ő ű ő í ü ó í í ó ó ó ü í í ő í ö ő ü ü ü ü ó ó ö ő ö ö ü ü ő ő ű ö í Á ű ö

Részletesebben

ö ő ü Ö ö ő ö ó ö Ö ő ü ö ő ő ő ö ö ö ö ő í ő ő ő í ő ö ü ö ö ü ő ó ö ü ő Ö ö ü ó í ő ő ő ő ő ő ő í ő ö ó ö ó ó ó í í í ó ő ő ö ő ő ú ó í ö ü í í ő í ő ő ó ó ü í ő ő ö ű ó ó ö ő ő í ó í í ő ú ö ö í í ü

Részletesebben