A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai"

Átírás

1 A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji Szkgyógyszerész-jelöltek képzése Király Gyul

2 Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi műveletek (operációk) tudomáyos kuttási Ellátási (logisztiki) problémák megoldásák z ipr és szolgálttás területére lklmzás Először UK és USA üzleti tácsdói hszálták Lieáris progrmozás George Dtzig (947) Számítógépek megjeleésével ugrásszerű övekedés Az Operációkuttás vezetői képzésbe áltláossá vált Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji

3 Az operációkuttás foglm DÖNTÉS = Válsztás ltertívák között. ALTERNATÍVA = Lehetőség, vlmiek megvlósulását megelőző állpot. (leglább lehetőség) A dötés objektív kéyszer, melyek tüete problém és forrás célok és z dottságok között feálló elletmodás. DÖNTÉS-ELŐKÉSZÍTÉS = A dötési folymt feltáró, elemző és modelllkotó része. ELEMZÉS Közelítésmód + Módszerek tárház Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 3

4 Dötési módszert A dötés midig JÖVŐORIENTÁLT iráyultságot fejt ki jelebe. Dötés ismérvei: z krt hgsúlyozottság dötéshozók tudt A dötés htékoyság érdekébe megfelelőe szervezett htlmt és meglpozott vezetői tudást feltételez. Dötési állpot feltétele: CÉL (mit kruk eléri) HELYZET ( mi jele állpot) Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 4

5 Dötési korlátok Célkorlát: Erőforráskorlát: Kompetecikorlát: Szervezeti korlát: csk szigifikás célokt tudjuk kezeli iformáció + idő + péz + problémgzd ki döt? (kiek kellee?) kiek számár dötük? Módszerti korlát Észlelési korlát (dötési helyzet) Felismerési korlát (dötési problémák) Méréskorlát (lpdtok megbízhtóság) Megkülöböztetési korlát (ltertívák) Kommuikáció korlát (dokumetálás) Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 5

6 Dötési folymt HELYZETELEMZÉS CÉLRENDSZER KIALAKÍTÁSA KÖVETELMÉNYEK KÍVÁNALMAK MEGOLDÁSI ALTERNATÍVÁK KERESÉSE ZÁRT MATEMATIKAI KIFEJEZÉS TÉTELESEN FELSOROLT LEHETŐSÉGEK DÖNTÉS Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 6

7 Adtok és sttisztiki lpfoglmk Adtok = Változók Miőségi Meyiségi illetve Diszkrét Folytoos Osztály = Adtcsoportosítás egysége (5-0 ) k 4 k.5, h < 00 és, h >00 X m X mi Osztály itervllum hossz : c k Mediá: gyság szerit redezett dtsor középső értéke Kvrtilis (egyedelő érték): X mi, Q, Me, Q 3, X m Módusz: dtsor leggykrbb előforduló értéke: Mo=X f m Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 7

8 Mátriok és mátriműveletek A A mátri számok tégllp lkú elredezése. Egy 3-es mátrik 3 sor és oszlop v. m m m m b b b b A : :.. : : :....,, Áltláos formáj z lábbi m-es mátri, hol,.., m jelöli mátri elemeit. Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji

9 Mátriok és mátriműveletek Mátriok egyelősége : Mátriok összege : Mátriok külöbsége : Mátriok szorzás : Mátriok osztás : Mátri trszpoálás : Mátri szorzás k számml : Speciális mátriok : A=B, h ij =b ij mide i és j eseté ij bij A+B = A- B =, zz A+(-)B ikbkj AB =, A m és B r AB mr NEM ÉRTELMEZHETŐ!!! A T = ka= ji k kij ij bij egységmátri, ullmátri, sorvektor, oszlopvektor, ullvektor. Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 9

10 Mátriok és mátriműveletek Szbályok: A + B = B + A (A + B) + C = A + (B + C) A(B + C) = AB + AC A(BC) = (AB)C IA = A = AI, hol I egy egységmátri A + 0 = A, A - A = 0, 0A = 0 = A0 AB BA Lieáris összefüggő, lieáris függetle vektorok c + c +. + c m m = 0, és c,c, c m em mid 0 Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 0

11 Vlószíűség számítás elemei Vlószíűség számítás: véletle tömegjeleségek törvéyszerűségeiek mtemtiki vizsgált. Pl.: vércsoport H:={0, A, B, AB}, zz 4 elemi eseméy Műveletek eseméyekkel: Eseméyek összege (egyesítése): Eseméyek szorzt (közös része): Egymást kizáró eseméyek: Eseméyek komplemetere: A B A B A B = 0 A A = H eseméytér Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji

12 Lieáris egyeletredszer m m m m b b b... : m m m m b b b b A : :.. : : :....,,, hol Vektorok egy hlmzák RANGJA hlmzból válszthtó lieáris függetle vektorok mimális szám. A b Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji

13 Lieáris egyeletredszerek megoldás # Lieáris egyeletredszer felállítás # Megoldás grfikus (geometrii) módszerrel # Megoldás keresése Guss féle kiküszöbölési eljárás segítségével # Megoldás szimple módszerrel (tábláztos lkb) Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 3

14 Szimple módszer léyege Algoritmus (itertív megoldási eljárás) hszált KEZDŐ LÉPÉS ITERATÍV LÉPÉS (Algebri/Geometrii) LEÁLLÁSI SZABÁLY Nem Ige Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 4

15 Szállítási, disztribúciós feldtok # Forrás: # Igéy: Feldóhely, vgy telephely, ho z igéyeket ki lehet elégítei. A forrás lehet rktár, vgy gyártó válllt. Megredelő, vgy felhszáló, kiek tevékeységéhez vgy működéséhez szükséges ygokk vgy termékekek, meghtározott meyiségbe redelkezésre kell álli. # Elleállás téyezők: A szállítási költségek forrás és igéy helyszíek között. Lehet költséget helyettesítei távolsággl. Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 5

16 Szállítási, disztribúciós # Zárt feldt: Az feldt, hol forrásokál redelkezésre álló kpcitás és z igéy oldlo felmerülő szükséglet megegyezik. # Fiktív yelő: Nyitott feldt zárttá tételéhez szükséges fiktív igéy, melyek "kielégítésére" formális kerül sor, ugyis z dott forrás és fiktív yelő közötti szállításr llokált "termék" forrásb mrd, mivel z elleállás téyezőt z dott forrás és fiktív yelő között zérus értékűek vesszük fel. # Fiktív forrás: feldtok Nyitott feldt zárttá tételéhez szükséges fiktív feldóhely, melyek kpcitását optimlizáláso kívüli külső kpcitáskét biztosítjuk, z elleállás téyezőt z dott forrás és mide yelő között zérusk tekitjük. Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 6

17 Szállítási feldt mtemtiki modellje m c ij ij Költség mi i j X ij = C ij = m = = i-edik tároló helyről j-edik felvevőhelyre szállítdó egységek meyisége egységyi árú szállítási költsége z i-edik tároló helyről j-edik felvevőhelyre tároló helyek szám felvevőhelyek szám Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 7

18 Szállítási feldtok megoldási módszerei # Észk-Nyugti srok módszer # Vogel féle pproimációs módszer # Russell féle pproimációs módszer # Dtzig módszer # Optimum kereső eljárás Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 8

19 Hálózttervezés, mimális ármlt # PERT, CPM, MPM módszerek # Hálózt ábrázolás: tevékeységorietált eseméyorietált # Hurokmetes, iráyított, egybefüggő gráf # Időtervezés, kritikus út számítás, (látszólgos tevékeység, trtlékidő, stb.) A A tevékeység ( p) ( p) (3 p) B Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 9

20 A / B / s / N / m / X Tömeg kiszolgálási redszerek A : érkezési időközök eloszlás függvéye B: kiszolgálási idők eloszlás függvéye s: kiszolgálási cstorák szám N: megegedett várkozási sor mimális hossz [ ] m: igéyek mimális szám [ ] X: következő igéy kiválsztás redje [FIFO] eloszlás függvéyek: M (epoeciális), E r (r-edredű Erlg), H r (r-edredű hiperepoeciális), D (determiisztikus kosts) G (áltláos semmit sem tuduk ról) Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji 0

21 Tömeg kiszolgálási redszerek Igéykeletkezés: jellemzői: zoos külöböző érkezés: egyekéti csoportos időköz: determiisztikus sztochsztikus itezitás: sorhossztól függő - függetle Várkozás: sor hossz: korlátozott tetszőleges viselkedés: türelmes - türelmetle Kiszolgálás: redje: FIFO, LIFO, véletle, prioritássl cstor szám: egy több módj: egyfázisú többfázisú cs.fjt: zoos külöböző cs.megbízht.: bszolút zvrok előfordulhtk cs.megválszt.: szbddá válás, véletle, teljesítméy szerit Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji

22 Felhszált források Hillier, Lieberm: Bevezetés z Operációkuttásb, LSI okttó közpot, Budpest 994. Tóth I. (szerk.): Operációkuttás I. (Mtemtik üzemgzdászokk), Nemzeti Tköyvkidó, Budpest 999. Cseryák L. (szerk.): Operációkuttás II. (Mtemtik üzemgzdászokk). Nemzeti Tköyvkidó, Budpest, 999 Gács P, Lovász L (99): Algoritmusok. Tköyvkidó, Budpest Hirkó B. - Jámbor A. - Ngy Z. - Rffi M. - Vrg Z.: Dötés előkészítés - Módszert: Operációkuttási módszerek. Novdt Kidó, Budpest, 000 Jordá T.-Recski A.-Szeszlér D.: Redszeroptimlizálás, Typote Kidó, Budpest, 004 B.Kröpfl-W.Peschek-E.Scheider-A.Schölieb: Alklmzott sttisztik, Műszki Köyvkidó, Budpest, 000 Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji

23 Vége hrmdik elődásk! Király Gyul: A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji

Döntéselmélet, döntéshozatal lehetséges útjai

Döntéselmélet, döntéshozatal lehetséges útjai Dötéselmélet, dötéshoztl lehetséges útji AOK - Rezides képzés Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi műveletek (operációk) tudomáyos kuttási

Részletesebben

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): --- A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Nevezetes középértékek megjeleése külöböző feldtokb Vrg József, Kecskemét Hrmic éves tári pályámo sokszor tpsztltm, hogy tehetséges tulók

Részletesebben

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Készítette: Dr. Ábrahám István A játékelmélet a 2. század közepén alakult ki. (Neumann J., O. Morgenstern). Gyakran

Részletesebben

A lineáris tér. Készítette: Dr. Ábrahám István

A lineáris tér. Készítette: Dr. Ábrahám István A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):

Részletesebben

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4) Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

Disztribúciós feladatok. Készítette: Dr. Ábrahám István

Disztribúciós feladatok. Készítette: Dr. Ábrahám István Disztribúciós feladatok Készítette: Dr. Ábrahám István Bevezető Az elosztási, szétosztási feladatok (szállítás, allokáció, stb.) leggazdaságosabb megoldása fontos kérdés. Célunk lehet legkisebb összköltségre

Részletesebben

Mátrixaritmetika. Tartalom:

Mátrixaritmetika. Tartalom: Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL

KÖZPONTI STATISZTIKAI HIVATAL KÖZPONTI STATISZTIKAI HIVATAL Telefon: 345-6 Internet: www.ksh.hu Adtgyűjtések Letölthető kérdőívek, útmuttók Az dtszolgálttás 265/28. (XI. 6.) Korm. rendelet lpján kötelező. Nyilvántrtási szám: 223/9

Részletesebben

II. Lineáris egyenletrendszerek megoldása

II. Lineáris egyenletrendszerek megoldása Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek

Részletesebben

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr. Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy

Részletesebben

x + 3 sorozat első hat tagját, ha

x + 3 sorozat első hat tagját, ha Soroztok, soroztok megdás rekurzív módo.. Az ( ) soroztot rekurzív módo dtuk meg 7 -, sorozt első két tgj ( < ) egybe gyökei következő egyeletek: sorozt első öt tgját. y.adott ( ). Írd fel ( ) x 0 x. Htározd

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2010

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2010 KÖZPONTI STATISZTIKAI HIVATAL Telefon: 345-6 Internet: www.ksh.hu Adtszolgálttóinknk Nyomttványok Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) bekezdése lpján kötelező. Nyilvántrtási

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1 III. Évfolym. szám - 008. úius Gyrmti József Zríyi iklós Nemzetvédelmi Egyetem gyrmti.ozsef@zme.hu SRT, TÖBBSZEPONTÚ DÖNTÉSI PROBÉ EGY EGYSZERŰ EGODÁS bsztrkt cikk egy többszempotú dötési módszert mutt

Részletesebben

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2015

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2015 KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) bekezdése lpján kötelező. Nyilvántrtási szám: 1933 ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2015

Részletesebben

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) bekezdése lpján kötelező. Nyilvántrtási szám: 1933 ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2015

Részletesebben

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2013

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2013 KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. i XLVI. törvény (Stt.) 8. (2) ekezdése lpján kötelező. Nyilvántrtási szám: 1933 ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 23 Adtszolgálttók:

Részletesebben

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPEST, 1997 A szerzők Lineáris Algebra, illetve Lineáris Algebra II c jegyzeteinek átdolgozott

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2013

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2013 KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. i XLVI. törvény (Stt.) 8. (2) ekezdése lpján kötelező. Nyilvántrtási szám: 1933 ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 23 Adtszolgálttók:

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére

Részletesebben

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2013

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2013 KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. i XLVI. törvény (Stt.) 8. (2) ekezdése lpján kötelező. Nyilvántrtási szám: 1933 ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 23 Adtszolgálttók:

Részletesebben

Ptolemaios-tétele, Casey-tétel, feladatok

Ptolemaios-tétele, Casey-tétel, feladatok Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor

Részletesebben

Sorbanállási modellek

Sorbanállási modellek VIII. előadás Sorbaállási modellek Sorbaállás: A sorbaállás, a várakozás általáos probléma közlekedés, vásárlás, takolás, étterem, javításra várás, stb. Eze feladatok elmélete és gyakorlata a matematikai

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 9. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 6. Bogya Norbert Lineáris algebra gyakorlat (9. gyakorlat Bázistranszformáció és alkalmazásai (folytatás Tartalom Bázistranszformáció

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b XVII ERDÉLYI MAGYAR MATEMATIKAVERSENY CSÍKSZEREDA 007 FEBRUÁR 8- NAP 9 OSZTÁLY Igzoljuk, hogy mide * \ {} eseté 5 ( ) Lckó József, Csíkszered Az b,, b számok eseté htározzuk meg z Ex ( ) x b x kifejezés

Részletesebben

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA 9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos

Részletesebben

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2012

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2012 KÖZPONTI STATISZTIKAI HIVATAL Telefon: 345-6 Internet: www.ksh.hu Adtszolgálttóinknk Nyomttványok Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) bekezdése lpján kötelező. Nyilvántrtási

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

GAZDASÁGI STATISZTIKA

GAZDASÁGI STATISZTIKA GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK

Részletesebben

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése.

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése. 26. HÁLÓZATI TÁPEGYSÉGEK Célkiűzés: A hálózi egyenirányíó és silizáló lpkpcsolások és jellemzőinek megismerése, illeőleg mérése. I. Elmélei áekinés Az elekronikus készülékek működeéséhez legöször egyenfeszülségre

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát

Részletesebben

Egy irányított szakasz egyértelműen meghatároz egy vektort.

Egy irányított szakasz egyértelműen meghatároz egy vektort. VEKTOROK VEKTOROK FOGALMA Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon, hogy az egyik pont a kezdőpont, a másik pont a végpont, akkor irányított szakaszt kapunk. Egy irányított szakasz

Részletesebben

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise Nagyméretű emlieáris közúti közlekedési hálózatok speciális aalízise Dr. Péter Tamás* *Budapesti Műszaki és Gazdaságtudomáyi Egyetem Közlekedéautomatikai Taszék (tel.: +36--46303; e-mail: peter.tamas@mail.bme.hu

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat

Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat Térinformatika Elemzék 2. Az informáci ciós s rendszerek funkciói adatnyerés s (input) adatkezelés s (management) adatelemzés s (analysis) adatmegjelenítés s (prentation) Összeállította: Dr. Szűcs LászlL

Részletesebben

FIGYELEM! Ez a kérdőív az adatszolgáltatás teljesítésére nem alkalmas, csak tájékoztatóul szolgál!

FIGYELEM! Ez a kérdőív az adatszolgáltatás teljesítésére nem alkalmas, csak tájékoztatóul szolgál! FIGYELEM! Ez kérdőív z dtszolgálttás teljesítésére nem lklms, csk tájékozttóul szolgál! KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) ekezdése

Részletesebben

A térinformatika t. Az informáci. ciós s rendszerek funkciói. Az adatok vizsgálata

A térinformatika t. Az informáci. ciós s rendszerek funkciói. Az adatok vizsgálata Térinformatika Elemzések 1. Az informáci ciós s rendszerek funkciói adatnyerés s (input) adatkezelés s (management) adatelemzés s (analysis) adatmegjelenítés s (presentation) Összeállította: Dr. Szűcs

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Szakdolgozat Készítette: Borostyán Dóra Matematika BSc matematikai elemző Témavezető:

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

KIMUTATÁS A TARTÓS BENTLAKÁSOS ÉS ÁTMENETI ELHELYEZÉST NYÚJTÓ INTÉZMÉNYEK MŰKÖDÉSI ADATAIRÓL

KIMUTATÁS A TARTÓS BENTLAKÁSOS ÉS ÁTMENETI ELHELYEZÉST NYÚJTÓ INTÉZMÉNYEK MŰKÖDÉSI ADATAIRÓL KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) ekezdése lpján kötelező. Nyilvántrtási szám: KIMUTATÁS A TARTÓS BENTLAKÁSOS ÉS ÁTMENETI ELHELYEZÉST

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

Kezelési útmutató ECO és ECO Plus

Kezelési útmutató ECO és ECO Plus Kezelési útmuttó ECO és ECO Plus Kidás: 2012.12.15. Eredeti kezelési útmuttó Gép Clssic Plus Gép szám Clssic Plus Gép típus Clssic Plus Verzió Berendezés jellege Álltfj Ügyfél neve & Co. KG Ügyfél címe

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

29 { 29 [Budapest ] Székesfehérvár Tapolca. a 9720 $ a 850. a 8510. a x19712 9712 $ a 9714 $ a 970. a 852. a 9710 $ a 854.

29 { 29 [Budapest ] Székesfehérvár Tapolca. a 9720 $ a 850. a 8510. a x19712 9712 $ a 9714 $ a 970. a 852. a 9710 $ a 854. Km MÁV-START Zrt. Kiindulási állomás 0 Budpest-Déli 30,40 4 Kelenföld. 1 F Kőbány-Kispest.. 150 Ferencváros. 1 Kelenföld F Kelenföld 30 67 Székesfehérvár 5, 20, 44, 45 F Székesfehérvár. 30 71 Székesfehérvár-Repülőtér.

Részletesebben

VI. Kétismeretlenes egyenletrendszerek

VI. Kétismeretlenes egyenletrendszerek Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló

Részletesebben

KIMUTATÁS A TARTÓS BENTLAKÁSOS ÉS ÁTMENETI ELHELYEZÉST NYÚJTÓ INTÉZMÉNYEK MŰKÖDÉSI ADATAIRÓL

KIMUTATÁS A TARTÓS BENTLAKÁSOS ÉS ÁTMENETI ELHELYEZÉST NYÚJTÓ INTÉZMÉNYEK MŰKÖDÉSI ADATAIRÓL KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 99. évi XLVI. törvény (Stt.) 8. (2) ekezdése lpján kötelező. Nyilvántrtási szám: 2 KIMUTATÁS A TARTÓS BENTLAKÁSOS ÉS ÁTMENETI ELHELYEZÉST

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Egyetemi szintű Gépészmérnöki szak Terméktervezői szakirány

Egyetemi szintű Gépészmérnöki szak Terméktervezői szakirány Egyetemi sziű Gépészmérnöki szk Terméktervezői ZV_tárgy tárgy tnár tétel Formtn Formtn Formtn Formtn Formtn 1. A termékvilág felosztás, termékfunkciók. A termékfejlesztés folymtánk áttekiése. A termék

Részletesebben

Szállítási költségek minimalizálása Regionális gazdaságtan 2007/2008. tanév Dr. Rechnitzer ános A szállítás fontosabb jellemzői A távolság eltérő értelmezései Szállítással kapcsolatos döntések determináltság

Részletesebben

Lineáris programozás

Lineáris programozás LP LP 2 Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek egységár és z, hogy z egyes termékek egy egységéek előállításához

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

1. Gyermekjóléti alapellátások

1. Gyermekjóléti alapellátások 1. Gyermekjóléti lpellátások 1. A jogszályn előírt munkköröken fogllkozttottk szám szolgálttásn (XII. 31.) Képesítés Vezető Gyógypedgógus Csládgondozó Módszertni szktnásdó Fejlesztőpedgógus Pszihológii

Részletesebben

ö ö ü ü ű ö Í ö ö ö ű Í ü ű ö ö ö ü ű ö ö ö ö ö Í ű ű ü ü Ó ű ö ö É ü ö ö ö ü ü É ö ü ö Á ü Á ű ü ű ű ű ű Í ÍÁ ü ö ö ö ü ü ü É ü ü Á ö ü ü ö ö ű ü ö ü ü ü ö ü ü ü ö ü ü ü ö ö ü ű ö ű ü ö ü ü ö ű ü Í ü

Részletesebben

Í ű Á Á ű ü ü ü ű Í ü ü ü ü Í ű ű ü ü ű ü ü ű ü Í Í É Á Á Á É Á Ö Á Á Á ü É Ó Á Á Á Á É É Á ű É É Á ű ű Á Í Á Í É Á Á Á Á Á Á Ó Á ű ű ü ű ű ű ű ű ü ű Ó ü ű ü ü ű ü ű Í Í ü ű ü ü ü ü ü ű ü ű ü ü ü ü ü ű

Részletesebben

ó ö ó Í Í Ó Í Á Í Í Í Ó Ú ó Í Ó ó Ó ó Í Ó Ó Ó Ó Ó Ó Ó ó Á Ó Ó ó ö ó Ú Í Í Ó Ó Ó Í Ó Ú É Í Í Í Ú Ó ő Í Í Ó Ó Ú Ó Ó ó Í ó Á Ó Ó Ó ó ó Í Ó Ó Ó Ó Ó Í Ú Í Í É ö Ó Ó Í Ó Ú Ó Ú Ó Ö Í Í Ú Ó Ó ó Ű Ó Ó Ó Ó Ó Ó Ó

Részletesebben

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 4 2.1. A függvény

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

4. előadás. Vektorok

4. előadás. Vektorok 4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához

Részletesebben

ÉS TESZTEK A DEFINITSÉG

ÉS TESZTEK A DEFINITSÉG MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001

Részletesebben

1. Lineáris leképezések

1. Lineáris leképezések Lineáris leképezések A lineáris leképezés fogalma Definíció (F5 Definíció) Legenek V és W vektorterek UGYANAZON T test fölött Az A : V W lineáris leképezés, ha összegtartó, azaz v,v 2 V esetén A(v +v 2

Részletesebben

Más viszonylatban (például Badacsonyból Füredre, vagy Tapolcáról közvetlenül Fonyódra, stb.) a szállítás értelmetlen, ezért nem lehetséges.

Más viszonylatban (például Badacsonyból Füredre, vagy Tapolcáról közvetlenül Fonyódra, stb.) a szállítás értelmetlen, ezért nem lehetséges. OPERÁCIÓKUTATÁS, 2005. december 28. A NÉV: 2-0 NEPTUN KÓD:. Követ kell szállítani Tapolcáról, illetve Veszprémből Kaposvárra és Pécsre. A szállításnál mind szárazföldön, mind vizen közbülső szállítási

Részletesebben

Regionális gazdaságtan gyakorlat

Regionális gazdaságtan gyakorlat 1 Regionális gazdaságtan gyakorlat 2. Telephelyválasztás, vonzáskörzetek Transzferálható input és output modellje 2 Keressük azt a telephelyet (T), amelynél az S inputforrástól szállítva az alapanyagot

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

p j p l = m ( p j ) 1

p j p l = m ( p j ) 1 Online algoritmusok Online problémáról beszélünk azokban az esetekben, ahol nem ismert az egész input, hanem az algoritmus az inputot részenként kapja meg, és a döntéseit a megkapott részletek alapján

Részletesebben

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes 9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

A.11. Nyomott rudak. A.11.1. Bevezetés

A.11. Nyomott rudak. A.11.1. Bevezetés A.. Nyomott rudak A... Bevezetés A nyomott szerkezeti elem fogalmat általában olyan szerkezeti elemek jelölésére használjuk, amelyekre csak tengelyirányú nyomóerő hat. Ez lehet speciális terhelésű oszlop,

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Kerületi Közoktatási Esélyegyenlőségi Program Felülvizsgálata Budapest Főváros IX. Kerület Ferencváros Önkormányzata 2011.

Kerületi Közoktatási Esélyegyenlőségi Program Felülvizsgálata Budapest Főváros IX. Kerület Ferencváros Önkormányzata 2011. Kerületi Közokttási Esélyegyenlőségi Progrm Felülvizsgált Budpest Főváros IX. Kerület Ferencváros Önkormányzt 2011. A felülvizsgált 2010-ben z OKM esélyegyenlőségi szkértője áltl ellenjegyzett és z önkormányzt

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü

Részletesebben

Ű Í ó Ü Ö Á Á Ó Ö Ü Ü Ü Ü Á Í Ü Á Á Ü Ü Ü Ü Ü Ü Ö Ü Í Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Í Ü Í Í Á Í Í Ü Í Í Ü Á Ü Ü Ü Ü Ü Ü Ü Ü Ő Ö Á ÁÍ Á Ü Ü Á Í Ü Í Á Ü Á Í ó Í Í Ü Ü ő Í Ü Ű Ü Ü Ü Ü Í Ü Ü Ü Ü Ü Ü Ü Í Ü Á Ü Ö Á

Részletesebben

Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö

Részletesebben

ű í ú ü Á ü ü ü ü ü É É É Ü í ü Á í í ű í ú É É É Ü Í í í í Á í í Á í Á Í É Ő Ú ú Ú í í í íí í ú í í Í í Í Í É í í Í Í í ú í ü Ó í Í ú Í Í ű í ű í í í Í É Ü ű í ü ű í ú É É É Ü ű í í í í ü í Í í Ú Í í

Részletesebben

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2013

ÉVES JELENTÉS A BERUHÁZÁSOK ÖSSZETÉTELÉRŐL 2013 FIGYELEM! Ez kérdőív z dtszolgálttás teljesítésére nem lklms, sk tájékozttóul szolgál! KÖZPONTI STATISZTIKAI HIVATAL Az dtszolgálttás sttisztikáról szóló 1993. i XLVI. törvény (Stt.) 8. (2) ekezdése lpján

Részletesebben

Egyházashollós Önkormányzata Képviselőtestületének 9/ 2004. (IX.17) ÖR számú rendelete a helyi hulladékgazdálkodási tervről

Egyházashollós Önkormányzata Képviselőtestületének 9/ 2004. (IX.17) ÖR számú rendelete a helyi hulladékgazdálkodási tervről Egyházshollós Önkormányzt Képviselőtestületének 9/ 24. (IX.7) ÖR számú rendelete helyi hulldékgzdálkodási tervről Egyházshollós Önkormányztánk Képviselőtestülete z önkormányzti törvény (99. évi LXV. tv.)

Részletesebben