Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I o)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)"

Átírás

1 Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls) mérés skála: az egységekhez redelhető smérvértékek (akár számok akár em) alapá csak azt tuduk megállapíta, hogy az egységek az adott smérv szempotából egyezőek-e vagy sem. Műveleteket em tuduk velük végez. Példa: lakhely típusa smérv smérvértéke: főváros, város, község. A mérés szt évleges, hsze ez alapá csak azt tuduk megállapíta, hogy egy egyed más típusú települése él-e mt egy másk egyé, de em modhatuk, hogy a város több vagy obb mt a község. Szté semm értelme em lee ezeket eloszta egymással vagy kvo őket egymásból, még akkor sem ha az smérvértékeket számmal elölék. b. Sorred (ordáls) skála: em csak az smérvértékek külöbsége hordoz formácót, haem azok sorrede s. Példa: érdemegyek (smérvértékek: 1,, 3, 4, 5). Tuduk, hogy ak ötöst kapott, az emcsak eltér attól, ak égyest kapott, haem obba s telesített. Tehát va értelme sorredbe helyez az egyedeket az érdemegy alapá. Ugyaakkor ylvávalóa sem a kvoásak, sem az osztásak em lee értelme: az egyes és a kettes között más a külöbség, mt a kettes és a hármas között. Az sem lee gaz, hogy ak kettest kapott az kétszer olya ó volt, mt ak egyest, vagy, hogy az egyes a ketteshez úgy aráylk, mt a kettes a égyeshez. c. ülöbség (tervallum) skála: az smérvértékek külöbségeek va értelme (va mértékegység s), ugyaakkor az aráyokat em tuduk értelmez. Eek oka, hogy a külöbség skálá mérhető smérvek esetébe a ulla pot ökéyese va kelölve. Példa: Celsus-féle hőmérséklet skála. 10 C és 0 C között a külöbség ugyaay mt 0 C és 30 C között. Ugyaakkor em modhatuk, hogy a 10 C kétszer melegebb, mt az 5 C, vagy, hogy a 0 C pot ayszor melegebb a 10 C-ál, mt a 10 C az 5 C-ál. elátható, hogy eek az az oka, hogy a Celsus-féle skála ulla pota (lletve a 100 C s) ökéyese került megállapításra: 0 C em elet a hőmérséklet háyát. d. Aráyskála: Az smérvértékek aráya s értelmezhetőek, a ulla pot em ökéyese va megállapítva. Példa: az smérv a hav övedelem. Ha valakek 00 ezer fort a hav övedelme, akkor arra yugodta modhatuk, hogy kétszer ay, mt a 100 ezer fortos övedelem és, hogy ez a két övedelem pot úgy aráylk egymáshoz, mt az 1 mlló fortos övedelem az 500 ezres övedelemhez. A ulla pot em ökéyes, hsze a ulla fort övedelem a övedelem háyát elöl. Az smérvek között kapcsolat szorosságát az smérvek mérés skáláától függőe a következő eszközökkel vzsgálhatuk: 1. Mdkét smérv mőség vagy terület (azaz omáls mérés sztű): asszocácó. Az egyk smérv terület vagy mőség (azaz omáls mérés sztű), a másk smérv (változó) pedg meység (azaz legalább külöbség skálá mért): vegyes kapcsolat 3. Mdkét smérv meység: korrelácó.

2 Asszocácó: Megfgyeltük, hogy egy három szíbe (pros, kék, zöld) gyártott termékből a férfak és a ők mey darabot vásároltak. (Azaz két mőség smérvük va: termék szíe, és a vásárló eme). Vao va-e kapcsolat a vásárló eme, és a választott szí között? pros kék zöld összese férfak ők összese Az általáos elölésekkel: pros kék zöld összese férfak f 11 f 1 f 13 f 1. ők f 1 f f 3 f. összese f.1 f. f.3 A fet kotgecatáblába a sorok és az oszlopok utolsó adata peremgyakorságokak evezzük. A feladat megoldásához készítsük el a fet tábla egy olya verzóát, amelybe feltételeztük az smérvek függetleségét. Ha a két smérv függetlee, akkor a gyakorságok kszámíthatóak a peremgyakorságokból a következő módo: f *. f. f Azaz ha a szí és a vásárló eme függetleek leéek egymástól, akkor az f 11 gyakorság helyé a következő gyakorság szerepele: * f.1 f f11 16, Így elkészíthetük a kotgecatáblát a feltételezett gyakorságokkal: pros kék zöld összese férfak 16,875 14,065 14, ők 13,15 10, , összese A taköyv 16. oldalá látható kh-égyzet teststatsztkát a valós és a feltételezett valószíűségekből a következő módo számolhatuk k: r c * f f * f 1 1, ahol r a sorok, c pedg az oszlopok száma. Jele példába: (10 16,875) (15 14,065) (0 14,065) (0 13,15) (10 10,9375) 16,875 14, , ,15 10,9375 (5 10,9375) 1, ,9375 Az, hogy a fet statsztka ullától eltér, már elz, hogy a két smérv között va kapcsolat. Az asszocácó egyk gyakor mérőszámát, a Cramer-féle asszocácós együtthatót a következő módo számolhatuk k: C m(( r 1),( c 1))

3 Ahol a m((r-1),(c-1)) függvéy azt elet, hogy a sorok lletve az oszlopok számából vouk k egyet, és a ksebb értéket vegyük fgyelembe. Azaz, mvel ebbe a példába két sor és három oszlop volt (az összesítő oszlop és sor em számít!) Azaz: 1, 751 C 0,3917 m(( r 1),( c 1)) 801 A Cramer-féle mutató értéke 0 és 1 között értékeket vehet fel. Értéke 0 a két smérv függetlesége, 1 pedg a két smérv determsztkus kapcsolata eseté. A fet érték egy a közepesél gyegébb kapcsolatra utal a vásárló eme, és a választott szí között. Vegyes kapcsolat: Példa: egy vállalatál megfgyeltük a férfak és a ők keresetet (ezer fort/hó): Férfak: 10, 83, 65, 190, 30, 10, 130, 190 ők: 70, 65, 90, 100, 10, 130 Vao va-e összefüggés a kereset (meység smérv) és a em (mőség smérv) között? Az átlagbért és a szórást kszámoluk az egyes kategórákba, azaz a részsokaságokra (ezt em részletezem, a képletek smertek). Az egyes kategórákra (emekre) kszámolt átlagok a részátlagok. észítsük el a táblát a megoldáshoz: em Létszám Átlagbér (ezer ft/hó) (részátlagok, Y ) Szóráségyzet Szórás (ezer ft/hó) férf ,5 53,46 ő 6 95,83 570,14 3,88 összese 14 Illetve számoluk k az átlagbért és a szórást az egész sokaságra (utóbb a teles szórás), azaz férfakra és őkre együttese: Y 11,7 ezer ft/hó, a teles szórás pedg 48,76 ezer ft/hó A taköyv oldalá található meg a módszer részletes leírása. A léyeg, hogy a teles szóráségyezet (σ ) felotható két szóráségyzet összegére: Ahol σ a külső szórás és azt mutata meg, hogy a részátlagok átlagosa meyre térek el a főátlagtól, míg σ a belső szórás és azt mutata meg, hogy az egyes részsokaságokhoz tartozó megfgyelések (a ők lletve külö a férfak) meyre térek el átlagosa a saát részátlaguktól. Láthatuk, hogy ha a fet szóráségyzetekből (lletve a szórásokból) kettőt smerük, a harmadk már azokból kszámolható. A teles szóráségyzetet smerük, hsze az: 48, , A külső szóráségyzet a következő módo számolható k: M 1 8 (14111, 7) 6 (95,8311, 7) ( Y Y ) 499,6 14 1

4 Vagys a külső szóráségyzet em más, mt az egyes részátlagokak a sokaság egészéek átlagától vett égyzetes eltéréséek az egyes részsokaságokba tartozó egyedek számával súlyozott számta átlaga. A belső szóráségyzet tehát: 377, 499,6 1877, 6 Természetese k lehete számol a belső szóráségyzetet s: M , , ,6, am egybe a számításak próbáa s. A 1 14 megoldásuk helyes. A vegyes kapcsolat szorosságáak leírásához a H mutatót haszáluk fel, am em más, mt az Y smérv (fzetés) szóráségyzetéek az X smérv (em) által magyarázott háyada. 499,6 H 1 0,1 377, Azaz ebbe a példába azt találuk, hogy a em a fzetésekbe megfgyelhető külöbségek 1%-át magyarázza. Ez gyege vegyes kapcsolatra utal. orrelácó: ét meység smérv között kapcsolat szorosságát mérhetük ezzel a mutatóval. Példa: a övedelem és a fogyasztás kapcsolatát elemeztük Egyé Fogyasztás Jövedelem (ezer ft) (ezer ft) összese - - Vzsgáluk meg a két smérv között kapcsolat szorosságát! Az egyk kulcsfotosságú statsztka a kovaraca: Y Y X X dydx 1 1 cov( y, x), ahol dy Y Y, dx X X Ha a kovaraca értéke ulla, akkor a két változó között leárs kapcsolat cs. A kovaraca előele a kapcsolat ráyára utal. Poztív kovaraca eseté magasabb x értékekhez általába magasabb y értékeke társulak, míg egatív kovaraca eseté a kapcsolat ráya s egatív, azaz magasabb x értékekhez általába alacsoyabb y értékeke társulak. A kapcsolat szorosságáról azoba a kovaraca em ad táékoztatást.

5 A két smérv között kapcsolat szorosságáak mérésére a kovaracáál alkalmasabb mutató a korrelácós együttható. 1 cov( y, x) r( y, x) y x dy dx 1 dy dx dy dx A korrelácós együttható -1 és 1 között értékeket vehet fel. Ha r=0, akkor a két változó között cs leárs kapcsolat. A korrelácós együttható előele, megőrzve a kovaraca előelét, a kapcsolat ráyára utal. Azaz poztív korrelácós együttható eseté magasabb x értékek általába magasabb y értékekkel párosulak, míg egatív együttható eseté magasabb x értékekhez általába alacsoy y értékek tartozak. Mél közelebb kerül az együttható értéke a 1-hez vagy -1-hez, aál erősebb a kapcsolat. Specáls eset ha r=1 vagy r=-1. Ekkor azt moduk, hogy x és y között determsztkus kapcsolat va, azaz ha smerük x értékét potosa (bzoytalaság, hba élkül) meg tuduk határoz y értékét s. Azaz y=a+b*x, ha r=1, és y=a-b*x, ha r=-1. Számoluk k a korrelácós együttható értékét! dy Egyé Fogyasztás övedelem (ezer ft) (ezer ft) dy dx dy dx dydx összese dx dydx cov( y, x) 80, azaz va kapcsolat a övedelem és a fogyasztás között, 7 ráya pedg poztív. dy dx (, ) 0, dy dx 1 1 r y x A fet korrelácós együttható erős, poztív kapcsolatra utal a övedelem és a fogyasztás között. Magasabb övedelmekhez magasabb fogyasztás társul. A korrelácós együtthatóból számítható a determácós együttható (r ), amelyek értelmezése a H együtthatóhoz hasoló: megmutata, hogy x változó segítségével az y változó szóráségyzetéek mekkora háyadát magyaráztuk. r 0,934 0,87, azaz a övedelem a fogyasztás szóráségyzetéek 87,%-át magyarázza.

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra) BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970 Dr. Herma Sádor Dr. Rédey Katal Statsztka I. PÉCSI TUDOMÁNYEGYETEM KTK Közgazdaságtudomáy Kar Alapítva: 97 Mde jog fetartva. Jele köyvet vagy aak részletet a szerző egedélye élkül bármlye formába vagy

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

STATISZTIKAI MÓDSZEREK

STATISZTIKAI MÓDSZEREK HAJTMAN BÉLA STATISZTIKAI MÓDSZEREK Egetem egzet Pázmá Péter Katolkus Egetem, Bölcsészettudomá Kar Plscsaba, 0. Bevezetés Az első félévbe (Bostatsztka) a statsztka alapat smertük meg. Természetese ez

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

ÁLTALÁNOS STATISZTIKA

ÁLTALÁNOS STATISZTIKA Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS

Részletesebben

NYERS GÁBOR: Kontrolling és a költségvetés folyamatos ellenõrzése a PSZÁF gyakorlatában 518

NYERS GÁBOR: Kontrolling és a költségvetés folyamatos ellenõrzése a PSZÁF gyakorlatában 518 Tartalom KÖZPÉNZÜGYEK MONETÁRIS ÉS FISKÁLIS RENDSZER ERDÕS TIBOR: Stagflácó és moetárs poltka 36 BÁGER GUSZTÁV PULAY GYULA: A költségvetés tervezés makrogazdaság kockázataak elemzése 384 KUTASI GÁBOR:

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

A lakosság egészségi állapotát befolyásoló tényezők

A lakosság egészségi állapotát befolyásoló tényezők A lakosság egészség állapotát befolyásoló téyezők Számos kockázat téyező befolyásolja a lakosság egészség állapotát. Szükséges eze kockázat téyezőkre való odafgyelés az egyé, a család, a házorvos, a mukahely,

Részletesebben

Valószínűségszámítás és matematikai statisztika. Ketskeméty László

Valószínűségszámítás és matematikai statisztika. Ketskeméty László Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás

Részletesebben

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek Termékjellemzők optmalzálásáál haszálatos formácós módszerta 1 Bevezetés Koczor Zoltá, Némethé Erdőd Katal, Kertész Zoltá, Szecz Péter Óbuda Egyetem, RKK, Mőségráyítás és Techológa Szakcsoport Napjak aktuáls

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002.

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002. A geodéza tárgya, felosztása, alapfogalmak NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérök Szak Dr. Bácsatya László GEODÉZIA I. Kézrat Sopro, 00. . A geodéza tárgya, felosztása, alapfogalmak A gyűjtögető,

Részletesebben

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma

Részletesebben

Az aktív foglalkoztatási programok eredményességét meghatározó tényezõk

Az aktív foglalkoztatási programok eredményességét meghatározó tényezõk Az aktív foglalkoztatás programok eredményességét meghatározó tényezõk GALASI ÉTER LÁZÁR GYÖRGY NAGY GYULA Budapest Munkagazdaságtan Füzetek BW. 1999/4 1999. máus 1 Budapest Munkagazdaságtan Füzetek.1999/4.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

11. előadás PIACI KERESLET (2)

11. előadás PIACI KERESLET (2) . előadás PIACI KERESLET (2) Kertes Gábor Varan 5. feezete erősen átdolgozva . Állandó rugalmasságú kereslet görbe Olyan kereslet görbe, amt technkalag könnyű kezeln. Ezért szeretk a közgazdászok. Hogyan

Részletesebben

Július Augusztus Szeptember NAPRAKÉSZ VAGYOK! Üzleti gazdaságtanból. 2011-ben. Október November December

Július Augusztus Szeptember NAPRAKÉSZ VAGYOK! Üzleti gazdaságtanból. 2011-ben. Október November December 011 Júlus Augusztus Szeptember Határdő Feladat, program Üzlet gazdaságtaból 011-be Október November December Nevezetességek:. Vállalkozó jogvszoy Sul-Cég eve:... Sul-Cég székhelye:... Képvselője (a jog

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

Települési fejlődési pályák a Csereháton

Települési fejlődési pályák a Csereháton Település ejlődés pályák a Csereháto Pézes Jáos 1 Tóth Tamás 2 1. A terület lehatárolása és általáos jellemző A tájöldrajz értelembe vett Cserehát a magyar-szlovák országhatártól délre, a Herád- és a Bódva-

Részletesebben

Sok sikert és jó tanulást kívánok! Előszó

Sok sikert és jó tanulást kívánok! Előszó Előszó A Pézügyi számítások I. a Miskolci Egyetem közgazdász appali, kiegészítő levelező és posztgraduális kurzusai oktatott pézügyi tárgyak feladatgyűjteméyéek az első darabja. Tematikája elsősorba a

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

A SOKASÁGI ARÁNY MEGHATÁROZÁSÁRA IRÁNYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS MINTÁK ESETÉN LOLBERT TAMÁS 1

A SOKASÁGI ARÁNY MEGHATÁROZÁSÁRA IRÁNYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS MINTÁK ESETÉN LOLBERT TAMÁS 1 ÓDSZERTAI TAULÁYOK A SOKASÁGI ARÁY EGHATÁROZÁSÁRA IRÁYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS ITÁK ESETÉ LOLBERT TAÁS 1 A ckk ő célja aak vzsgálata, hogy az elleőrzés gyakorlatba széles körbe haszált

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK ELTE Regonáls Földrajz Tanszék 2005. 1 2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK 2.1 Terület statsztka és térelemzés A kutatás cél, a főbb vzsgálat témakörök (hpotézsek) meghatározása, a

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Pókháló-entrópia mint új rendszervizsgálati megközelítés a területi elemzésekben

Pókháló-entrópia mint új rendszervizsgálati megközelítés a területi elemzésekben DR. GODA PÁL DR. TÓTH TAMÁS Pókháló-etróa mt ú redszervzsgálat megközelítés a terület elemzésekbe Gyakra szembesülük azzal a kérdéssel, hogy mtől lesz egy felesztés stratéga fetartható. Mt s elet a fetarthatóság,

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

A gabonavertikum komplex beruházás-elemzés módszertani fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre

A gabonavertikum komplex beruházás-elemzés módszertani fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre A gabonavertkum komplex beruházás-elemzés módszertan fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre 1. Bevezetés A gabonavertkum komplex beruházás-elemzés módszertan fejlesztése

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

Kombinatorikus optimalizálás jegyzet TARTALOM

Kombinatorikus optimalizálás jegyzet TARTALOM Kmbatrkus ptmalzálás egyzet az elıadás és a kadtt szakrdalm alapá Készítette: Schmdt Péter Alk. Mat., II. évf. 00-0 TARTALOM KOMBINATORIKUS OPTIMALIZÁLÁS... HALMAZOK... Halmaz lefedése... Sperer-redszerek...

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Keresztkorreláció vizsgálata statisztikai teszttel

Keresztkorreláció vizsgálata statisztikai teszttel SZAKDOLGOZAT Keresztkorrelácó vzsgálata statsztka teszttel Készítette: Balogh Bertalan kéma BSc szakos hallgató Témavezető: Tóth Gergely egyetem docens Eötvös Loránd Tudományegyetem, Természettudomány

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

1. Holtids folyamatok szabályozása

1. Holtids folyamatok szabályozása . oltds folyamatok szabályozása Az rányított folyamatok jelentés részét képezk a lassú folyamatok. Ilyenek például az par környezetben található nagy méret kemencék, desztllácós oszlopok, amelyekben valamlyen

Részletesebben

1. Mi az érték és a hasznosság kapcsolata, és a hasznosság definíciója!

1. Mi az érték és a hasznosság kapcsolata, és a hasznosság definíciója! . M z éték és hszosság kpcsolt, és hszosság defícój! Az éték, hszosság egy embebe, egy embe sztuácób lkul k, egy yg jószág, egy tágy ömgáb hszotl. Hszosságot tuljdoítuk mdeek legye z yg vgy em yg jószág,

Részletesebben

MINŐSÉGÜGYI ELJÁRÁS SZOCIÁLIS, EGÉSZSÉGÜGYI ÉS GYERMEKVÉDELMI IRODA FOLYAMATSZABÁLYOZÁSA

MINŐSÉGÜGYI ELJÁRÁS SZOCIÁLIS, EGÉSZSÉGÜGYI ÉS GYERMEKVÉDELMI IRODA FOLYAMATSZABÁLYOZÁSA SZOCIÁLIS, EGÉSZSÉGÜGYI ÉS GYERMEKVÉDELMI IRODA FOLYAMATSZABÁLYOZÁSA 1 1. AZ ELJÁRÁS CÉLJA: Az eljárás célja, hogy végrehajtásra kerüljeek a Polgármester Hvatal Szocáls, Egészségügy és Gyermekvédelm Iroda

Részletesebben

Területi különbségek a hazai egészségturizmus kínálatában

Területi különbségek a hazai egészségturizmus kínálatában KÖZLEMÉNYEK DR. ÁCS PONGRÁC LACZKÓ TAMÁS Terület különbségek a haza egészségturzmus kínálatában Bevezetés Napjankban az egészségturzmus különböző formá egyre jelentősebb szerepet játszanak a vlág turzmusában,

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők

Részletesebben

Bevezetés. 1 A pénz időértékének elve. Befektetés pénzáram grafikonja. 1.1. ábra - Befektetés pénzáram grafikonja

Bevezetés. 1 A pénz időértékének elve. Befektetés pénzáram grafikonja. 1.1. ábra - Befektetés pénzáram grafikonja Bevezetés A Pézügyta feladatgyűjteméy a Pézügyta tatágy gyakolataihoz készült példatá első észe. Az oktatási segédlet a pézügyi számítások világába vezeti be az olvasót. Bá az oktatási segédletbe sok képlet

Részletesebben

Vályogos homoktalaj terepprofil mérése

Vályogos homoktalaj terepprofil mérése Vályogos hooktalaj terepprofl érése Pllnger György Szent István Egyete, Gépészérnök Kar Folyaatérnök Intézet, Járűtechnka Tanszék PhD hallgató, pllnger.gyorgy@gek.sze.hu Összefoglalás A terepen haladó

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez [ξ ] Módszertai kísérlet az életpálya fogalmáak formalizálására Előtaulmáy a fiatal biológusok életpályakutatását célzó támogatott projekthez Soós Sádor ssoos@colbud.hu; 2009/9 http://www.mtakszi.hu/kszi_aktak/

Részletesebben

A bruttó hazai termék (GDP) növekedéséhez való hozzájárulás

A bruttó hazai termék (GDP) növekedéséhez való hozzájárulás Mûhely Anwar Klára, a KSH vezető tanácsosa E-mal: Klara.Anwar@ksh.hu Szôkéné Boros Zsuzsanna, a KSH osztályvezetője E-mal: Zsuzsanna.Boros@ksh.hu A bruttó haza termék (GDP) növekedéséhez való hozzájárulás

Részletesebben

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A Bíráló véleméy SzabóZoltá: A Geometrc Approach or the Cotrol o Swtched ad LPV Systems (Kapcsolt és LPV redszerek ráyítása geometra megközelítésbe) c. MTA doktor (DSc) értekezésről Az értekezés az ráyíthatóság,

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy KHF/438-3/008. egedélyszámo 008..0. időpottól taköyvi egedélyt kapott Educatio Kht. Kompeteciafejlesztő oktatási program kerettaterv

Részletesebben

KARSZTFEJLŐDÉS XVI. Szombathely, 2011. pp. 247-260. A MISKOLCI EGYETEMI KÚT MÉRT PARAMÉTEREINEK ELEMZÉSE MODERN GEOMATEMATIKAI MÓDSZEREKKEL

KARSZTFEJLŐDÉS XVI. Szombathely, 2011. pp. 247-260. A MISKOLCI EGYETEMI KÚT MÉRT PARAMÉTEREINEK ELEMZÉSE MODERN GEOMATEMATIKAI MÓDSZEREKKEL KARSZTFEJLŐDÉS XVI. Szombathely, 011.. 47-60. A MISKOLCI EGYETEMI KÚT MÉRT PARAMÉTEREINEK ELEMZÉSE MODERN GEOMATEMATIKAI MÓDSZEREKKEL DARABOS ENIKŐ-SZŰCS PÉTER Mskolc Egyetem, Műszak Földtudomány Kar,

Részletesebben

Kontra József A pedagógiai kutatások módszertana

Kontra József A pedagógiai kutatások módszertana Kotra József A pedagógiai kutatások módszertaa egyetemi jegyzet A kiadváyt A kompetecia-alapú pedagógusképzés regioális szervezeti, tartalmi és módszertai fejlesztése (TÁMOP - 4.1..-08/1/B-009-0003) című

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

BEVEZETÉS A STATISZTIKÁBA

BEVEZETÉS A STATISZTIKÁBA MEZEI ELEMÉR BEVEZETÉS A STATISZTIKÁBA Egyetem egyzet Kolozsvár 004-005 TARTALOMJEGYZÉK I. A STATISZTIKA RÖVID TÖRTÉETE... 5 II. A STATISZTIKA ALAPFOGALMAI... 9.. STATISZTIKAI SOKASÁG... 9.. STATISZTIKAI

Részletesebben

ISMERETEK ÉS VÉLEMÉNYEK A NONPROFIT SZEKTOR SZERVEZETEIRŐL Egy empirikus kutatás tapasztalatai a Nyugat-Dunántúlon

ISMERETEK ÉS VÉLEMÉNYEK A NONPROFIT SZEKTOR SZERVEZETEIRŐL Egy empirikus kutatás tapasztalatai a Nyugat-Dunántúlon csz23_csz12 skadi.qxd 2010.06.10. 10:58 Page 5 ELMÉLETILEG ISMERETEK ÉS VÉLEMÉNYEK A NONPROFIT SZEKTOR SZERVEZETEIRŐL Egy empirikus kutatás tapasztalatai a Nyugat-Duátúlo Nárai Márta Bevezetés A civil

Részletesebben

Foglalkoztatáspolitika. Modellek, mérés.

Foglalkoztatáspolitika. Modellek, mérés. Foglalkoztatáspoltka. Modellek, mérés. Galas Péter Budapest, 20 Galas Péter, 20 Kézrat lezárva: 20. júnus Bevezetés A tananyag célja a foglalkoztatáspoltka közgazdaságtan szempontú elemzésében és értékelésében

Részletesebben

A lánc viszonyszám: A lánc viszonyszám számítási képlete:

A lánc viszonyszám: A lánc viszonyszám számítási képlete: A lánc viszonyszám: Az idősor minden egyes tagját a közvetlenül megelőzővel osztjuk, vagyis az idősor első évének, vagy időszakának láncviszonyszáma nem számítható. A lánc viszonyszám számítási képlete:

Részletesebben

ERP beruházások gazdasági értékelése

ERP beruházások gazdasági értékelése Rózsa Tünde 1 ERP beruházások gazdaság értékelése 1 DE ATC AVK Gazdaság- és Agrárnformatka Tanszék, Debrecen, Böszörmény u. 138 Absztrakt. Egy ERP rendszer bevezetése mnden esetben nagy anyag megterhelést

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy a Nemzeti Fejlesztési Terv Humáerőforrás-fejlesztési Operatív Program 3... közpoti program (Pedagógusok és oktatási szakértők

Részletesebben

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában

Részletesebben

Hódi Éva DOHÁNYZÁS ÉS ALKOHOLFOGYASZTÁS A FIATALKORÚAK KÖRÉBEN*

Hódi Éva DOHÁNYZÁS ÉS ALKOHOLFOGYASZTÁS A FIATALKORÚAK KÖRÉBEN* Origial scietific paper Hódi Éva DOHÁNYZÁS ÉS ALKOHOLFOGYASZTÁS A FIATALKORÚAK KÖRÉBEN* Egy körkérdés alkalmával az amerikai középiskolák mide ötödik diákja bevallotta, hogy hetete egyszer leissza magát,

Részletesebben

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez)

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez) iíiíi á HlftADÁSfCCHNIKAI TUOOHANfOS EGYíSBLIT (APJA KULCSÁR GÁBOR Híradástechikai Ipari Kutató Itézet Algoritmus poligook lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógép adatelőkészítés patter

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

STATISZTIKA 1. alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás idősorok PÉLDATÁR

STATISZTIKA 1. alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás idősorok PÉLDATÁR STATISZTIKA 1. PÉLDATÁR alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás idősorok A FELADATOK MEGOLDÁSAIT A www.mateking.hu OLDALON A STATISZTIKA 1 MENÜPONTBAN

Részletesebben

Anyagok a föld mélyérôl

Anyagok a föld mélyérôl Ayagok a föld mélyérôl 2. Földgázból műayag Középpotba az acetilé 2.1. Az acetilé (eti) molekulájába a széatomok között háromszoros kovales kötés va Molekula eve Molekula szerkezete 2.3. Az acetilé l-addíciója

Részletesebben

TUDOMÁNYOS KÖZLEMÉNYEK 11. ÁLTALÁNOS VÁLLALKOZÁSI FÕISKOLA 2004 SZEPTEMBER SZÁMOK PIACOK EMBEREK. LIPÉCZ GYÖRGY: Adótáblák és társadalmi viszonyok

TUDOMÁNYOS KÖZLEMÉNYEK 11. ÁLTALÁNOS VÁLLALKOZÁSI FÕISKOLA 2004 SZEPTEMBER SZÁMOK PIACOK EMBEREK. LIPÉCZ GYÖRGY: Adótáblák és társadalmi viszonyok 34567890345678903456789034567890 34567890345678903456789034567890 34567890345678903456789034567890 34567890345678903456789034567890 34567890345678903456789034567890 34567890345678903456789034567890 34567890345678903456789034567890

Részletesebben

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív Iskolakultúra 202/3 Sátha Kálmá Kodoláyi Jáos Főiskola Neveléstudomáyi Taszék Numerikus problémák a kvalitatív megbízhatósági mutatók meghatározásáál A taulmáy a kvalitatív vizsgálatok megbízhatósági problémáiak

Részletesebben

Szegedi Tudományegyetem Gazdaságtudományi Kar. Petres Tibor Tóth László. STATISZTIKA I. kötet

Szegedi Tudományegyetem Gazdaságtudományi Kar. Petres Tibor Tóth László. STATISZTIKA I. kötet Szeged Tudománegetem Gazdaságtudomán Kar Petres Tbor Tóth László STATISZTIKA I. kötet Szerzők: Dr. Petres Tbor, PhD egetem docens Statsztka és Demográa Tanszék Tóth László PhD-hallgató Gazdaságtudomán

Részletesebben

Matematikai statisztikai elemzések 5.

Matematikai statisztikai elemzések 5. Matematikai statisztikai elemzések 5. Kapcsolatvizsgálat: asszociáció, vegyes kapcsolat, korrelációszámítás. Varianciaanalízis Prof. Dr. Závoti, József Matematikai statisztikai elemzések 5.: Kapcsolatvizsgálat:

Részletesebben

BELSŐ GAZDASÁGOSSÁG A TERMELÉSI FOLYAMATBAN

BELSŐ GAZDASÁGOSSÁG A TERMELÉSI FOLYAMATBAN Kss Ferenc László BELSŐ GAZDASÁGOSSÁG A TERMELÉSI FOLYAMATBAN A szerzőnek a Verseny és szabályozás első kötetében 2007-ben megjelent sorozatndító ckke a szabályozás gazdaságtana történelmének és főbb témának

Részletesebben

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet) oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

Szerkesztõbizottság/Editorial Board. Szer kesz tõ ség/editors

Szerkesztõbizottság/Editorial Board. Szer kesz tõ ség/editors CIVIL SZEMLE WWW. CIVILSZEMLE.HU VII. ÉVFOLYAM 1. SZÁM Szerkesztõbizottság/Editorial Board Bíró Edre, Belia Aa, Harsáyi László, Kirscher Péter, Kuti Éva, Marschall Miklós, Miszlivetz Ferec, Nagy Ádám,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

SPORTPÉNZÜGYEK. r m. A pénz időértéke.

SPORTPÉNZÜGYEK. r m. A pénz időértéke. SPORTPÉNZÜGYEK A péz időétéke. A ai pézösszeg azét étékesebb, it egy későbbi időpotba esedékes pézösszeg, et a befektető eek évé jövedelee, kaata tehet szet Kaat: A péz áa Haszálója azét fizet, et a pézt

Részletesebben

9. Visszavezetés egyedi felsorolókkal

9. Visszavezetés egyedi felsorolókkal 9. Vsszavezetés egyed felsorolókkal Ebben a fejezetben a hét általános programozás tételt olyan feladatok megoldására alkalmazzuk, ahol nem lehet nevezetes felsorolókat sználn, azaz a Frst(), Next(), End()

Részletesebben

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl Közgazdasági Szemle, LII. évf., 2005. júius (576 598. o.) BUGÁR GYÖNGYI UZSOKI MÁTÉ Nemzetközi részvéy befektetési lehetõségek Közép- és Kelet-Európa új európai uiós tagállamaiak szemszögébõl Taulmáyuk

Részletesebben

AZ ARCHASADÉKOK EPIDEMIOLÓGIAI VIZSGÁLATA. Doktori (Ph.D.) értekezés HORVÁTH-PUHÓ ERZSÉBET

AZ ARCHASADÉKOK EPIDEMIOLÓGIAI VIZSGÁLATA. Doktori (Ph.D.) értekezés HORVÁTH-PUHÓ ERZSÉBET PÉCSI TUDOMÁNYEGYETEM EGÉSZSÉGTUDOMÁNYI KAR EGÉSZSÉGTUDOMÁNYI DOKTORI ISKOLA Vezető: Prof. Dr. Bóds József egyetem tanár, dékán AZ ARCHASADÉKOK EPIDEMIOLÓGIAI VIZSGÁLATA Doktor (Ph.D.) értekezés HORVÁTH-PUHÓ

Részletesebben

Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK. Doktori (PhD) értekezés

Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK. Doktori (PhD) értekezés Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK FELHASZNÁLÁSÁVAL Doktor (PhD) értekezés Témavezető: Dr. Erdély József DSc. egyetem tanár Nyugat-Magyarország

Részletesebben

HosszútávúBefektetések Döntései

HosszútávúBefektetések Döntései VállalatgadaságtaII. HossútávúBefektetések Dötései Előadó: Koma Tímea Tatárgyfelelős: Dr. Illés B. Csaba 27. November 9. A hossútávúbefektetések sajátosságai Rövidebb időre sóló befektetés hossabb időtávra

Részletesebben

A KÉPESSÉ TÉTEL (EMPOWERMENT) LEHETŐSÉGEI A CIVIL TÁRSADALOMBAN

A KÉPESSÉ TÉTEL (EMPOWERMENT) LEHETŐSÉGEI A CIVIL TÁRSADALOMBAN csz23_csz12 skadi.qxd 2010.06.10. 10:58 Page 43 KÖZÖSSÉGEK ÉS CIVIL TÁRSADALOM Bevezetés A KÉPESSÉ TÉTEL (EMPOWERMENT) LEHETŐSÉGEI A CIVIL TÁRSADALOMBAN Lakatos Kiga Jele taulmáyomba megkísérelem körüljári,

Részletesebben

Borsos Attila. Doktori értekezés. Témavezető: Koren Csaba, PhD, egyetemi tanár

Borsos Attila. Doktori értekezés. Témavezető: Koren Csaba, PhD, egyetemi tanár Borsos Attla Közút nfrastrukturáls beavatkozások bztonság hatásának modellezése és optmálása Doktor értekezés Témavezető: Koren Csaba, PhD, egyetem tanár Szécheny István Egyetem Infrastrukturáls Rendszerek

Részletesebben

A mintapontok térinformatikai pontszerű elemzése a cukorrépa (Beta vulgaris L.) termésének és minőségének vizsgálata során

A mintapontok térinformatikai pontszerű elemzése a cukorrépa (Beta vulgaris L.) termésének és minőségének vizsgálata során A mtapotok térformatka potszerű elemzése a cukorrépa (Beta vulgars L.) terméséek és mőségéek vzsgálata sorá Tamás Jáos Buzás Istvá 2 Nagy Ildkó Debrece Egyetem Agrártudomáy Cetrum, Mezőgazdaságtudomáy

Részletesebben

Egyenes-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyenese?

Egyenes-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyenese? Közgazdasági Szemle, LVII. évf., 1. március (1 1. o.) ERDŐS PÉTER ORMOS MIHÁLY ZIBRICZKY DÁVID Egyees-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyeese? Taulmáyuk egyrészt

Részletesebben

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után MATEMATIKA C. évflyam. mdul Srba, egymás utá Készítette: Kvács Kárlyé Matematika C. évflyam. mdul: Srba egymás utá Taári útmutató A mdul célja Időkeret Ajáltt krsztály Mdulkapcslódási ptk Srzat fgalma,

Részletesebben

Külön futamban futnak és külön is értékeljük az Országos Bajnokság és az Amatőr Futam résztvevőit.

Külön futamban futnak és külön is értékeljük az Országos Bajnokság és az Amatőr Futam résztvevőit. Külön futamban futnak és külön is értékeljük az Országos Bajnokság és az Amatőr Futam résztvevőit. A verseny rendezője: Magyar Atlétikai Szövetség megbízásából a Szombathelyi Egyetemi Sportegyesület Közreműködő

Részletesebben

Módszertani leírás a Szigetközben kijelölt mintaterületeinek fatermési és egészségi állapot felvételezéseihez.

Módszertani leírás a Szigetközben kijelölt mintaterületeinek fatermési és egészségi állapot felvételezéseihez. Módszertan leírás a Szgetközben kjelölt mntaterületenek fatermés és egészség állapot felvételezésehez. Készült: az INMEIN projekt keretében. Témafelelősök: Dr. Illés Gábor, Dr. Somogy Zoltán A felvételezések

Részletesebben