Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I o)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)"

Átírás

1 Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls) mérés skála: az egységekhez redelhető smérvértékek (akár számok akár em) alapá csak azt tuduk megállapíta, hogy az egységek az adott smérv szempotából egyezőek-e vagy sem. Műveleteket em tuduk velük végez. Példa: lakhely típusa smérv smérvértéke: főváros, város, község. A mérés szt évleges, hsze ez alapá csak azt tuduk megállapíta, hogy egy egyed más típusú települése él-e mt egy másk egyé, de em modhatuk, hogy a város több vagy obb mt a község. Szté semm értelme em lee ezeket eloszta egymással vagy kvo őket egymásból, még akkor sem ha az smérvértékeket számmal elölék. b. Sorred (ordáls) skála: em csak az smérvértékek külöbsége hordoz formácót, haem azok sorrede s. Példa: érdemegyek (smérvértékek: 1,, 3, 4, 5). Tuduk, hogy ak ötöst kapott, az emcsak eltér attól, ak égyest kapott, haem obba s telesített. Tehát va értelme sorredbe helyez az egyedeket az érdemegy alapá. Ugyaakkor ylvávalóa sem a kvoásak, sem az osztásak em lee értelme: az egyes és a kettes között más a külöbség, mt a kettes és a hármas között. Az sem lee gaz, hogy ak kettest kapott az kétszer olya ó volt, mt ak egyest, vagy, hogy az egyes a ketteshez úgy aráylk, mt a kettes a égyeshez. c. ülöbség (tervallum) skála: az smérvértékek külöbségeek va értelme (va mértékegység s), ugyaakkor az aráyokat em tuduk értelmez. Eek oka, hogy a külöbség skálá mérhető smérvek esetébe a ulla pot ökéyese va kelölve. Példa: Celsus-féle hőmérséklet skála. 10 C és 0 C között a külöbség ugyaay mt 0 C és 30 C között. Ugyaakkor em modhatuk, hogy a 10 C kétszer melegebb, mt az 5 C, vagy, hogy a 0 C pot ayszor melegebb a 10 C-ál, mt a 10 C az 5 C-ál. elátható, hogy eek az az oka, hogy a Celsus-féle skála ulla pota (lletve a 100 C s) ökéyese került megállapításra: 0 C em elet a hőmérséklet háyát. d. Aráyskála: Az smérvértékek aráya s értelmezhetőek, a ulla pot em ökéyese va megállapítva. Példa: az smérv a hav övedelem. Ha valakek 00 ezer fort a hav övedelme, akkor arra yugodta modhatuk, hogy kétszer ay, mt a 100 ezer fortos övedelem és, hogy ez a két övedelem pot úgy aráylk egymáshoz, mt az 1 mlló fortos övedelem az 500 ezres övedelemhez. A ulla pot em ökéyes, hsze a ulla fort övedelem a övedelem háyát elöl. Az smérvek között kapcsolat szorosságát az smérvek mérés skáláától függőe a következő eszközökkel vzsgálhatuk: 1. Mdkét smérv mőség vagy terület (azaz omáls mérés sztű): asszocácó. Az egyk smérv terület vagy mőség (azaz omáls mérés sztű), a másk smérv (változó) pedg meység (azaz legalább külöbség skálá mért): vegyes kapcsolat 3. Mdkét smérv meység: korrelácó.

2 Asszocácó: Megfgyeltük, hogy egy három szíbe (pros, kék, zöld) gyártott termékből a férfak és a ők mey darabot vásároltak. (Azaz két mőség smérvük va: termék szíe, és a vásárló eme). Vao va-e kapcsolat a vásárló eme, és a választott szí között? pros kék zöld összese férfak ők összese Az általáos elölésekkel: pros kék zöld összese férfak f 11 f 1 f 13 f 1. ők f 1 f f 3 f. összese f.1 f. f.3 A fet kotgecatáblába a sorok és az oszlopok utolsó adata peremgyakorságokak evezzük. A feladat megoldásához készítsük el a fet tábla egy olya verzóát, amelybe feltételeztük az smérvek függetleségét. Ha a két smérv függetlee, akkor a gyakorságok kszámíthatóak a peremgyakorságokból a következő módo: f *. f. f Azaz ha a szí és a vásárló eme függetleek leéek egymástól, akkor az f 11 gyakorság helyé a következő gyakorság szerepele: * f.1 f f11 16, Így elkészíthetük a kotgecatáblát a feltételezett gyakorságokkal: pros kék zöld összese férfak 16,875 14,065 14, ők 13,15 10, , összese A taköyv 16. oldalá látható kh-égyzet teststatsztkát a valós és a feltételezett valószíűségekből a következő módo számolhatuk k: r c * f f * f 1 1, ahol r a sorok, c pedg az oszlopok száma. Jele példába: (10 16,875) (15 14,065) (0 14,065) (0 13,15) (10 10,9375) 16,875 14, , ,15 10,9375 (5 10,9375) 1, ,9375 Az, hogy a fet statsztka ullától eltér, már elz, hogy a két smérv között va kapcsolat. Az asszocácó egyk gyakor mérőszámát, a Cramer-féle asszocácós együtthatót a következő módo számolhatuk k: C m(( r 1),( c 1))

3 Ahol a m((r-1),(c-1)) függvéy azt elet, hogy a sorok lletve az oszlopok számából vouk k egyet, és a ksebb értéket vegyük fgyelembe. Azaz, mvel ebbe a példába két sor és három oszlop volt (az összesítő oszlop és sor em számít!) Azaz: 1, 751 C 0,3917 m(( r 1),( c 1)) 801 A Cramer-féle mutató értéke 0 és 1 között értékeket vehet fel. Értéke 0 a két smérv függetlesége, 1 pedg a két smérv determsztkus kapcsolata eseté. A fet érték egy a közepesél gyegébb kapcsolatra utal a vásárló eme, és a választott szí között. Vegyes kapcsolat: Példa: egy vállalatál megfgyeltük a férfak és a ők keresetet (ezer fort/hó): Férfak: 10, 83, 65, 190, 30, 10, 130, 190 ők: 70, 65, 90, 100, 10, 130 Vao va-e összefüggés a kereset (meység smérv) és a em (mőség smérv) között? Az átlagbért és a szórást kszámoluk az egyes kategórákba, azaz a részsokaságokra (ezt em részletezem, a képletek smertek). Az egyes kategórákra (emekre) kszámolt átlagok a részátlagok. észítsük el a táblát a megoldáshoz: em Létszám Átlagbér (ezer ft/hó) (részátlagok, Y ) Szóráségyzet Szórás (ezer ft/hó) férf ,5 53,46 ő 6 95,83 570,14 3,88 összese 14 Illetve számoluk k az átlagbért és a szórást az egész sokaságra (utóbb a teles szórás), azaz férfakra és őkre együttese: Y 11,7 ezer ft/hó, a teles szórás pedg 48,76 ezer ft/hó A taköyv oldalá található meg a módszer részletes leírása. A léyeg, hogy a teles szóráségyezet (σ ) felotható két szóráségyzet összegére: Ahol σ a külső szórás és azt mutata meg, hogy a részátlagok átlagosa meyre térek el a főátlagtól, míg σ a belső szórás és azt mutata meg, hogy az egyes részsokaságokhoz tartozó megfgyelések (a ők lletve külö a férfak) meyre térek el átlagosa a saát részátlaguktól. Láthatuk, hogy ha a fet szóráségyzetekből (lletve a szórásokból) kettőt smerük, a harmadk már azokból kszámolható. A teles szóráségyzetet smerük, hsze az: 48, , A külső szóráségyzet a következő módo számolható k: M 1 8 (14111, 7) 6 (95,8311, 7) ( Y Y ) 499,6 14 1

4 Vagys a külső szóráségyzet em más, mt az egyes részátlagokak a sokaság egészéek átlagától vett égyzetes eltéréséek az egyes részsokaságokba tartozó egyedek számával súlyozott számta átlaga. A belső szóráségyzet tehát: 377, 499,6 1877, 6 Természetese k lehete számol a belső szóráségyzetet s: M , , ,6, am egybe a számításak próbáa s. A 1 14 megoldásuk helyes. A vegyes kapcsolat szorosságáak leírásához a H mutatót haszáluk fel, am em más, mt az Y smérv (fzetés) szóráségyzetéek az X smérv (em) által magyarázott háyada. 499,6 H 1 0,1 377, Azaz ebbe a példába azt találuk, hogy a em a fzetésekbe megfgyelhető külöbségek 1%-át magyarázza. Ez gyege vegyes kapcsolatra utal. orrelácó: ét meység smérv között kapcsolat szorosságát mérhetük ezzel a mutatóval. Példa: a övedelem és a fogyasztás kapcsolatát elemeztük Egyé Fogyasztás Jövedelem (ezer ft) (ezer ft) összese - - Vzsgáluk meg a két smérv között kapcsolat szorosságát! Az egyk kulcsfotosságú statsztka a kovaraca: Y Y X X dydx 1 1 cov( y, x), ahol dy Y Y, dx X X Ha a kovaraca értéke ulla, akkor a két változó között leárs kapcsolat cs. A kovaraca előele a kapcsolat ráyára utal. Poztív kovaraca eseté magasabb x értékekhez általába magasabb y értékeke társulak, míg egatív kovaraca eseté a kapcsolat ráya s egatív, azaz magasabb x értékekhez általába alacsoyabb y értékeke társulak. A kapcsolat szorosságáról azoba a kovaraca em ad táékoztatást.

5 A két smérv között kapcsolat szorosságáak mérésére a kovaracáál alkalmasabb mutató a korrelácós együttható. 1 cov( y, x) r( y, x) y x dy dx 1 dy dx dy dx A korrelácós együttható -1 és 1 között értékeket vehet fel. Ha r=0, akkor a két változó között cs leárs kapcsolat. A korrelácós együttható előele, megőrzve a kovaraca előelét, a kapcsolat ráyára utal. Azaz poztív korrelácós együttható eseté magasabb x értékek általába magasabb y értékekkel párosulak, míg egatív együttható eseté magasabb x értékekhez általába alacsoy y értékek tartozak. Mél közelebb kerül az együttható értéke a 1-hez vagy -1-hez, aál erősebb a kapcsolat. Specáls eset ha r=1 vagy r=-1. Ekkor azt moduk, hogy x és y között determsztkus kapcsolat va, azaz ha smerük x értékét potosa (bzoytalaság, hba élkül) meg tuduk határoz y értékét s. Azaz y=a+b*x, ha r=1, és y=a-b*x, ha r=-1. Számoluk k a korrelácós együttható értékét! dy Egyé Fogyasztás övedelem (ezer ft) (ezer ft) dy dx dy dx dydx összese dx dydx cov( y, x) 80, azaz va kapcsolat a övedelem és a fogyasztás között, 7 ráya pedg poztív. dy dx (, ) 0, dy dx 1 1 r y x A fet korrelácós együttható erős, poztív kapcsolatra utal a övedelem és a fogyasztás között. Magasabb övedelmekhez magasabb fogyasztás társul. A korrelácós együtthatóból számítható a determácós együttható (r ), amelyek értelmezése a H együtthatóhoz hasoló: megmutata, hogy x változó segítségével az y változó szóráségyzetéek mekkora háyadát magyaráztuk. r 0,934 0,87, azaz a övedelem a fogyasztás szóráségyzetéek 87,%-át magyarázza.

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i . konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra) BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970 Dr. Herma Sádor Dr. Rédey Katal Statsztka I. PÉCSI TUDOMÁNYEGYETEM KTK Közgazdaságtudomáy Kar Alapítva: 97 Mde jog fetartva. Jele köyvet vagy aak részletet a szerző egedélye élkül bármlye formába vagy

Részletesebben

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

2.10. Az elegyek termodinamikája

2.10. Az elegyek termodinamikája Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

NEMPARAMÉTERES ELJÁRÁSOK

NEMPARAMÉTERES ELJÁRÁSOK Kály Zoltá: Statsztka II. NEMPARAMÉTERES ELJÁRÁSOK Az eddgek soá találkoztuk má olya eláásokkal, melyek a változók középétékét vzsgálták: egymtás-, páos-, függetle mtás t-póba, egy- és többszempotos vaaca

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

REGIONÁLIS ELEMZÉSI MÓDSZEREK. c. készülő egyetemi tankönyvből, szerkesztő: Nemes Nagy József várható megjelenés 2004., ELTE Eötvös Kiadó

REGIONÁLIS ELEMZÉSI MÓDSZEREK. c. készülő egyetemi tankönyvből, szerkesztő: Nemes Nagy József várható megjelenés 2004., ELTE Eötvös Kiadó Kézrat részletek a REGIONÁLIS ELEMZÉSI MÓDSZEREK c. készülő egetem takövből, szerkesztő: Nemes Nag Józse várható megjeleés 004., ELTE Eötvös Kadó 5 TERÜLETI EGYENLŐTLENSÉGEK 5. Fogalm keretek Az egelőtleség

Részletesebben

Laboratóriumi mérések

Laboratóriumi mérések Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

STATISZTIKAI MÓDSZEREK

STATISZTIKAI MÓDSZEREK HAJTMAN BÉLA STATISZTIKAI MÓDSZEREK Egetem egzet Pázmá Péter Katolkus Egetem, Bölcsészettudomá Kar Plscsaba, 0. Bevezetés Az első félévbe (Bostatsztka) a statsztka alapat smertük meg. Természetese ez

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

ÁLTALÁNOS STATISZTIKA

ÁLTALÁNOS STATISZTIKA Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

VASBETON ÉPÜLETEK MEREVÍTÉSE

VASBETON ÉPÜLETEK MEREVÍTÉSE BUDAPET MŰZAK É GAZDAÁGTUDOMÁY EGYETEM Építőmérök Kar Hdak és zerkezetek Taszéke VABETO ÉPÜLETEK MEREVÍTÉE Oktatás segédlet v. Összeállította: Dr. Bód stvá - Dr. Farkas György Dr. Kors Kálmá Budapest,.

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

NYERS GÁBOR: Kontrolling és a költségvetés folyamatos ellenõrzése a PSZÁF gyakorlatában 518

NYERS GÁBOR: Kontrolling és a költségvetés folyamatos ellenõrzése a PSZÁF gyakorlatában 518 Tartalom KÖZPÉNZÜGYEK MONETÁRIS ÉS FISKÁLIS RENDSZER ERDÕS TIBOR: Stagflácó és moetárs poltka 36 BÁGER GUSZTÁV PULAY GYULA: A költségvetés tervezés makrogazdaság kockázataak elemzése 384 KUTASI GÁBOR:

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Valószínűségszámítás és matematikai statisztika. Ketskeméty László

Valószínűségszámítás és matematikai statisztika. Ketskeméty László Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

VI.Kombinatorika. Permutációk, variációk, kombinációk

VI.Kombinatorika. Permutációk, variációk, kombinációk VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti

Részletesebben

A lakosság egészségi állapotát befolyásoló tényezők

A lakosság egészségi állapotát befolyásoló tényezők A lakosság egészség állapotát befolyásoló téyezők Számos kockázat téyező befolyásolja a lakosság egészség állapotát. Szükséges eze kockázat téyezőkre való odafgyelés az egyé, a család, a házorvos, a mukahely,

Részletesebben

MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA

MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA ÁR-01 OLDAL: 1. 1. AZ ELJÁRÁS CÉLJA Szabályoz, hogy a szervezete belül kk, hol és mlye dötéseket hozak meg. Beazoosíta,

Részletesebben

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek Termékjellemzők optmalzálásáál haszálatos formácós módszerta 1 Bevezetés Koczor Zoltá, Némethé Erdőd Katal, Kertész Zoltá, Szecz Péter Óbuda Egyetem, RKK, Mőségráyítás és Techológa Szakcsoport Napjak aktuáls

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör Koeláció- és egesszió-aalízis Az is előfodulhat, hogy két változó között ics semmilye kapcsolat: Az X és Y véletle változók között az alábbi ábáko Az állat becsült ko pozitív összefüggés em lieáis összefüggés

Részletesebben

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma

Részletesebben

HAGYOMÁNYOS MÓDSZEREK ÉS ÚJ KIHÍVÁSOK AZ ÁGAZATON BELÜLI KERESKEDELEM MÉRÉSÉBEN* ERDEY LÁSZLÓ

HAGYOMÁNYOS MÓDSZEREK ÉS ÚJ KIHÍVÁSOK AZ ÁGAZATON BELÜLI KERESKEDELEM MÉRÉSÉBEN* ERDEY LÁSZLÓ ÓDSZERTANI TANULÁNYOK HAGYOÁNYOS ÓDSZEREK ÉS ÚJ KIHÍVÁSOK AZ ÁGAZATON BELÜLI KERESKEDELE ÉRÉSÉBEN* ERDEY LÁSZLÓ Az ágazato belül kereskedelem témaköre az 960-as évekbe, az Európa Gazdaság Közösség létrehozásával

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószí ségszámítás és statisztika oktatási segédayag Kupá Pál Tartalomjegyzék fejezet Valószí ségszámítási alapfogalmak 5 Eseméyek 5 M veletek eseméyekkel 5 2 A valószí ség fogalma 7 3 Valószí ségi változók

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Óbudai Egyetem. Doktori (PhD) értekezés. Mamdani-típusú következtetési rendszeren alapuló kockázatkiértékelő módszerek optimalizálása

Óbudai Egyetem. Doktori (PhD) értekezés. Mamdani-típusú következtetési rendszeren alapuló kockázatkiértékelő módszerek optimalizálása Óbuda Egyetem Dotor (PhD) érteezés Mamda-típusú öveteztetés redszere alapuló ocázatértéelő módszere optmalzálása Tóthé Laufer Edt Témavezető: Rudas Imre, DSc Taács Márta, PhD Alalmazott Iformata és Alalmazott

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

A racionális és a naiv várakozások stabilitásának összehasonlítása

A racionális és a naiv várakozások stabilitásának összehasonlítása A racoáls és a av várkozások stabltásáak összehasolítása 689 Közgazaság Szemle, XLVI évf, 1999 júlus augusztus (689 7 o SIMONOVITS ANDRÁS A racoáls és a av várakozások stabltásáak összehasolítása A moer

Részletesebben

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002.

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002. A geodéza tárgya, felosztása, alapfogalmak NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérök Szak Dr. Bácsatya László GEODÉZIA I. Kézrat Sopro, 00. . A geodéza tárgya, felosztása, alapfogalmak A gyűjtögető,

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

A születéskor várható élettartam nemek szerinti térbeli különbségei

A születéskor várható élettartam nemek szerinti térbeli különbségei DR. BÁLINT LAJOS A születéskor várható élettartam emek szert térbel külöbsége A taulmáy a 005 009 között, születéskor várható élettartamok fotosabb kstérség ellemzőt mutata be a eleleg hatályos besorolás

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+ I ALAPFOGALMAK I BEVEZETİ Jelölése: K: véletle ísérlet, ω : elem eseméy, { : } Ω= ω : eseméytér, F Ω : eseméyalgebra, A F : eseméy, Ω F : bztos eseméy Mővelete eseméyeel: összegzés: A+B (halmazuó), szorzás:

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

2.6. Az ideális gáz fundamentális egyenlete

2.6. Az ideális gáz fundamentális egyenlete Fejezetek a fzka kéából.6. Az deáls gáz fudaetáls egyelete A legegyszerűbb terodaka redszer az u. deáls gáz. Erre jellező, hogy a részecskék között az egyetle kölcsöhatás a rugalas ütközés, és a részecskék

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

Integrált Intetnzív Matematika Érettségi

Integrált Intetnzív Matematika Érettségi tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

1. Operáció kutatás matematikát matematikai statisztika és számítástechnika. legjobb megoldás optimum operációkutatás definíciója :

1. Operáció kutatás matematikát matematikai statisztika és számítástechnika. legjobb megoldás optimum operációkutatás definíciója : 1. Operácó kutatás Az operácó kutatás 1940 ó ta smeretes. Bár a techka felő dés, a termelés folamatok szervezése már korábba s géelte a matematka eszkö zö k felhaszálását, - amelekbe fellelhető k az operácó

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor MISKOLCI EGYETEM Gépgyártástechnológa Tanszék Mskolc - Egyetemváros ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET Összeállította: Dr. Szabó Sándor A orgácsoló megmunkálásokhoz

Részletesebben

1. A lehetséges finanszírozási források és azok ára

1. A lehetséges finanszírozási források és azok ára 3. kozultáció 1. A lehetséges fiaszírozási források és azok ára 1.1. A fiaszírozás belső forrásai 1.2. Külső fiaszírozási források 1.3. A fiaszírozási források ára 1.4. A pézügyi lehetőségek egy részéek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek megoldásához!

Részletesebben

Az iparosodás és az infrastrukturális fejlődés típusai

Az iparosodás és az infrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa

Részletesebben

Július Augusztus Szeptember NAPRAKÉSZ VAGYOK! Üzleti gazdaságtanból. 2011-ben. Október November December

Július Augusztus Szeptember NAPRAKÉSZ VAGYOK! Üzleti gazdaságtanból. 2011-ben. Október November December 011 Júlus Augusztus Szeptember Határdő Feladat, program Üzlet gazdaságtaból 011-be Október November December Nevezetességek:. Vállalkozó jogvszoy Sul-Cég eve:... Sul-Cég székhelye:... Képvselője (a jog

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

PhD értekezés. Gyarmati József

PhD értekezés. Gyarmati József 2 PhD értekezés Gyarmat József 2003 3 ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM Hadtechnka és mnõségügy tanszék PhD értekezés Gyarmat József Többszempontos döntéselmélet alkalmazása a hadtechnka eszközök összehasonlításában

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA A Ga-B OLVADÉK TRMODINAMIKAI OPTIMALIZÁLÁSA Végh Ádám, Mekler Csaba, Dr. Kaptay György, Mskolc gyetem, Khelyezett Nanotechnológa tanszék, Mskolc-3, gyetemváros, Hungary Bay Zoltán Közhasznú Nonproft kft.,

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Folyamatos működésű anyagmozgató gépek, géprendszerek teljesítőképességének meghatározása

Folyamatos működésű anyagmozgató gépek, géprendszerek teljesítőképességének meghatározása Folymtos műödésű ygmozgtó gépe, gépredszere telesítőépességée meghtározás A folymtos műödésű ygmozgtó gépe ellemzése telesítőépesség meghtározás szempotából: helyhez ötött, telepített gépe, mozgtás útvolt,

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK ELTE Regonáls Földrajz Tanszék 2005. 1 2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK 2.1 Terület statsztka és térelemzés A kutatás cél, a főbb vzsgálat témakörök (hpotézsek) meghatározása, a

Részletesebben

Románia országimage-e a német nyelvterületeken élők szemében

Románia országimage-e a német nyelvterületeken élők szemében XI. Erdély Tudomáyos Dákkör Kofereca Romáa országmage-e a émet yelvterületeke élők szemébe Témavezető: Szerző: Bagoly-Smó Péter Boér Alíz Taársegéd, BBTE, Földrajz Kar BBTE, Földrajz Kar, Turzmusföldrajz,

Részletesebben