A Sturm-módszer és alkalmazása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Sturm-módszer és alkalmazása"

Átírás

1 A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle egyelőtleség, derválta stb A turm-módszerrel, számos lye úgymod az algebra, mérta, trgoometra, és aalízs határá elhelyezedő feladat, elem eszözöel oldható meg A módszert főleg változót tartalmazó, szmmetrus fejezése eseté alalmazhatju, amor az smeretlee valamlye ötése vagy feltétele tesze eleget A módszer léyege rövde: álladó összeg (vagy szorzat) mellett, valamely étváltozós fejezés változását övetjü, mözbe a változóat úgy özelítjü egymáshoz, hogy az összegü (lletve a szorzatu) álladó maradjo A változáso megfgyeléséből, meghatározva az egy változó értéét, újraezdjü az eljárást, de ezúttal változó eseté Véges lye lépés utá, az eljárásu véget ér A módszer léyegét a övetező feladato segítségével jobba megérthetjü A módszer ezdetét a övetező ét tulajdoság jelet: Alalmazás: Ha, y R és + y = álladó, aor a P(, y) = y szorzat: a) övesz, ha az y ülöbség csöe, b) csöe, ha az y ülöbség övesz Bzoyítás: Nylvá feltehető, hogy < y, eor létez olya e > 0 amelyre e < y Így az + e és y e számo özelebb vaa egymáshoz, mt az és y számo, az < + e < y e < y elredezés matt Mvel e < y, mdeéppe e < y () Eor P( + e, y e) P(, y) = e( y e) > 0, és ezért az a) állítás gaz Az e és y + e számo yílvá távolabb vaa egymástól, mt az és y számo Az e < y < y + e elredezés matt, hsze y < 0, mégább y < e () Eor felírható, hogy P( e, y + e) P(, y) = e( y e) < 0, és ezért a b) állítás s gaz Alalmazás: Ha, y R + és y = P, aor az (, y) = + y összeg: a) csöe, ha az y ülöbség csöe, b) övesz, ha az y ülöbség övesz

2 Bzoyítás: Nylvá feltehető, hogy 0 < < y, eor létez olya > amelyre a és y < Így y y számo özelebb vaa egymáshoz, mt az és y számo, a 0 < < < < y elredezés matt Mvel y < <, ezért mdeéppe y < < () Eor y y, (, y) = ( ) < 0, ezért az a) állítás gaz A b) állítás bzoyítása s hasoló, ott ellebe a (0,) feltételt ell fgyelembe ve A továbbaba terjesszü az előző tulajdoságoat a lasszus számta- és mérta özepe özött egyelőtleség bzoyítására Alalmazás: Ha mde eseté,,, R +, aor feáll az egyelőtleség Bzoyítás: Feltételezzü, hogy 0, és legye P(,,, ) =, valamt + + =, bármely eseté Rögzítsü az,,, értéeet, és az, változó marad Tehát + = ( ) álladó Az Alalmazás alapjá, ha az ülöbség csöe, aor a P(,,, ) szorzat övesz De, ezért az ülöbség aor csöe a legtöbbet, ha éppe = Tehát P(,,, ) P,,, ( ) () Továbbá + + = = Az előbbe mtájára rögzítsü az, 5,, számoat, az, pedg legye változó Tehát ( ) + = ( ) álladó Továbbá az csöeése, a az 5 P(,,, ) szorzat öveedését déz elő De ( ) : ( ) =, így az előzőe alapjá azt apju, hogy P,,, P,,,, () Köye belátható, hogy ha tovább folytatju az eljárást, aor végül s

3 P(,,, ) P,,, = adód, am éppe a bzoyítadó egyelőtleséget jelet Megjegyzése: A bzoyítottaból megállapítható, hogy: ) Ha az + + = összeg álladó, aor a P(,,, ) = szorzat aor a legagyobb, ha = = = ) Ha az = P szorzat álladó, aor az (,,, ) = összeg aor a legsebb, ha = = = Alalmazás: Ha,,, 0 és = π, aor π s s Bzoyítás: A szmmetra matt feltételezhető, hogy 0 () Rögzítsü az,,, értéeet, így + = álladó (), ahol = π Legye továbbá E(,,, ) = s Közelítsü az, értéeet úgy, hogy az összegü maradjo Két lye érté tehát + e és e, ahol 0 < e < Eor E( + e, e,,, ) E(,,, ) = [ cos( e ) cos( ) ] s () De 0 < e < < π, ezért cos( e) > cos( ), tehát a () sorába levő ülöbség poztív Tehát, ha csöe, és + = álladó, aor E(,,, ) övesz Az () és = π alapjá, π (elleező esetbe + + > π lee) π Tehát a () feltétellel, az távolság a legsebb, ha = Így π E(,,, ) E,,, Most az ( ) π, = és + = (álladó) feltétel mellett megsmételjü az eljárást és hasolóa apju, hogy π π π E(,,, ) E,,,, Még (-)-szer megsmételve az eljárást, végül s a lácszabály alapjá azt apju, hogy E(,,, ) E π, π,, π s π = vagys éppe amt bzoyíta aartu

4 5 Alalmazás: Ha,,, 0 és =, aor ( + ) ( + ) Bzoyítás: Feltételezzü, hogy 0 () Rögzítsü az,,, értéeet, így = P () álladó, ahol P = : ( ) Legye E(,,, ) = ( + ), > és < Eor özelebb va az számhoz, mt az az -höz, és < < Tehát felírható, hogy: E(,,,, ) E(,,, ) = ( ) ( + ) < 0 Tehát, ha az, értéeet úgy özelítjü egymáshoz, hogy a szorzatu P = álladó marad, az E(,,, ) fejezés csöe Az = és az () alapjá bztosa gaz, hogy Tehát az ülöbség a legsebb, ha =, így E(,,, ) E(,,, ) Az eljárás smételt alalmazásával, a lácszabály alapjá azt apju, hogy E(,,, ) E(,,, ) ( ) ( + ) + = + Ezzel tulajdoéppe a egyelőtleséget gazoltu A továbbaba, bzoyos megszorításoal szorzato legsebb, vagy összege legagyobb értéét vzsgálju 6 Alalmazás: Ha összeg mamumát Megoldás: Feltételezzü, hogy változó Eor, y, z 0, és y z =, határozzu meg az (, y, z ) = + y + z 0 < y z Rögzítsü a z értéét és, y maradjo y = álladó Ha az y ülöbség övesz, aor az (, y, z ) összeg z csöe Az y ülöbség aál agyobb, mél sebb az értée Mvel = =, ezért yz (, y, z), y, z = + y + z Ezúttal most = a legsebb elérhető érté Így y z =, és a z y ülöbség

5 öveedésével az y + z összeg csöe Mvel y = =, ezért z y = a legsebb elérhető érté De eor az (, y, z ),, = + + = Alalmazás: Ha, y, z 0 és + y + z =, aor Bzoyítás: A feladatot átírva azt apju, hogy: y z = alapjá yz + z + y + y + z + z =, tehát y + yz + z yz y + z + Ha most alalmazzu az +, y +, z + értéere a számta és a harmous özepe özött egyelőtleséget, aor + + y + + z + = y + z + vagys + + Így ha, y, z 0 és + y + z =, elegedő bzoyíta, hogy: + y + z + E(, y, z) = y + yz + z yz (*) Feltételezzü, hogy 0 < y z (), és rögzítsü a z értéét Tehát + y = z (álladó) () Közelítsü az < y értéeet egymáshoz úgy, hogy özbe az összeg változatla maradjo Eor tehát Ee alapjá: ) Ha E( e, y e, z) E(, y, z) e( y e) + = z (**), ahol 0 < e < y z <, a (**) ülöbség poztív, így E(, y, z ) aor övesz, ha az és az y özeled egymáshoz Az + y + z = és () matt az y-hoz, ha = Tehát, a () alapjá az legözelebb va E(, y, z) E, y, z, ahol y + z = és y z Hasolóa y : =, így az y a legözelebb áll a z-hez, ha E, y, z E,, = y =, ezért z = Tehát 5

6 ) Ha z >, aor a (**) ülöbség egatív, így E(, y, z) aor övesz, ha -et és y-t távolítju egymástól, persze + y= -z álladó marad Az () és () matt az =0, az y-tól a legtávolabb értéet adja Így ( ) E(, y, z) E 0, y, z = yz, ahol y + z = és y z Most az y -t és a z -t özelíteü ell egymáshoz De E ( 0, y, z ) E 0,, = y matt a legözelebb y érté a z-hez, az y =, ahoa Eze szert E(, y, z ) mamáls, ha = 0, y = z = és a szmmetra matt, ee a crulárs permutácó 8Alalmazás: Ha u, v, w 0, 6 E( u, v, w) = ( + u)( + v)( + w) fejezés legsebb értéét Megoldás: Feltételezzü, hogy z = Tehát = y = z = vagy és u + v + w =, határozzu meg az 0 u v w () Rögzítsü a w -t, legye u < v, 6 mözbe u + v = w álladó () Közelítsü egymáshoz az u -t és a v -t úgy, hogy az összegü maradjo álladó Eor felírható, hogy ( ) E( u + e, v e, w) E( u, v, w) = e( + w) v u e > 0 am azt jelet, hogy E( u, v, w ) övesz, így a mmum meghatározásáál ez em segít Távolítsu hát az u -t és a v -t úgy, hogy az összegü maradjo álladó Eor az u + v = w és () feltétele mellett a v-től a legtávolabbra eső u érté em 0, hsze u= 0 eseté v+ w= lee, ahoa elletmod a megfelelő Eor w feltétele Mvel 6 E( u, v, w) E, v, w 8, v w és 8 u = v + w 6 + 6, ezért 8 u w lee, am, így u = a 8 v + w = = () Tovább csöetés végett a 8 8 w és v özött távolságot smét övel ell Mvel v = w v, ezért legözelebb v érté a w-hez, és a () alapjá E, v, w E,, = v = a 6 w = Tehát 6 6

7 Eze szert E( u, v, w ) aor a legsebb, ha permutácó u =, v = w = és ee a crulárs 8 6 A módszer jobb elmélyítése végett, az érdelődő Olvasóa a övetező feladato megoldását javasolju: ) Ha,,, [ 0,] és ) Ha,,, > 0, és =, aor =, aor ( ) + ( ) ( ) ) Ha,,, ( 0,) és =, aor ) Ha,,, ( 0,), aor ( ) > 5),,, >, és =, aor aor az egyelőtleség fordított ráyú 6) Ha,,, > 0 és =, aor + Ameybe,,, ( 0, ) + + ) Ha, y, z 0 és + y + z =, aor 5( + y + z ) + 8yz 8) Ha, y, z 0 és + y + z =, aor ) Ha értéét 0 y + yz + z yz,, y, z, 6 és + y + z =, határozzu meg az F (, y, z ) = yz fejezés legsebb Forrásayag: [] Mrcea Gaga: Teme s probleme de matematca, Edtura Tehca, Bucurest- (- oldal) [] L Paatopol és társa: Egyelőtlesége (magyarra fordította Adrás zlárd), Gl Köyvadó, Zlah, 6

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

Hegedős Csaba NUMERIKUS ANALÍZIS

Hegedős Csaba NUMERIKUS ANALÍZIS Hegedős Csaba NUMERIKUS ANALÍZIS Jegyzet ELE, Iformata Kar Hegedős: Numerus Aalízs ARALOM Gép szám, hbá 3 Normá, egyelıtlesége 9 3 A umerus leárs algebra egyszerő traszformácó 6 4 Mátro LU-felbotása, Gauss-Jorda

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

A teveszabály és alkalmazásai

A teveszabály és alkalmazásai A teveszabály és alalmazásai Tuzso Zoltá, Széelyudvarhely Godolá-e valai, hogy a matematiáa lehete-e valami öze a tevéhez? Ha em aor a továbbiaba meggyzzü errl, mégpedig arról, hogy a matematiába ige is

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Ftéstechnika I. Példatár

Ftéstechnika I. Példatár éecha I. Példaár 8 BME Épülegépéze azé éecha I. példaár aralojegyzé. Ha özeoglaló... 3.. Hvezeé...3.. Háadá....3. Hugárzá...6.. Háoáá....5. Szgeel axál hleadáához arozó ül áér....6. Bordázo vezeé.... Sugárzá...5.

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+ I ALAPFOGALMAK I BEVEZETİ Jelölése: K: véletle ísérlet, ω : elem eseméy, { : } Ω= ω : eseméytér, F Ω : eseméyalgebra, A F : eseméy, Ω F : bztos eseméy Mővelete eseméyeel: összegzés: A+B (halmazuó), szorzás:

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

6. Bizonyítási módszerek

6. Bizonyítási módszerek 6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű, ellenállással és nduktvtással jellemzett tekercs Uáll feszültségre kapcsolásakor az

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

P É N Z Ü G Y I B E F E K T E T É S É S F I N A N S Z Í R O Z Á S hallgatói óravázlat (Nappali B. Sc. képzés)

P É N Z Ü G Y I B E F E K T E T É S É S F I N A N S Z Í R O Z Á S hallgatói óravázlat (Nappali B. Sc. képzés) . HIL. KTITS TLK egyeem doces T É Z Ü G Y I F K T T É S É S F I S Z Í O Z Á S hallgaó óravázla (appal. Sc. épzés) - lérheıség: 5. aszé roda vagy ase@pmm.pe.hu - Kozulácós leheısége: Héfı 5:-6: özö a -5.

Részletesebben

Széki Hírek A Magyarszékért Egyesület kiadványa

Széki Hírek A Magyarszékért Egyesület kiadványa Szék Hírek A Magyarszékért Egyesület kadáya X. éfolyam, 1. szám Karácsoy a árakozással tel szeretet üepe December 17-é fatalok adtak hagerseyt a templomba. K kegyetleül süöltött a hdeg szél, míg be melegséggel

Részletesebben

Hálózat gazdaságtan. Kiss Károly Miklós, Badics Judit, Nagy Dávid Krisztián. Pannon Egyetem Közgazdaságtan Tanszék 2011. jegyzet

Hálózat gazdaságtan. Kiss Károly Miklós, Badics Judit, Nagy Dávid Krisztián. Pannon Egyetem Közgazdaságtan Tanszék 2011. jegyzet Hálózat gazdaságtan jegyzet Kss Károly Mlós, adcs Judt, Nagy Dávd Krsztán Pannon Egyetem Közgazdaságtan Tanszé 0. EVEZETÉS... 3 I. HÁLÓZTOS JVK KERESLETOLDLI JELLEMZŐI HÁLÓZTI EXTERNÁLIÁK ÉS KÖVETKEZMÉNYEIK...

Részletesebben

Konfidencia-intervallumok

Konfidencia-intervallumok Konfdenca-ntervallumok 1./ Egy 100 elemű mntából 9%-os bztonság nten kéített konfdenca ntervallum: 177,;179,18. Határozza meg a mnta átlagát és órását, feltételezve, hogy az egé sokaság normáls elolású

Részletesebben

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek BARA ZOLTÁN A bankköz utalék (MIF) elő- és utóélete a bankkártyapacon. A bankköz utalék létező és nem létező versenyhatása a Vsa és a Mastercard ügyek Absztrakt Az előadás 1 rövden átteknt a két bankkártyatársasággal

Részletesebben

Biostatisztika e-book Dr. Dinya Elek

Biostatisztika e-book Dr. Dinya Elek TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok

Részletesebben

E B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D

Részletesebben

É É ö Ü É ő Ü É Ö Ó Ö Ó Ü Ü Ü É É É É ö É Ó É ö Ü Ü É Ö ő ő ö Ó ö ö ö ö ö ö ö ö ö ö Ü É Ó É ő ö ö É ö ö ő ő ö ő ö É ö É ő ű É Ü Ü ö ő É É ö ő É Ü ö ö ö Ü É É ö É É ö É É É Ü É Ü Ü ő Ő ő Ü É É ő ö Ü ö Ü

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Merev test mozgása. A merev test kinematikájának alapjai

Merev test mozgása. A merev test kinematikájának alapjai TÓTH : Merev test (kbővített óraválat) Merev test mogása Eddg olyan dealált "testek" mogását vsgáltuk, amelyek a tömegpont modelljén alapultak E aal a előnnyel járt, hogy nem kellett foglalkon a test kterjedésével

Részletesebben

Távközlő hálózatok és szolgáltatások Kapcsolástechnika

Távközlő hálózatok és szolgáltatások Kapcsolástechnika Távözlő hálózato és szolgáltatáso Kapcsolástechia émeth Krisztiá BME TMIT 015. ot. 1-8. A tárgy felépítése 1. Bevezetés. IP hálózato elérése távözlő és ábel-tv hálózatoo 3. VoIP, beszédódoló 4. Kapcsolástechia

Részletesebben

ö ö ö ö ő ö ö ő ö ő ő ő ö ö ő ő ö ö ő ő ű ű ő ő ö ű ő ö ö ő ö ő ö ú ő ö ű ű ő ő ö ű ő ö ö ű ű ő ö ű ő ö ö ű ű ű ű ű ű ű ö ű ő É ö ú ö ö ö ö Ő ö ö ö ö ő ö ö ő ö ö ő ö ö ő ű ö ö ö ö ö ö ő Ö ő ö ö ő ö ő ö

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

Az anyagáramlás intenzitása

Az anyagáramlás intenzitása Az ayagáramlás teztása Az ayagáramlás teztása () alatt meghatározott dőegység (dőtervallum) alatt (t) mozgatott ayagmeységet (M) értü. M (g, t, E, db, stb./ dőegység) t Szaaszos műödésű ayagmozgató redszere

Részletesebben

A hidegzömítés alapesetei és geometriai viszonyai a 4.6. ábrán láthatók. 4.6. ábra A hidegzömítés alapesetei, zömítés (l/d) viszonyai

A hidegzömítés alapesetei és geometriai viszonyai a 4.6. ábrán láthatók. 4.6. ábra A hidegzömítés alapesetei, zömítés (l/d) viszonyai Animáció - Hiegzömítés Ismételje át a zömítés tanult jellemzőit! Gyűjtse i és tanulmányozza a hiegzömítés alapeseteit! Rajzolja le a hiegzömítés alapeseteit! Jegyezze meg a megengeett zömítési viszony

Részletesebben

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév Sersámgépe 5. előadás. Márcis. Sersámg mgépe 5. előad adás Misolc - Egyetemváros /.félév Sersámgépe 5. előadás. Márcis. A sabályohatósági tartomáy övelésée módserei Előetes megfotoláso: S mi mi M S φ,

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat 2014. november 06. A közgazdaságtan játékelméleti megközelítései

Műszaki folyamatok közgazdasági elemzése Előadásvázlat 2014. november 06. A közgazdaságtan játékelméleti megközelítései Műzak folyamatok közgazdaág elemzée Előadávázlat 04. november 06. A közgazdaágtan átékelmélet megközelítée a Története: - Táraátékok elmélete (Zermelo - Neumann Jáno (mnmax-tétel, azaz mkor létezk megoldá

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

á ú é é ő é ő á ő ő á á ú ű é é ö ő á ő ú ő ő á é Ü Ü á é á é á é á é á ö ö á é ő á ú ű é é á é é ő á ö ö á á é é ú é é ú á á ő é é é ö ö á á é ű ő á é ű ő ú ő á á é á ú é é á é ö á á ö Ü á á é é ú á á

Részletesebben

III. Áramkör számítási módszerek, egyenáramú körök

III. Áramkör számítási módszerek, egyenáramú körök . Árakör száítás ódszerek, egyenáraú körök A vllaos ára a vllaos töltések rendezett áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb

Részletesebben

Ü Ú Ú Á Á Ő É é ö é é é é é ü ö é é é é é é é é é é ö é ö ö ö é é é é é é ö é é é é ö é ű é é é ö é é é é éé ö é éö é é ö é é é é ö é ű é é é ö ö é é é é é ö é ö é é ö ö é ö é é é é é é ü é é ö é é é é

Részletesebben

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző

Részletesebben

É ö é ö ő é é ű í é ö é é é é ő é é í Ő Ő Ő é ö ö é é ö ő é É é é é é é é é é í é é ö é é é é Ö é é é é é é ö Ü é é ö é é é é í é é é é é é é é ö é é é é Ö Ö í í é é ö é é é é é ő é é é ö é é ő é é ő é

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

É ö ü ú ü ö ú ö ü ö ü ú ü ű ü ü ö ö ö ú ü ö ü ü ö ü ü ü ü ü Ü ü ö ú ü ü ö ö ö ö ö ö ö ö ö ö ö ö ö ö ü ö ü ö ü ö ö ú ö ü ö ü ö ö ö ú ö ö ö ö ú ú ö ü ö ü ú ü Ú É ö ö ö ö ö ú ö ű ö ű ö ú ö ö ú Ú ü ö ö ö ö

Részletesebben

É Ú ű Ö ű ű ű ű ű Ü ű ű ű ű ű Ú Ü ű Ú Ö ű ű Ö ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ö Ö ű É ű Ö ű Ö Ú Ó ű ű Ü Ú ű É Ó ű ű ű Ö ű ű É ű É É Ö É É É É É Ö Ö É Ú É Ó Ú É É Ö Ö Ö ű Ó ű Ö ű ű ű ű

Részletesebben

ű ű ű ű ű ű Ú ű ű ű ű ű ű ű ű Ú ű ű ű Ú ű ű ű ű Ó ű ű ű ű Ü É ű ű ű ű ű ű ű ű ű ű ű ű Ú É ű ű ű É Ó Ú Ó Ü Ő Ó Ó ű É ű ű ű É ű É ű ű ű ű Ö Ü ű ű ű ű ű ű ű ű ű ű ű ű É ű É É ű Ö ű ű ű ű É ű ű ű ű ű ű ű Ö

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

É ü ü ű ü Ü ü É É ü Ó Ú É É Ö É Ó ű ű ű ű ü ű ü ü Ú ü ű ü ü ű ü Ó ü ü ü ű ü ü ü ü ü ü Ö Ü ű ü ü ü ü ű ü ü É ű ü ü ü ü ű Ü Ö É ü ü ü ü É ü ü ü É ü ű ű ü ü ü ü ü ű ü ü ü Ó ü ü ű ű ü ü ü ü ü ü É ű ü É Ó ü

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 9. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 6. Bogya Norbert Lineáris algebra gyakorlat (9. gyakorlat Bázistranszformáció és alkalmazásai (folytatás Tartalom Bázistranszformáció

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

ö ó É ó Ú ÜÉ ó ö ó ó ö É ó ó ó ó Ü ó ó É ó ó Ú ó ő Úó É ö ó Ü ó ó ó ó Ú ó Ü ó É Ó ő ó ó ó ó ö É ö ó ó Ü ó É ö ó ó ó É ó É Ü ó ó ö ú Ö É Ú É Ü É ó ó ó Ü ó Ü ő É Ö Ó É ó ó ó ó ó ó ó ó ó ö ó Ó ő ö ó ó ó ó

Részletesebben

Ú É ő ő ő ő ő Ú É ő ő ő ő ű ű ő ő ő ő ő ű ű ő ő ő Ú ő Ú É É Ú Ú ű ű ő ő É ő Ó ű ű ő ő ű ő É Ó Ü ő ű ő ő ű ő ű Ó É É Ó Ü Ü ő Ú Ü É É Ú É É ő É Ú É Ó É Ü ő ő Ú É ő ő ű ő ű Ú ő Ü É Ú É ő ő É É ű ő Ú É Ü ű

Részletesebben

Ö É ű Ú ő Ú ő ű ő ő ő ű Ü ő Ú Ú Ú Ú Ú ű Ü É ű ő ő Ú Ú É Ú ő Ú ő Ú ő É ő Ó É ő ű ű ő ő ő Ó Ú Ó ő ő Ü ő ő ű Ü Ú Ú Ü Ú Ó Ú Ú Ü Ü Ü ő Ö Ö É É É É É É Ó ő ő ű ő ű ű ű ő ő Ú É Ú É Ü űé É Ú ő ő É ő Ü ő ű É É

Részletesebben

É Ő ú ú Ü Ú Ü ú Ü Ú Ú Ú Ü Ü Ú ű Ü ú É Ü Ü Ü Ú ú ű Ü Ü Ü ű ű Ü Ü ú Ú ű Ü ű Ú ű Ü ű Ú Ü É É ű É É É É É Ü Ü Ü É ÉÉ Ö ú É É É É ÉÉ É É É ű ú Ó Ö ú Ó Ö ú Ó ú ú Ü Ü ú É É É Ö Ö Ö Ó Ü Ú Ó É É É É Ü Ú Ó Ő Ó ú

Részletesebben

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL SZAKDOLGOZAT Készítette: Kovács Blázs Mtet BSc, tár szrá Tévezető: dr Wtsche Gergel, djutus ELTE TTK, Mtettítás és Módszert Közot Eötvös Lorád Tudoáegete Terészettudoá

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet. Bohák András (szerk.

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet. Bohák András (szerk. BUDAPESTI ŰSZAKI ÉS GAZDASÁGTUDOÁNYI EGYETE Gzdság- és Tásdlomtudomáy K Üzlet Tudomáyok Itézet Bohák Adás szek. BEFEKTETÉSEK okttás segédyg Íták: Ado Gyögy I. fejezet Bohák Adás VI-VII. fejezet Edős Péte

Részletesebben

É ő é é ő ő ö ú é é é é é é é ő é é é ű é ö é é é é ő é é é é é ő ő é ő ö é é ö ő ú é é ő é é ő é ő é é ű é ő é é é ő ú ú é ö é ő é é é ő é é ö é é ö ő é é é ö ö é ő ö é ő é é é ü ö é ő é é ö é ő ő é é

Részletesebben

Ü ű í í Í ű í í í ű í Í í í í ú Ü Ü í É í ű í Í Ö Í ú ű Ö í ú ű í Ö í É í í í í É Ö É É Ö í í Í É í Ö í í í í ú ú ú í ú í ú É í í í í í Ö í í É í í Ö í í í í í í í í í í í í í Ö Ö Ö í í ú Í Ö Ö í í í

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA

MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA ÁR-01 OLDAL: 1. 1. AZ ELJÁRÁS CÉLJA Szabályoz, hogy a szervezete belül kk, hol és mlye dötéseket hozak meg. Beazoosíta,

Részletesebben

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Írta: LEITOLD ADRIEN LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Egyetemi tananyag COPYRIGHT: Dr. Leitold Adrien Pannon Egyetem Műszaki Informatika Kar Matematika Tanszék LEKTORÁLTA: Dr. Buzáné

Részletesebben

é ö é Ö é ü é é ö ö ö ü é é ö ú ö é é é Ő ö é ü é ö é é ü é é ü é é é ű é ö é é é é é é é ö ö í é ü é ö ü ö ö é í é é é ö ü é é é é ü ö é é é é é é é é é é é é é é é ö é Í ö í ö é Í í ö é Í é í é é é é

Részletesebben

Ö é ü ú é Ö é ü Ö é ü ú é é ü é é é Ö é ü ú é ü ü é é ú Í é ü é é é ü Í é é é é é ü é é é ú é ü ú Í é Í é ü é é é ü é é é é Í é é é é é é é é é é é é é é é é é é Í é é ú ú é Ö é ü é ú é é ü é é ü é ú ü

Részletesebben

Hajtástechnika \ Hajtásautomatizálás \ Rendszerintegráció \ Szolgáltatások MOVITRAC B. Üzemeltetési utasítás. Kiadás: 2009. 05.

Hajtástechnika \ Hajtásautomatizálás \ Rendszerintegráció \ Szolgáltatások MOVITRAC B. Üzemeltetési utasítás. Kiadás: 2009. 05. Hajtástechka \ Hajtásautomatzálás \ Redszertegrácó \ Szolgáltatások MOVITRAC B Kadás: 2009. 05. 16810961 / HU Üzemeltetés utasítás SEW-EURODRIVE Drvg the world Tartalomjegyzék 1 Fotos tudvalók... 5 1.1

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

Á Ó Ó Í Í Í Ú É Á Á Í Í Ú Ú Í Í Ő Í Í Í Ú Ú Ú Ú Ú Ű É ÉÉ É Í Í Í Í É Í Í Í É Á É Í Ú Í Í É Í É Í Í Ú Í É Ú Á Ú Ú Í Í Ő É Í Í Í Í Í Í Á Á É Í Ő Ő Ő Ő Í Í Í Í Í Ő Ő Í Í Í Í Í Ö Ú Ú Ú É Ű Í Í Ú Í Í Í Ú É

Részletesebben

É É ö ű ő ő ü ö ü ö Í ú ö ö ö ö ú ö ü ö ö ö ö ö ü ö ö ő ö ö ö ő ő ú ö ö ő ő ő ő ü ő ő ö ő ö ö ö ő ú ő ö ö ü ö ö ö ő ú ö ö ő ő ő ő ű ú ő ö ő ő ő ő ü ő ő ö ú Ü ő Í ö ö ö ö ő ő ő ö ö ö ö ö ü Í ö ő ő ő ő ö

Részletesebben

(4) Adja meg a kontinuum definícióját! Olyan szilárd test, amelynek tömegeloszlása és mechanikai viselkedése folytonos függvényekkel leírható.

(4) Adja meg a kontinuum definícióját! Olyan szilárd test, amelynek tömegeloszlása és mechanikai viselkedése folytonos függvényekkel leírható. SZÉCHENYI ISTVÁN EGYETEM MECHANIKA - REZGÉSTAN ALKALMAZOTT MECHANIKA TANSZÉK Eméet édése és váaszo eyetem aapépzésben (BS épzésben) észtvevő ménöhaató számáa () Adja me az anya pont defníóját! defníó:

Részletesebben