Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?"

Átírás

1 Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor júlus A Budapest Corvus Egyetem rövd életű Ökoometra Csoportjáak vezetőjekét Huyad Lac fotosak tartotta, hogy a taításo túl s foglalkozzuk ökoometra problémákkal, és ezekről beszéljük s egymás között. A cél az volt, hogy egymást jobba megsmertessük érdekes alkalmazásokkal, boyololtabb modellekkel, és az egyébkét általuk vszoylag gyakra haszált módszerek mélyebb hátterével. Ez a műhelymuka valóba eldult, bár a hétközapok vhara és az Ökoometra Csoportak és oktatóak a jövője körül bzoytalaság matt em futott fel teljese. De em adtuk fel a terveket. Ez az írás s ezt akarja bzoyíta: egy olya kérdést bocolgat, amelyet Lac többször felvetett, ám redese sosem beszéltük végg. A kérdés a következő. A kétfokozatú legksebb égyzetek módszere több strumetum eseté az edogé magyarázó változókak az egzogé magyarázó változókra (strumetumokra való leárs projekcóját haszálja a becsléshez. Ezáltal a túl sok strumetumból azok egyféle leárs kombácójával hoz létre éppe elegedő számú strumetumot. De vajo m a megfotolás pot e leárs kombácó mögött? Optmáls megoldás-e ez, és ha ge, mlye értelembe, és mlye feltételek mellett? És végül, elképzelhető-e olya sztuácó, amkor va a 2SLS-él jobb megoldás? Tektsük egy függetle azoos eloszású (d mtát és rajta egy kétváltozós leárs modellt, ahol a egyetle magyarázó változó va, amely edogé: y β0 + βx + u ( 0 E u Cov u, x 0 Az elemzés sorá végg feltesszük, hogy a modell korrektül specfkált, vagys a leárs függvéyforma a megfelelő, és x hatása y-ra mde egyes eseté β. x edogetása matt β OLS becslése kozsztes: p lm β _ OLS ( y y( x x β_ OLS 2 ( x x Cov( y, x Cov( β0 + βx + u, x V ( x V ( x Cov( u, x β V ( x β V x + V x

2 Ha találuk megfelelő strumetumot, β kozsztese becsülhető. Megfelelő (érvéyes strumetum korrelálatla a em megfgyelt kompoessel és korrelált az edogé magyarázó változóval: ( Cov z, u 0 Cov z, x 0 Ezeket az strumetum mometumfeltételeek evezzük. Az első mometumfeltétel azt köt k, hogy egy érvéyes strumetum em korrelálhat a em megfgyelhető heterogetással; a másodk azt, hogy a megfgyelhető magyarázó változóval vszot korrelála kell. E két feltétel eredméyekét az strumetum közvetleül em, a megfgyelt magyarázó változó keresztül vszot hat az eredméyváltozóra. Az strumetáls detfkácó, és az arra épülő strumetáls becslőfüggvéy ezt haszálja k: z és y megfgyelt együttmozgása két hatás eredője: z hatása x-re, és x hatása y-ra (z közvetleül em hat y-ra. Ha a megfgyelt z és y együttmozgásból kszűrjük z hatását x-re, megkapjuk x hatását y-ra, vagys β et. Az strumetáls változó (IV becslőfüggvéy: _ IV ( y y( z z ( x x( z z _ IV β β kozsztes becslőfüggvéye β ek: p lm β _ IV + Cov x, z Cov x, z ( β0 + β + Cov( x z β Cov y, z Cov x u, z Cov x, z, β Cov x, z Cov u, z Ha olya szerecsés helyzetbe vagyuk, hogy emcsak egy, haem több érvéyes strumetumuk s va, a bőség zavara vet fel egy újabb problémát. Ha a modell korrektül specfkált, bármelyk felhaszálásával kozsztese becsülhetjük β -et. Kombálásuk azoba hatásosabb becslőfüggvéyhez vezethet: több strumetum több formácót tartalmazhat, mt egy. Ha mdegyk strumetum korrelálatla u-val, úgy bármlye leárs kombácójuk s korrelátla: Cov z, u Cov z2, u... Cov zl, u 0 L L Cov λlzl, u λlcov( zl, u l 0 l A kétfokozatú legksebb égyzetek módszere (2SLS a következő kombácót alkalmazza: x γ + γ z + γ z γ z, * L L ahol a γ paraméterek az OLS becslések abba a leárs regresszóba, melyek eredméyváltozója az x, magyarázó változó pedg a z-k. A 2SLS ekkor 2

3 * * ( y y( x x * * ( x x _2SLS 2 β A kérdés az, hogy va-e olya leárs kombácó, amelyek ksebb (aszmptotkus varacája va, mt a többek, és ha ge, ezt hogya határozhatjuk meg - és hogy vajo a 2SLS lye becslőfüggvéy-e. A Mometumok Általáosított Módszere (GMM keretébe választ kaphatuk ezekre a kérdésekre. A kdulópotot az érvéyes strumetum mometumfeltétele jeletk. Legye x ( x a modell magyarázó változóak (esetükbe a kostas és az egyetle x a vektora; β ( β β 0 a becsüledő paraméterek vektora, és z ( z... zl az strumetumok vektora. x és β 2 -es, z pedg (L+ -es oszlopvektor (L strumetum és a kostas. Később haszáladó referecakét jegyezzük meg, hogy β 2SLS becslőfüggvéye e jelölések alapjá a következő: ( * * ( * β xx xy. 2SLS A továbbakba végg feltesszük, hogy (. E ragja 2 (ez a megfelelője az érvéyes strumetumok másodk mometumfeltételéek, vagys az x-szel való korreláltságak. A kduló mometumfeltételeket ekkor a következő egyeletredszer foglalja össze: ( E z u E z y x β 0. β GMM becslőfüggvéye az aalóga elvé alapul: a várható értéket aak mtabel megfelelőjével, a mtaátlaggal helyettesít: zu z ( y x β Szy Sβ E( zu prob. Szy z y S Mthogy véges mtába ulla valószíűséggel lesz mdegyk mtaátlag potosa ulla még ha a várható értékek md ullák s, a GMM azt a paramétert keres, amely mellett a mometumfeltételből képzett kvadratkus forma a legközelebb va ullához: β arg m S S β A S S β GMM zy zy β ( S ( A S S A Szy 3

4 ahol a másodk egyelőségél az optmum elsőredű feltételét írtuk le (khaszáljuk hogy a kvadratkus forma kovex, sőt valószíűséggel szgorúa kovex, így az elsőredű feltétel elégséges. S zy a mtabel égyzetösszeg (osztva a mtaelemszámmal, amely egy (L+ dmezójú oszlopvektor; S pedg ezzel aalóg mátrx, dmezója (L+ 2. A bármlye olya (L+ (L+ dmezójú valószíűség mátrx lehet, amely valószíűségbe valamlye poztív deft mátrxhoz kovergál: p lm A Ψ poz. def. A GMM becslőfüggvéy kozsztecáját ge egyszerű belát: β S A S S A S S ( S A S ( S A [ Sβ Szu ] ( β S ( A S S A Szu z u GMM zy + + β β+ Ψ Ψ β zu p lm GMM E E E E ( zu Az utolsó sorba azt haszáljuk k, hogy p S E( u β lm zu GMM z 0, hogy eek folytoos függvéye és így alkalmazható a Slutsky-tétel, valamt hogy az A mátrx valószíűség határáak (Ψ létezk az verze. 2 Az A mátrxtól függőe végtele sok GMM becslőfüggvéy létezk, és mdegyk kozsztes. Ez aak az újrafogalmazása, hogy érvéyes strumetumok bármlye leárs kombácójával készíthető kozsztes becslőfüggvéy: a kombácóhoz haszált súlyok mátrxa em más, mt A -/2. A GMM becslőfüggvéy szmptotkusa ormáls: D ( β GMM β N( 0, Λ Λ ΔΩΔ Δ E Ψ E E Ψ 2 2 ( ( ( Ω V zu E zu z E u z z A legksebb aszmptotkus varacát az a GMM becslőfüggvéy adja, amelybe A Ω plm Ω Ω E u zz 2 ( A Slutsky-tétel azt modja k, hogy ha p lmξ μ, akkor bármely f folytoos függvéyre plm f ξ f μ. 2 Elvleg em kell, hogy az verz véges mtába s létezze, csak olyakor általáosított verzt (Moore- Perose kell haszál. A léyeg megértéséhez ettől a fomságtól yugodta eltekthetük, és feltehetjük, hogy A maga s poztív deft. 4

5 Ezt a becslőfüggvéyt Optmáls GMM-ek (OGMM evezk: S S S S β OGMM Ω Ω z y Kcst pogyolá fogalmazva, az optmáls súlymátrx az strumetumok (z és a em megfgyelt heterogetás (u szorzata szórásáak (a covaracamátrx ½ hatváyáak az verze. Az tuícó gyakorlatlag ugyaaz, mt az általáosított legksebb égyzetek módszeréél (GLS: a legjobb leárs kombácó az, ahol az egyes strumetumok aál ksebb súlyt kapak, mél zajosabbak (mél kább szóródak véges mtába a 0 mometumfeltétel körül. A mmáls aszmptotkus varaca bzoyítást tt em vezetjük le; 3 léyegébe ugyaarra a kaptafára megy, mt a mmáls varacájú becslőfüggvéyek bzoyítása általába (Gauss-Markov tétel. Kérdés marad az, hogy potosa m s Ω, amelyről eddg ayt tuduk, hogy kozsztesek kell lee Ω-ra. Egyszerű választ ad erre az aalóga elve: 2 Ω u zz am kétlépcsős OGMM becslés eljárást jelet: első lépcsőbe megfelelőe kell u^ kat becsülük Ω^ hoz, majd másodk lépcsőbe e (Ω-ra kozsztese becsült Ω^ felhaszálásával kapjuk meg az OGMM becslőfüggvéyt. Ez megt a GLS módszerrel aalóg, lletve aak megvalósítható változatával (FGLS. Mde lye becslőfüggvéy kozsztes lesz Ω-ra, ha olya u y x β változók szerepelek bee, ahol β kozsztes becslőfüggvéye β-ak. Tudjuk, hogy a redelkezésre álló z változók bármlye leárs kombácójával kozsztes strumetáls becslőfüggvéy készíthető, vagy másképpe fogalmazva, bármely poztív deft A mátrx kozsztes GMM becslőfüggvéyhez vezet. Így bármelyket haszáljatjuk az első lépcsőbe, de praktkus szempotból az legegyszerűbb, ha az első lépcsőbe AI (az (L+ (L+ dmezójú egységmátrx. A kérdés az, hogy va-e ehhez az optmáls GMM-hez bárm köze a 2SLS-ek. A válasz: ge, bzoyos feltételek mellett. Tegyük fel, hogy u homoszkedasztkus z-re kodícoálva, vagys V(u z V(u, és ezért ( 2 ( 2 2 σ ( E u zz E u E zz E zz. Ebbe az esetbe Ω kozsztes becslőfüggvéye a következő: Ω u S zz σ 2 2 hom zz Elvleg ez s kétlépcsős eljárást tee szükségessé akárcsak az OGMM általáos esetébe, ám egy szerecsés véletle ettől megóv mket: mthogy a rezduáls varaca (lletve aak 3 Formáls bzoyítást lásd például Wooldrdge (2002, 8.3. fejezet. 5

6 recproka a becslőfüggvéyek md a evezőjébe, md a számlálójába szerepel, egyszerűe kesk: 2 2 ( ( ( σ ( σ ( S ( Szz S S Szz Szy β OGMM _ hom S ΩhomS S ΩhomSzy S Szz S S Szz S zy Közbe szép csedese elérkeztük a godolatmeet végéhez. Ez a becslőfüggvéy ugyas em más mt a 2SLS: ( ( y ( ( ( y γ zz γ γ z y ( S S z z ( S S ( S S S Szz zz Szz S S Szz zy ( zz z ( ( ( S ( Szz S S Szz Szy βogmm_hom β 2SLS xx x γ z γ z γ z zz zz zz y z S S S S S S y S S S S S S S S zz zz zz zz zz zz zz zy OLS zz ahol a másodk sorba khaszáltuk, hogy defícó szert γ γ S S. A 2SLS tehát potosa megegeyzk az Optmáls GMM-mel ha a em megfgyelt heterogetás az strumetumokra kodcoálta homoszkedasztkus. Vagys ebbe az esetbe 2SLS az a leárs kombácója az strumetumokak, amelyka legksebb aszpmtotkus varacájú becslést bztosítja. Magyarul: a legjobb. Ameybe a em megfgyelt heterogetás heteroszkedasztkus, akkor vszot em az. De vajo praktkus szempotból léyeges-e az OGMM és a 2SLS között külöbség heteroszkedsztkus esetbe? Ezt a kérdés két dolog s motválja. Egyrészt az OGMM boyoluoltabb eljárást géyel, ezért ha praktkus szempotból em agy az előye, kár vele bajlód. Másrészt ráadásul az OGMM kétlépcsős eljárása emcsak boyolultabb, de véges mtába bzoytalaabb, sőt torz s lehet (lásd pl. Podvsky, 999. A kérdés vzsgálatához egy egyszerű Mote Carlo szmulácót végeztük el. A szmulácó sorá két külöböző adatgeeráló folyamatot (DGP, egy homoszkedasztkust (DGP és egy heteroszkedasztkust (DGP 2 vzsgáltuk. Mdkét folyamatba egy edogé magyarázó változó (x és 2 érvéyes strumetum volt (z és z 2 ; a két strumetum közül z jobba korrelált x-szel (vagys erősebb, z 2 kevésbé (gyegébb. DGP 2 -be az strumetumok égyzete korreláltak a em megfgyelt heterogetás (u égyzetével, így u feltételese heteroszkedasztkus volt (Corr(u 2,z 2 Corr(u 2,z A heteroszkedasztctás mértéke közepese erősek modható. 4 4 γ az az (L+ 2 dmezójú OLS paramétervektor, amelyek első oszlopába x első eleméek a kostasak, másodk oszlopába x másodk eleméek x-ek a z vektoro futtatott regresszós paraméteret becsüljük. Mthogy a kostas em szóródk, aak paramétere md ullák, így γ első oszlopa s ullvektor. 6

7 A Mote Carlo szmulácóba 50 ezerszer geeráltuk mtát az adott DGP alapjá, és ezeke a mtáko egyekét megbecsültük β OLS, IV (IV csak z -gyel, IV 2 (IV csak z 2 - vel, 2SLS és OGMM becsléset. Az 50 ezer smétlés utá megvzsgáltuk a külöböző módoko becsült β ek átlagos relatív eltérését a valóságtól (Rel.Bas vagys relatív torzítás, a szóródását (Std vagys szórás, valamt a torzítás és a szóródás együttes hatásakét adódó teljes eltéréségyzetet (RMSE, root mea squared error. A Mote Carlo szmulácót elvégeztük 00, 000 és elemű mtákra s. Az alább táblázat foglalja össze szmulácók eredméyet. A DGP-k potos leírását a Függelék tartalmazza. Táblázat: A Mote Carlo szmulácók eredméye DGP (homoszkedasztkus DGP2 (heteroszkedasztkus OLS IV(z IV(z2 2SLS OGMM OLS IV(z IV(z2 2SLS OGMM 00 Rel.bas Std RMSE Rel.bas Std RMSE Rel.bas Std RMSE A szmulácók redbe kmutatják az smert eredméyeket: az OLS torz, és bár szórása mde mtaagyság mellett ksebb mt bárm más becslőfüggvéyé, végeredméybe agyo mellélő. Az egyetle strumetumot haszáló strumetáls becslőfüggvéyek ks mtába torzak, ám agy mtába ez eltűk (kozszteca. Az erősebb IV-t (z haszáló becslőfüggvéyek a ksmtás torzítása és a szórása s ksebb, mt a gyegébb strumetumot (z 2 haszálóé. Az strumetumokat kombáló becslőfüggvéyekbe (2SLS, OGMM gyakorlatlag eltűk a ksmtás torzítás, és a szórás s mdg jóval ksebb, mt az egy strumetumot haszáló IV-k eseté. A heteroszkedasztkus DGP esetébe bzoytalaabbak becslések: a torzítások és a szórások s általába agyobbak. Am fő kérdésüket, a 2SLS és az OGMM vszoyát llet, az eredméyek meglehetőse egyértelműek. Homoszkedasztkus DGP mellett a 2SLS ks mtába precízebb (hsze khaszálja a homoszkedasztctás feltevését, am tt helyes, közepes és agy mtába azoba a kettő teljese azoos eredméy produkál. Heteroszkedasztkus DGP eseté a agy mtás hasolóság megmarad, de ks mtába sem jobb az OGMM. Az eredméyek mögött valószíűleg az áll, hogy bár az OGMM gyorsabba kovergál a valós β-hoz (ksebb az aszmptotkus varacája, ez az előy praktkus szempotból eleyésző. Ugyaakkor azoba az OGMM kétlépcsős eljárása plusz bzoytalaságot vsz a becslésbe ks mta eseté, ezért ks mtába scs meg az előye a 2SLS-sel szembe. Az aaltkus és a szmulácós eredméyeket a következőképpe foglalhatjuk össze. A 2SLS elvleg s a legjobb (legsebb aszmptotkus varacát adó módo kombálja az strumetumokat homoszkedasztkus esetbe. Heteroszkedasztkus esetbe elvleg va ála 7

8 jobb becslőfüggvéy, praktkusa azoba eek az elvleg jobb becslések több a hátráya, mta az előye. A 2SLS megállja a helyét heteroszkedasztkus köryezetbe s, ezért haszáljuk csak bátra. Hvatkozások: Podvsky, Ja M. (999: Fte sample propertes of GMM estmators ad tests. I L. Mátyás (szerk: Geeralzed Method of Momets Estmato. Cambrdge Uversty Press. Jeffrey M. Wooldrdge (2002: Ecoometrc aalyss of cross secto ad pael data. MIT Press. Függelék A Mote Carlo szmulácókba haszált adatgeeráló folyamatok (DGP-k potos leírása DGP : z ~ dn(0,0.5 z 2 ~ dn(0,0.5 x 0.5z + 0.2z 2 + v v ~ dn(0,σ v úgy, hogy σ x u ~ N(0, úgy, hogy Corr(u,v0.5 y β x + u β vagys: edogé x, 2 érvéyes strumetum z & z 2, z erősebb: Corr(x,u Corr(u,z Corr(u,z 2 0. Corr(z,x 0.25, Corr(z 2,x 0.0. Homoszkedasztctás: Corr(u 2, z 2 Corr(u 2, z DGP 2 : z ~ dn(0,0.5 z 2 ~ dn(0,0.5 x 0.5z + 0.2z 2 + v v ~ dn(0,σ v úgy, hogy σ x u ~ N(0, úgy, hogy Corr(u,v0.5 y β x + u β vagys: edogé x, 2 érvéyes strumetum z & z 2, z erősebb: Corr(x,u Corr(u,z Corr(u,z 2 0. Corr(z,x 0.25, Corr(z 2,x 0.0. Heteroszkedasztctás: Corr(u 2, z 2 Corr(u 2, z , amt egy autoregreszív kodcoáls heteroszkedasztctás (ARCH modell geerál: 8

9 u ψ v+ e e ε z + z, ε ~ dn 0, σ, hogy σ ε u 9

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

A heteroszkedaszticitásról egyszerûbben

A heteroszkedaszticitásról egyszerûbben Mûhely Huyad László kaddátus, egyetem taár, a Statsztka Szemle főszerkesztője A heteroszkedasztctásról egyszerûbbe E-mal: laszlo.huyad@ksh.hu A heteroszkedasztctás az ökoometra modellezés egyk kulcsfogalma,

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Laboratóriumi mérések

Laboratóriumi mérések Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat

Részletesebben

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú ..4. Óbuda Egyetem ák Doát Gépész és ztoságtechka Mérök Kar yagtudomáy és Gyártástechológa Itézet Termelés olyamatok II. Költségbecslés Dr. Mkó alázs mko.balazs@bgk.u-obuda.hu z dı- és költségbecslés eladata

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

VASBETON ÉPÜLETEK MEREVÍTÉSE

VASBETON ÉPÜLETEK MEREVÍTÉSE BUDAPET MŰZAK É GAZDAÁGTUDOMÁY EGYETEM Építőmérök Kar Hdak és zerkezetek Taszéke VABETO ÉPÜLETEK MEREVÍTÉE Oktatás segédlet v. Összeállította: Dr. Bód stvá - Dr. Farkas György Dr. Kors Kálmá Budapest,.

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A Bíráló véleméy SzabóZoltá: A Geometrc Approach or the Cotrol o Swtched ad LPV Systems (Kapcsolt és LPV redszerek ráyítása geometra megközelítésbe) c. MTA doktor (DSc) értekezésről Az értekezés az ráyíthatóság,

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI

DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI OPERÁCIÓKUTATÁS No. 9. Szűcs Gábor DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI Budapest 007 Szűcs Gábor: DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI OPERÁCIÓKUTATÁS No. 9 A sorozatot szerkeszt: Komárom Éva Megjelek

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok Bevezetés a hpotézs vzsgálatba Lásd előadás ayagát. Kétoldal és egyoldal hpotézsek Hpotézsvzsgálatok Ebbe a ejezetbe egyajta határozókulcsot szereték ad a hpotézsvzsgálatba haszált próbákhoz. Először dötsük

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002.

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002. A geodéza tárgya, felosztása, alapfogalmak NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérök Szak Dr. Bácsatya László GEODÉZIA I. Kézrat Sopro, 00. . A geodéza tárgya, felosztása, alapfogalmak A gyűjtögető,

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Hegedős Csaba NUMERIKUS ANALÍZIS

Hegedős Csaba NUMERIKUS ANALÍZIS Hegedős Csaba NUMERIKUS ANALÍZIS Jegyzet ELE, Iformata Kar Hegedős: Numerus Aalízs ARALOM Gép szám, hbá 3 Normá, egyelıtlesége 9 3 A umerus leárs algebra egyszerő traszformácó 6 4 Mátro LU-felbotása, Gauss-Jorda

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

Valószínűségszámítás és matematikai statisztika. Ketskeméty László

Valószínűségszámítás és matematikai statisztika. Ketskeméty László Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

Tranziens káosz nyitott biliárdasztalokon

Tranziens káosz nyitott biliárdasztalokon Eötvös Lorád Tudomáyegyetem Természettudomáyi kar Vicze Gergely Trazies káosz yitott biliárdasztaloko Msc szakdolgozat Témavezető: Tél Tamás, egyetemi taár Elméleti Fizikai Taszék Budapest, 2012 1 Tartalom

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

NEMPARAMÉTERES ELJÁRÁSOK

NEMPARAMÉTERES ELJÁRÁSOK Kály Zoltá: Statsztka II. NEMPARAMÉTERES ELJÁRÁSOK Az eddgek soá találkoztuk má olya eláásokkal, melyek a változók középétékét vzsgálták: egymtás-, páos-, függetle mtás t-póba, egy- és többszempotos vaaca

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak Geostatsztka I. BSc geográfus alapszak hallgatóak Dr. Szabó Norbert Péter egyetem adjuktus Mskolc Egyetem Geofzka Itézet Taszék e-mal: orbert.szabo.phd@gmal.com Ajálott rodalom Steer Ferec, 990. A geostatsztka

Részletesebben

ξ i = i-ik mérés valószínségi változója

ξ i = i-ik mérés valószínségi változója EGYENESILLESZTÉS: A LEGKISEBB NÉGYZETEK MÓDSZERE Kíérleteket elvégeztük. Dolgozzuk fel az adatokat! Cél: mért változók (T, p, I, U ) között kapcolat felderítée. 1. zóródá dagram {x, y } ábra. kvattatív

Részletesebben

STATISZTIKAI MÓDSZEREK

STATISZTIKAI MÓDSZEREK HAJTMAN BÉLA STATISZTIKAI MÓDSZEREK Egetem egzet Pázmá Péter Katolkus Egetem, Bölcsészettudomá Kar Plscsaba, 0. Bevezetés Az első félévbe (Bostatsztka) a statsztka alapat smertük meg. Természetese ez

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Dr. Hanka László PhD. KOCKÁZAT BECSLÉSE A VALÓSZÍNŰSÉG KISZÁMÍTÁSA NÉLKÜL, A MEGBÍZHATÓSÁGI INDEX ÉS ALKALMAZÁSA

Dr. Hanka László PhD. KOCKÁZAT BECSLÉSE A VALÓSZÍNŰSÉG KISZÁMÍTÁSA NÉLKÜL, A MEGBÍZHATÓSÁGI INDEX ÉS ALKALMAZÁSA XXII. évfolyam, 01.. szám Dr. Haka László PhD. Óbuda Egyetem Bák Doát Gépész és Bztoságtechka Mérök Kar, Mechatroka Itézet E-mal: haka.laszlo@gbk.u-obuda.hu KOCKÁZAT BECSLÉSE A VALÓSZÍNŰSÉG KISZÁMÍTÁSA

Részletesebben

A születéskor várható élettartam nemek szerinti térbeli különbségei

A születéskor várható élettartam nemek szerinti térbeli különbségei DR. BÁLINT LAJOS A születéskor várható élettartam emek szert térbel külöbsége A taulmáy a 005 009 között, születéskor várható élettartamok fotosabb kstérség ellemzőt mutata be a eleleg hatályos besorolás

Részletesebben

6 A teljesítményelektronikai kapcsolások modellezése

6 A teljesítményelektronikai kapcsolások modellezése 6 A teljesítméyelektroikai kapcsolások modellezése A teljesítméyelektroikai beredezések vagy már ömagukba egy bizoyos szabályzott redszert alkotak, vagy egy agyobb szabályozott redszer részét képezik.

Részletesebben

Széki Hírek A Magyarszékért Egyesület kiadványa

Széki Hírek A Magyarszékért Egyesület kiadványa Szék Hírek A Magyarszékért Egyesület kadáya X. éfolyam, 1. szám Karácsoy a árakozással tel szeretet üepe December 17-é fatalok adtak hagerseyt a templomba. K kegyetleül süöltött a hdeg szél, míg be melegséggel

Részletesebben

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak

Részletesebben

2.10. Az elegyek termodinamikája

2.10. Az elegyek termodinamikája Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,

Részletesebben

Folytonos idejű rendszerek stabilitása

Folytonos idejű rendszerek stabilitása Folytoos idejű redszerek stabilitása Összeállította: dr. Gerzso Miklós egyetemi doces PTE MIK Műszaki Iformatika Taszék 205.2.06. Itelliges redszerek I. PTE MIK Mérök iformatikus BSc szak Stabilitás egyszerűsített

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL MAGYAR TUDOMÁNY NAPJA DOKTORANDUSZOK FÓRUMA Mskolc Egyetem, 2006. ovember 9. AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL Mleff Péter,

Részletesebben