Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?"

Átírás

1 Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor júlus A Budapest Corvus Egyetem rövd életű Ökoometra Csoportjáak vezetőjekét Huyad Lac fotosak tartotta, hogy a taításo túl s foglalkozzuk ökoometra problémákkal, és ezekről beszéljük s egymás között. A cél az volt, hogy egymást jobba megsmertessük érdekes alkalmazásokkal, boyololtabb modellekkel, és az egyébkét általuk vszoylag gyakra haszált módszerek mélyebb hátterével. Ez a műhelymuka valóba eldult, bár a hétközapok vhara és az Ökoometra Csoportak és oktatóak a jövője körül bzoytalaság matt em futott fel teljese. De em adtuk fel a terveket. Ez az írás s ezt akarja bzoyíta: egy olya kérdést bocolgat, amelyet Lac többször felvetett, ám redese sosem beszéltük végg. A kérdés a következő. A kétfokozatú legksebb égyzetek módszere több strumetum eseté az edogé magyarázó változókak az egzogé magyarázó változókra (strumetumokra való leárs projekcóját haszálja a becsléshez. Ezáltal a túl sok strumetumból azok egyféle leárs kombácójával hoz létre éppe elegedő számú strumetumot. De vajo m a megfotolás pot e leárs kombácó mögött? Optmáls megoldás-e ez, és ha ge, mlye értelembe, és mlye feltételek mellett? És végül, elképzelhető-e olya sztuácó, amkor va a 2SLS-él jobb megoldás? Tektsük egy függetle azoos eloszású (d mtát és rajta egy kétváltozós leárs modellt, ahol a egyetle magyarázó változó va, amely edogé: y β0 + βx + u ( 0 E u Cov u, x 0 Az elemzés sorá végg feltesszük, hogy a modell korrektül specfkált, vagys a leárs függvéyforma a megfelelő, és x hatása y-ra mde egyes eseté β. x edogetása matt β OLS becslése kozsztes: p lm β _ OLS ( y y( x x β_ OLS 2 ( x x Cov( y, x Cov( β0 + βx + u, x V ( x V ( x Cov( u, x β V ( x β V x + V x

2 Ha találuk megfelelő strumetumot, β kozsztese becsülhető. Megfelelő (érvéyes strumetum korrelálatla a em megfgyelt kompoessel és korrelált az edogé magyarázó változóval: ( Cov z, u 0 Cov z, x 0 Ezeket az strumetum mometumfeltételeek evezzük. Az első mometumfeltétel azt köt k, hogy egy érvéyes strumetum em korrelálhat a em megfgyelhető heterogetással; a másodk azt, hogy a megfgyelhető magyarázó változóval vszot korrelála kell. E két feltétel eredméyekét az strumetum közvetleül em, a megfgyelt magyarázó változó keresztül vszot hat az eredméyváltozóra. Az strumetáls detfkácó, és az arra épülő strumetáls becslőfüggvéy ezt haszálja k: z és y megfgyelt együttmozgása két hatás eredője: z hatása x-re, és x hatása y-ra (z közvetleül em hat y-ra. Ha a megfgyelt z és y együttmozgásból kszűrjük z hatását x-re, megkapjuk x hatását y-ra, vagys β et. Az strumetáls változó (IV becslőfüggvéy: _ IV ( y y( z z ( x x( z z _ IV β β kozsztes becslőfüggvéye β ek: p lm β _ IV + Cov x, z Cov x, z ( β0 + β + Cov( x z β Cov y, z Cov x u, z Cov x, z, β Cov x, z Cov u, z Ha olya szerecsés helyzetbe vagyuk, hogy emcsak egy, haem több érvéyes strumetumuk s va, a bőség zavara vet fel egy újabb problémát. Ha a modell korrektül specfkált, bármelyk felhaszálásával kozsztese becsülhetjük β -et. Kombálásuk azoba hatásosabb becslőfüggvéyhez vezethet: több strumetum több formácót tartalmazhat, mt egy. Ha mdegyk strumetum korrelálatla u-val, úgy bármlye leárs kombácójuk s korrelátla: Cov z, u Cov z2, u... Cov zl, u 0 L L Cov λlzl, u λlcov( zl, u l 0 l A kétfokozatú legksebb égyzetek módszere (2SLS a következő kombácót alkalmazza: x γ + γ z + γ z γ z, * L L ahol a γ paraméterek az OLS becslések abba a leárs regresszóba, melyek eredméyváltozója az x, magyarázó változó pedg a z-k. A 2SLS ekkor 2

3 * * ( y y( x x * * ( x x _2SLS 2 β A kérdés az, hogy va-e olya leárs kombácó, amelyek ksebb (aszmptotkus varacája va, mt a többek, és ha ge, ezt hogya határozhatjuk meg - és hogy vajo a 2SLS lye becslőfüggvéy-e. A Mometumok Általáosított Módszere (GMM keretébe választ kaphatuk ezekre a kérdésekre. A kdulópotot az érvéyes strumetum mometumfeltétele jeletk. Legye x ( x a modell magyarázó változóak (esetükbe a kostas és az egyetle x a vektora; β ( β β 0 a becsüledő paraméterek vektora, és z ( z... zl az strumetumok vektora. x és β 2 -es, z pedg (L+ -es oszlopvektor (L strumetum és a kostas. Később haszáladó referecakét jegyezzük meg, hogy β 2SLS becslőfüggvéye e jelölések alapjá a következő: ( * * ( * β xx xy. 2SLS A továbbakba végg feltesszük, hogy (. E ragja 2 (ez a megfelelője az érvéyes strumetumok másodk mometumfeltételéek, vagys az x-szel való korreláltságak. A kduló mometumfeltételeket ekkor a következő egyeletredszer foglalja össze: ( E z u E z y x β 0. β GMM becslőfüggvéye az aalóga elvé alapul: a várható értéket aak mtabel megfelelőjével, a mtaátlaggal helyettesít: zu z ( y x β Szy Sβ E( zu prob. Szy z y S Mthogy véges mtába ulla valószíűséggel lesz mdegyk mtaátlag potosa ulla még ha a várható értékek md ullák s, a GMM azt a paramétert keres, amely mellett a mometumfeltételből képzett kvadratkus forma a legközelebb va ullához: β arg m S S β A S S β GMM zy zy β ( S ( A S S A Szy 3

4 ahol a másodk egyelőségél az optmum elsőredű feltételét írtuk le (khaszáljuk hogy a kvadratkus forma kovex, sőt valószíűséggel szgorúa kovex, így az elsőredű feltétel elégséges. S zy a mtabel égyzetösszeg (osztva a mtaelemszámmal, amely egy (L+ dmezójú oszlopvektor; S pedg ezzel aalóg mátrx, dmezója (L+ 2. A bármlye olya (L+ (L+ dmezójú valószíűség mátrx lehet, amely valószíűségbe valamlye poztív deft mátrxhoz kovergál: p lm A Ψ poz. def. A GMM becslőfüggvéy kozsztecáját ge egyszerű belát: β S A S S A S S ( S A S ( S A [ Sβ Szu ] ( β S ( A S S A Szu z u GMM zy + + β β+ Ψ Ψ β zu p lm GMM E E E E ( zu Az utolsó sorba azt haszáljuk k, hogy p S E( u β lm zu GMM z 0, hogy eek folytoos függvéye és így alkalmazható a Slutsky-tétel, valamt hogy az A mátrx valószíűség határáak (Ψ létezk az verze. 2 Az A mátrxtól függőe végtele sok GMM becslőfüggvéy létezk, és mdegyk kozsztes. Ez aak az újrafogalmazása, hogy érvéyes strumetumok bármlye leárs kombácójával készíthető kozsztes becslőfüggvéy: a kombácóhoz haszált súlyok mátrxa em más, mt A -/2. A GMM becslőfüggvéy szmptotkusa ormáls: D ( β GMM β N( 0, Λ Λ ΔΩΔ Δ E Ψ E E Ψ 2 2 ( ( ( Ω V zu E zu z E u z z A legksebb aszmptotkus varacát az a GMM becslőfüggvéy adja, amelybe A Ω plm Ω Ω E u zz 2 ( A Slutsky-tétel azt modja k, hogy ha p lmξ μ, akkor bármely f folytoos függvéyre plm f ξ f μ. 2 Elvleg em kell, hogy az verz véges mtába s létezze, csak olyakor általáosított verzt (Moore- Perose kell haszál. A léyeg megértéséhez ettől a fomságtól yugodta eltekthetük, és feltehetjük, hogy A maga s poztív deft. 4

5 Ezt a becslőfüggvéyt Optmáls GMM-ek (OGMM evezk: S S S S β OGMM Ω Ω z y Kcst pogyolá fogalmazva, az optmáls súlymátrx az strumetumok (z és a em megfgyelt heterogetás (u szorzata szórásáak (a covaracamátrx ½ hatváyáak az verze. Az tuícó gyakorlatlag ugyaaz, mt az általáosított legksebb égyzetek módszeréél (GLS: a legjobb leárs kombácó az, ahol az egyes strumetumok aál ksebb súlyt kapak, mél zajosabbak (mél kább szóródak véges mtába a 0 mometumfeltétel körül. A mmáls aszmptotkus varaca bzoyítást tt em vezetjük le; 3 léyegébe ugyaarra a kaptafára megy, mt a mmáls varacájú becslőfüggvéyek bzoyítása általába (Gauss-Markov tétel. Kérdés marad az, hogy potosa m s Ω, amelyről eddg ayt tuduk, hogy kozsztesek kell lee Ω-ra. Egyszerű választ ad erre az aalóga elve: 2 Ω u zz am kétlépcsős OGMM becslés eljárást jelet: első lépcsőbe megfelelőe kell u^ kat becsülük Ω^ hoz, majd másodk lépcsőbe e (Ω-ra kozsztese becsült Ω^ felhaszálásával kapjuk meg az OGMM becslőfüggvéyt. Ez megt a GLS módszerrel aalóg, lletve aak megvalósítható változatával (FGLS. Mde lye becslőfüggvéy kozsztes lesz Ω-ra, ha olya u y x β változók szerepelek bee, ahol β kozsztes becslőfüggvéye β-ak. Tudjuk, hogy a redelkezésre álló z változók bármlye leárs kombácójával kozsztes strumetáls becslőfüggvéy készíthető, vagy másképpe fogalmazva, bármely poztív deft A mátrx kozsztes GMM becslőfüggvéyhez vezet. Így bármelyket haszáljatjuk az első lépcsőbe, de praktkus szempotból az legegyszerűbb, ha az első lépcsőbe AI (az (L+ (L+ dmezójú egységmátrx. A kérdés az, hogy va-e ehhez az optmáls GMM-hez bárm köze a 2SLS-ek. A válasz: ge, bzoyos feltételek mellett. Tegyük fel, hogy u homoszkedasztkus z-re kodícoálva, vagys V(u z V(u, és ezért ( 2 ( 2 2 σ ( E u zz E u E zz E zz. Ebbe az esetbe Ω kozsztes becslőfüggvéye a következő: Ω u S zz σ 2 2 hom zz Elvleg ez s kétlépcsős eljárást tee szükségessé akárcsak az OGMM általáos esetébe, ám egy szerecsés véletle ettől megóv mket: mthogy a rezduáls varaca (lletve aak 3 Formáls bzoyítást lásd például Wooldrdge (2002, 8.3. fejezet. 5

6 recproka a becslőfüggvéyek md a evezőjébe, md a számlálójába szerepel, egyszerűe kesk: 2 2 ( ( ( σ ( σ ( S ( Szz S S Szz Szy β OGMM _ hom S ΩhomS S ΩhomSzy S Szz S S Szz S zy Közbe szép csedese elérkeztük a godolatmeet végéhez. Ez a becslőfüggvéy ugyas em más mt a 2SLS: ( ( y ( ( ( y γ zz γ γ z y ( S S z z ( S S ( S S S Szz zz Szz S S Szz zy ( zz z ( ( ( S ( Szz S S Szz Szy βogmm_hom β 2SLS xx x γ z γ z γ z zz zz zz y z S S S S S S y S S S S S S S S zz zz zz zz zz zz zz zy OLS zz ahol a másodk sorba khaszáltuk, hogy defícó szert γ γ S S. A 2SLS tehát potosa megegeyzk az Optmáls GMM-mel ha a em megfgyelt heterogetás az strumetumokra kodcoálta homoszkedasztkus. Vagys ebbe az esetbe 2SLS az a leárs kombácója az strumetumokak, amelyka legksebb aszpmtotkus varacájú becslést bztosítja. Magyarul: a legjobb. Ameybe a em megfgyelt heterogetás heteroszkedasztkus, akkor vszot em az. De vajo praktkus szempotból léyeges-e az OGMM és a 2SLS között külöbség heteroszkedsztkus esetbe? Ezt a kérdés két dolog s motválja. Egyrészt az OGMM boyoluoltabb eljárást géyel, ezért ha praktkus szempotból em agy az előye, kár vele bajlód. Másrészt ráadásul az OGMM kétlépcsős eljárása emcsak boyolultabb, de véges mtába bzoytalaabb, sőt torz s lehet (lásd pl. Podvsky, 999. A kérdés vzsgálatához egy egyszerű Mote Carlo szmulácót végeztük el. A szmulácó sorá két külöböző adatgeeráló folyamatot (DGP, egy homoszkedasztkust (DGP és egy heteroszkedasztkust (DGP 2 vzsgáltuk. Mdkét folyamatba egy edogé magyarázó változó (x és 2 érvéyes strumetum volt (z és z 2 ; a két strumetum közül z jobba korrelált x-szel (vagys erősebb, z 2 kevésbé (gyegébb. DGP 2 -be az strumetumok égyzete korreláltak a em megfgyelt heterogetás (u égyzetével, így u feltételese heteroszkedasztkus volt (Corr(u 2,z 2 Corr(u 2,z A heteroszkedasztctás mértéke közepese erősek modható. 4 4 γ az az (L+ 2 dmezójú OLS paramétervektor, amelyek első oszlopába x első eleméek a kostasak, másodk oszlopába x másodk eleméek x-ek a z vektoro futtatott regresszós paraméteret becsüljük. Mthogy a kostas em szóródk, aak paramétere md ullák, így γ első oszlopa s ullvektor. 6

7 A Mote Carlo szmulácóba 50 ezerszer geeráltuk mtát az adott DGP alapjá, és ezeke a mtáko egyekét megbecsültük β OLS, IV (IV csak z -gyel, IV 2 (IV csak z 2 - vel, 2SLS és OGMM becsléset. Az 50 ezer smétlés utá megvzsgáltuk a külöböző módoko becsült β ek átlagos relatív eltérését a valóságtól (Rel.Bas vagys relatív torzítás, a szóródását (Std vagys szórás, valamt a torzítás és a szóródás együttes hatásakét adódó teljes eltéréségyzetet (RMSE, root mea squared error. A Mote Carlo szmulácót elvégeztük 00, 000 és elemű mtákra s. Az alább táblázat foglalja össze szmulácók eredméyet. A DGP-k potos leírását a Függelék tartalmazza. Táblázat: A Mote Carlo szmulácók eredméye DGP (homoszkedasztkus DGP2 (heteroszkedasztkus OLS IV(z IV(z2 2SLS OGMM OLS IV(z IV(z2 2SLS OGMM 00 Rel.bas Std RMSE Rel.bas Std RMSE Rel.bas Std RMSE A szmulácók redbe kmutatják az smert eredméyeket: az OLS torz, és bár szórása mde mtaagyság mellett ksebb mt bárm más becslőfüggvéyé, végeredméybe agyo mellélő. Az egyetle strumetumot haszáló strumetáls becslőfüggvéyek ks mtába torzak, ám agy mtába ez eltűk (kozszteca. Az erősebb IV-t (z haszáló becslőfüggvéyek a ksmtás torzítása és a szórása s ksebb, mt a gyegébb strumetumot (z 2 haszálóé. Az strumetumokat kombáló becslőfüggvéyekbe (2SLS, OGMM gyakorlatlag eltűk a ksmtás torzítás, és a szórás s mdg jóval ksebb, mt az egy strumetumot haszáló IV-k eseté. A heteroszkedasztkus DGP esetébe bzoytalaabbak becslések: a torzítások és a szórások s általába agyobbak. Am fő kérdésüket, a 2SLS és az OGMM vszoyát llet, az eredméyek meglehetőse egyértelműek. Homoszkedasztkus DGP mellett a 2SLS ks mtába precízebb (hsze khaszálja a homoszkedasztctás feltevését, am tt helyes, közepes és agy mtába azoba a kettő teljese azoos eredméy produkál. Heteroszkedasztkus DGP eseté a agy mtás hasolóság megmarad, de ks mtába sem jobb az OGMM. Az eredméyek mögött valószíűleg az áll, hogy bár az OGMM gyorsabba kovergál a valós β-hoz (ksebb az aszmptotkus varacája, ez az előy praktkus szempotból eleyésző. Ugyaakkor azoba az OGMM kétlépcsős eljárása plusz bzoytalaságot vsz a becslésbe ks mta eseté, ezért ks mtába scs meg az előye a 2SLS-sel szembe. Az aaltkus és a szmulácós eredméyeket a következőképpe foglalhatjuk össze. A 2SLS elvleg s a legjobb (legsebb aszmptotkus varacát adó módo kombálja az strumetumokat homoszkedasztkus esetbe. Heteroszkedasztkus esetbe elvleg va ála 7

8 jobb becslőfüggvéy, praktkusa azoba eek az elvleg jobb becslések több a hátráya, mta az előye. A 2SLS megállja a helyét heteroszkedasztkus köryezetbe s, ezért haszáljuk csak bátra. Hvatkozások: Podvsky, Ja M. (999: Fte sample propertes of GMM estmators ad tests. I L. Mátyás (szerk: Geeralzed Method of Momets Estmato. Cambrdge Uversty Press. Jeffrey M. Wooldrdge (2002: Ecoometrc aalyss of cross secto ad pael data. MIT Press. Függelék A Mote Carlo szmulácókba haszált adatgeeráló folyamatok (DGP-k potos leírása DGP : z ~ dn(0,0.5 z 2 ~ dn(0,0.5 x 0.5z + 0.2z 2 + v v ~ dn(0,σ v úgy, hogy σ x u ~ N(0, úgy, hogy Corr(u,v0.5 y β x + u β vagys: edogé x, 2 érvéyes strumetum z & z 2, z erősebb: Corr(x,u Corr(u,z Corr(u,z 2 0. Corr(z,x 0.25, Corr(z 2,x 0.0. Homoszkedasztctás: Corr(u 2, z 2 Corr(u 2, z DGP 2 : z ~ dn(0,0.5 z 2 ~ dn(0,0.5 x 0.5z + 0.2z 2 + v v ~ dn(0,σ v úgy, hogy σ x u ~ N(0, úgy, hogy Corr(u,v0.5 y β x + u β vagys: edogé x, 2 érvéyes strumetum z & z 2, z erősebb: Corr(x,u Corr(u,z Corr(u,z 2 0. Corr(z,x 0.25, Corr(z 2,x 0.0. Heteroszkedasztctás: Corr(u 2, z 2 Corr(u 2, z , amt egy autoregreszív kodcoáls heteroszkedasztctás (ARCH modell geerál: 8

9 u ψ v+ e e ε z + z, ε ~ dn 0, σ, hogy σ ε u 9

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A Bíráló véleméy SzabóZoltá: A Geometrc Approach or the Cotrol o Swtched ad LPV Systems (Kapcsolt és LPV redszerek ráyítása geometra megközelítésbe) c. MTA doktor (DSc) értekezésről Az értekezés az ráyíthatóság,

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002.

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002. A geodéza tárgya, felosztása, alapfogalmak NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérök Szak Dr. Bácsatya László GEODÉZIA I. Kézrat Sopro, 00. . A geodéza tárgya, felosztása, alapfogalmak A gyűjtögető,

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

Valószínűségszámítás és matematikai statisztika. Ketskeméty László

Valószínűségszámítás és matematikai statisztika. Ketskeméty László Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

STATISZTIKAI MÓDSZEREK

STATISZTIKAI MÓDSZEREK HAJTMAN BÉLA STATISZTIKAI MÓDSZEREK Egetem egzet Pázmá Péter Katolkus Egetem, Bölcsészettudomá Kar Plscsaba, 0. Bevezetés Az első félévbe (Bostatsztka) a statsztka alapat smertük meg. Természetese ez

Részletesebben

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970 Dr. Herma Sádor Dr. Rédey Katal Statsztka I. PÉCSI TUDOMÁNYEGYETEM KTK Közgazdaságtudomáy Kar Alapítva: 97 Mde jog fetartva. Jele köyvet vagy aak részletet a szerző egedélye élkül bármlye formába vagy

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek Termékjellemzők optmalzálásáál haszálatos formácós módszerta 1 Bevezetés Koczor Zoltá, Némethé Erdőd Katal, Kertész Zoltá, Szecz Péter Óbuda Egyetem, RKK, Mőségráyítás és Techológa Szakcsoport Napjak aktuáls

Részletesebben

NYERS GÁBOR: Kontrolling és a költségvetés folyamatos ellenõrzése a PSZÁF gyakorlatában 518

NYERS GÁBOR: Kontrolling és a költségvetés folyamatos ellenõrzése a PSZÁF gyakorlatában 518 Tartalom KÖZPÉNZÜGYEK MONETÁRIS ÉS FISKÁLIS RENDSZER ERDÕS TIBOR: Stagflácó és moetárs poltka 36 BÁGER GUSZTÁV PULAY GYULA: A költségvetés tervezés makrogazdaság kockázataak elemzése 384 KUTASI GÁBOR:

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra) BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Pókháló-entrópia mint új rendszervizsgálati megközelítés a területi elemzésekben

Pókháló-entrópia mint új rendszervizsgálati megközelítés a területi elemzésekben DR. GODA PÁL DR. TÓTH TAMÁS Pókháló-etróa mt ú redszervzsgálat megközelítés a terület elemzésekbe Gyakra szembesülük azzal a kérdéssel, hogy mtől lesz egy felesztés stratéga fetartható. Mt s elet a fetarthatóság,

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma

Részletesebben

A SOKASÁGI ARÁNY MEGHATÁROZÁSÁRA IRÁNYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS MINTÁK ESETÉN LOLBERT TAMÁS 1

A SOKASÁGI ARÁNY MEGHATÁROZÁSÁRA IRÁNYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS MINTÁK ESETÉN LOLBERT TAMÁS 1 ÓDSZERTAI TAULÁYOK A SOKASÁGI ARÁY EGHATÁROZÁSÁRA IRÁYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS ITÁK ESETÉ LOLBERT TAÁS 1 A ckk ő célja aak vzsgálata, hogy az elleőrzés gyakorlatba széles körbe haszált

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

1. DIGITÁLIS ADATFELDOLGOZÁS

1. DIGITÁLIS ADATFELDOLGOZÁS 1. DIGITÁLIS ADATFELDOLGOZÁS A médiumok szite midegyike előállítható már digitális formába. Ez az ú. digitális közös evező lehetővé teszi az ilye adatok egységes kezelését. Miél összetettebb egy médium,

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

Foglalkoztatáspolitika. Modellek, mérés.

Foglalkoztatáspolitika. Modellek, mérés. Foglalkoztatáspoltka. Modellek, mérés. Galas Péter Budapest, 20 Galas Péter, 20 Kézrat lezárva: 20. júnus Bevezetés A tananyag célja a foglalkoztatáspoltka közgazdaságtan szempontú elemzésében és értékelésében

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

Általánosított mintavételi tétel és alkalmazása kváziperiodikus jelek leírására

Általánosított mintavételi tétel és alkalmazása kváziperiodikus jelek leírására Általáosított mitavételi tétel és alkalmazása kváziperiodikus jelek leírására Dr. Földvári Rudolf BME Híradástechikai Elektroika Itézet ÖSSZEFOGLALÁS Az általáosított mitavétel külöböző esteiek bemutatása

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

Kontra József A pedagógiai kutatások módszertana

Kontra József A pedagógiai kutatások módszertana Kotra József A pedagógiai kutatások módszertaa egyetemi jegyzet A kiadváyt A kompetecia-alapú pedagógusképzés regioális szervezeti, tartalmi és módszertai fejlesztése (TÁMOP - 4.1..-08/1/B-009-0003) című

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív Iskolakultúra 202/3 Sátha Kálmá Kodoláyi Jáos Főiskola Neveléstudomáyi Taszék Numerikus problémák a kvalitatív megbízhatósági mutatók meghatározásáál A taulmáy a kvalitatív vizsgálatok megbízhatósági problémáiak

Részletesebben

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez [ξ ] Módszertai kísérlet az életpálya fogalmáak formalizálására Előtaulmáy a fiatal biológusok életpályakutatását célzó támogatott projekthez Soós Sádor ssoos@colbud.hu; 2009/9 http://www.mtakszi.hu/kszi_aktak/

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

Kombinatorikus optimalizálás jegyzet TARTALOM

Kombinatorikus optimalizálás jegyzet TARTALOM Kmbatrkus ptmalzálás egyzet az elıadás és a kadtt szakrdalm alapá Készítette: Schmdt Péter Alk. Mat., II. évf. 00-0 TARTALOM KOMBINATORIKUS OPTIMALIZÁLÁS... HALMAZOK... Halmaz lefedése... Sperer-redszerek...

Részletesebben

Reálbérek és kereseti egyenlõtlenségek, 1986 1996

Reálbérek és kereseti egyenlõtlenségek, 1986 1996 62 Kertesi Gábor Köllõ Jáos Közgazdasági Szemle, XLIV. évf., 997. július augusztus (62 634. o.) Kertesi Gábor Köllõ Jáos Reálbérek és kereseti egyelõtleségek, 986 996 A bérszerkezet átalakulása Magyarországo,

Részletesebben

KIMONDHATÓ.?! Magyar Máltai Szeretetszolgálat F o g a d ó P s z i c h o s z o c i á l i s S z o l g á l a t

KIMONDHATÓ.?! Magyar Máltai Szeretetszolgálat F o g a d ó P s z i c h o s z o c i á l i s S z o l g á l a t Az egészséges evelés KIMONDHATÓ.?! Magyar Máltai Szeretetszolgálat F o g a d ó P s z i c h o s z o c i á l i s S z o l g á l a t 8. Előszó Tartalom Mide felőtt volt egyszer gyerek És felő majd az új gyereksereg:

Részletesebben

Δ x Δ px 2. V elektromos. nukleáris. neutron proton

Δ x Δ px 2. V elektromos. nukleáris. neutron proton Nukleáris kölcsöhatás: az atommagba számú proto, és N = számú eutro va, és stabil képződméy Mi tartja össze az atommagot? Heiseberg-féle határozatlasági reláció alapjá egy ukleo becsült kietikus eergiája

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

A lakosság egészségi állapotát befolyásoló tényezők

A lakosság egészségi állapotát befolyásoló tényezők A lakosság egészség állapotát befolyásoló téyezők Számos kockázat téyező befolyásolja a lakosság egészség állapotát. Szükséges eze kockázat téyezőkre való odafgyelés az egyé, a család, a házorvos, a mukahely,

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

Sok sikert és jó tanulást kívánok! Előszó

Sok sikert és jó tanulást kívánok! Előszó Előszó A Pézügyi számítások I. a Miskolci Egyetem közgazdász appali, kiegészítő levelező és posztgraduális kurzusai oktatott pézügyi tárgyak feladatgyűjteméyéek az első darabja. Tematikája elsősorba a

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

2. modul Gazdasági matematika

2. modul Gazdasági matematika Matematika A. évfolyam. modul Gazdasági matematika Készítette: Lövey Éva Matematika A. évfolyam. modul: GAZDASÁGI MATEMATIKA Taári útmutató A modul célja Időkeret Ajálott korosztály Modulkapcsolódási potok

Részletesebben

Egyenes-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyenese?

Egyenes-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyenese? Közgazdasági Szemle, LVII. évf., 1. március (1 1. o.) ERDŐS PÉTER ORMOS MIHÁLY ZIBRICZKY DÁVID Egyees-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyeese? Taulmáyuk egyrészt

Részletesebben

Július Augusztus Szeptember NAPRAKÉSZ VAGYOK! Üzleti gazdaságtanból. 2011-ben. Október November December

Július Augusztus Szeptember NAPRAKÉSZ VAGYOK! Üzleti gazdaságtanból. 2011-ben. Október November December 011 Júlus Augusztus Szeptember Határdő Feladat, program Üzlet gazdaságtaból 011-be Október November December Nevezetességek:. Vállalkozó jogvszoy Sul-Cég eve:... Sul-Cég székhelye:... Képvselője (a jog

Részletesebben

MINŐSÉGÜGYI ELJÁRÁS SZOCIÁLIS, EGÉSZSÉGÜGYI ÉS GYERMEKVÉDELMI IRODA FOLYAMATSZABÁLYOZÁSA

MINŐSÉGÜGYI ELJÁRÁS SZOCIÁLIS, EGÉSZSÉGÜGYI ÉS GYERMEKVÉDELMI IRODA FOLYAMATSZABÁLYOZÁSA SZOCIÁLIS, EGÉSZSÉGÜGYI ÉS GYERMEKVÉDELMI IRODA FOLYAMATSZABÁLYOZÁSA 1 1. AZ ELJÁRÁS CÉLJA: Az eljárás célja, hogy végrehajtásra kerüljeek a Polgármester Hvatal Szocáls, Egészségügy és Gyermekvédelm Iroda

Részletesebben

VALÓS IDEJŰ MULTILATERÁCIÓ WAMLAT PILOTRENDSZER 3 MULTILATERÁCIÓ [4]

VALÓS IDEJŰ MULTILATERÁCIÓ WAMLAT PILOTRENDSZER 3 MULTILATERÁCIÓ [4] Szüllő Ádám Seller Rudolf VALÓS IDEJŰ MULILAERÁCIÓ WAMLA PILORENDSZER 3 A ikkbe bemutatott passzív radarredszer a multilateráiós tehika segítségével képes mide olya légi jármű valós idejű detekiójára és

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy a Nemzeti Fejlesztési Terv Humáerőforrás-fejlesztési Operatív Program 3... közpoti program (Pedagógusok és oktatási szakértők

Részletesebben

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez)

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez) iíiíi á HlftADÁSfCCHNIKAI TUOOHANfOS EGYíSBLIT (APJA KULCSÁR GÁBOR Híradástechikai Ipari Kutató Itézet Algoritmus poligook lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógép adatelőkészítés patter

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy KHF/438-3/008. egedélyszámo 008..0. időpottól taköyvi egedélyt kapott Educatio Kht. Kompeteciafejlesztő oktatási program kerettaterv

Részletesebben

Települési fejlődési pályák a Csereháton

Települési fejlődési pályák a Csereháton Település ejlődés pályák a Csereháto Pézes Jáos 1 Tóth Tamás 2 1. A terület lehatárolása és általáos jellemző A tájöldrajz értelembe vett Cserehát a magyar-szlovák országhatártól délre, a Herád- és a Bódva-

Részletesebben

CIVIL VERDIKT. ELMÉLETILEGnn. Elõzmények. CIVIL SZEMLE n 2007/1 n n n n n n n19. Márkus Eszter. Az egyesületek nyilvántartásba vétele

CIVIL VERDIKT. ELMÉLETILEGnn. Elõzmények. CIVIL SZEMLE n 2007/1 n n n n n n n19. Márkus Eszter. Az egyesületek nyilvántartásba vétele csz10 elm 2 birosag.qxd 2007. 02. 25. 17:56 Page 19 ELMÉLETILEG CIVIL VERDIKT Az egyesületek yilvátartásba vétele Márkus Eszter Ilye eddig még em volt. A megyei bíróságok, ítélõtáblák és fõügyészségek

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

2. Hogyan változik a töltött részecske mozgási energiája elektrosztatikus térben, ill. mágneses térben?

2. Hogyan változik a töltött részecske mozgási energiája elektrosztatikus térben, ill. mágneses térben? Vizsgakérdések Fizika II. I. Mi jellemzi az elektromágeses mezőbe mozgó töltött részecskék eergia- és pályaviszoyait?. Írja fel a töltött részecskékre ató Loretz-erőt kifejező összefüggést! F qe q( v B)

Részletesebben

A TÁRSADALMI FELELÕSSÉGVÁLLALÁSRÓL

A TÁRSADALMI FELELÕSSÉGVÁLLALÁSRÓL csz10 elm 1 ligeti.qxd 2007. 02. 25. 17:53 Page 5 ELMÉLETILEG A TÁRSADALMI FELELÕSSÉGVÁLLALÁSRÓL Ligeti György Magyarország demokratikus jogállam, több mit tizeöt éve mûködik a plurális parlametarizmus

Részletesebben

Vác Város Önkormányzat 11 /2004. (IV.30.) számú rendelet az önkormányzati beruházások és felújítások rendjéről

Vác Város Önkormányzat 11 /2004. (IV.30.) számú rendelet az önkormányzati beruházások és felújítások rendjéről Vác Város Ökormáyzat 11 /2004. (IV.30.) számú redelet az ökormáyzati beruházások és felújítások redjéről Vác Város Képviselőtestülete az ökormáyzati beruházások és felújítások egységes szemléletű gyors

Részletesebben

KÉRDÉSEK ÉS VÁLASZOK HATÁRTALANUL

KÉRDÉSEK ÉS VÁLASZOK HATÁRTALANUL csz10 visszhat.qxd 2007. 02. 25. 18:23 Page 141 KÉRDÉSEK ÉS VÁLASZOK HATÁRTALANUL Civil Fórum, az erdélyi civil társadalom lapja Nyitrai Imre Civil szervezetkét létezi, civilek lei még ma sem köyû Kelet-Európába.

Részletesebben

ÁLTALÁNOS STATISZTIKA

ÁLTALÁNOS STATISZTIKA Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek:

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek: Az araymetszés és a Fiboacci számok mideütt Tuzso Zoltá Araymetszésrl beszélük, amikor egy meyiséget, illetve egy adott szakaszt úgy osztuk két részre, hogy a kisebbik rész úgy aráylik a agyobbikhoz, mit

Részletesebben

HIVATALI FOLYAMATOK FEJLESZTÉSE

HIVATALI FOLYAMATOK FEJLESZTÉSE Cgád Város Ökormáyzat HIVATALI FOLYAMATOK FEJLESZTÉSE MINŐSÉGÜGYI ME 05 1. AZ CÉLJA Az eljárás célja a hvatal folyamatok fejlesztéséek szabályozása. Jele eljárás meghatározza a fejlesztés lefolytatásáak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

XXII. Nemzetközi Köztisztasági Szakmai Fórum és Kiállítás

XXII. Nemzetközi Köztisztasági Szakmai Fórum és Kiállítás XXII. Nemzetközi Köztisztasági Szakmai Fórum és Kiállítás Alkalmazott Kutatási Noprofit Kft. Szombathely 2012. április 24-25-26. Elektroikai hulladékok szelektív begyűjtése és komplex kezelése Chrabák

Részletesebben

Töréskép optimalizálás Elmélet, megvalósítás, alkalmazás

Töréskép optimalizálás Elmélet, megvalósítás, alkalmazás Elmélet, megvalósítás, alkalmazás Készítették: Borbély Dánel Szerkezet-építőmérnök Msc hallgató Borbély Gábor Alkalmazott matematka Msc hallgató Koppány Zoltán Földmérő- és Térnformatka mérnök Msc hallgató

Részletesebben

Folyadékkal mûködõ áramlástechnikai gépek

Folyadékkal mûködõ áramlástechnikai gépek 3. ÖRVÉNYSZIVATTYÚK A folyadékkal működő gépeket több szempot szerit lehet csoportokba osztai. Az egyik fő csoportjuk a folyadékba rejlő mukavégző képességet haszálja fel, és alakítja át a folyadék eergiáját,

Részletesebben

A mintapontok térinformatikai pontszerű elemzése a cukorrépa (Beta vulgaris L.) termésének és minőségének vizsgálata során

A mintapontok térinformatikai pontszerű elemzése a cukorrépa (Beta vulgaris L.) termésének és minőségének vizsgálata során A mtapotok térformatka potszerű elemzése a cukorrépa (Beta vulgars L.) terméséek és mőségéek vzsgálata sorá Tamás Jáos Buzás Istvá 2 Nagy Ildkó Debrece Egyetem Agrártudomáy Cetrum, Mezőgazdaságtudomáy

Részletesebben

MINŐSÉGÜGYI PÉNZÜGYI IRODA FOLYAMATSZABÁLYOZÁSA

MINŐSÉGÜGYI PÉNZÜGYI IRODA FOLYAMATSZABÁLYOZÁSA PÉNZÜGYI IRODA FOLYAMATSZABÁLYOZÁSA 1. AZ CÉLJA Az eljárás célja a költségvetés gazdálkodás (tervezés, módosítás, beszámolás) sorá alkalmazott külső és belső készítésű dokumetumok (jogszabályok, szabályzatok)

Részletesebben

Logoptimális portfóliók empirikus vizsgálata

Logoptimális portfóliók empirikus vizsgálata Közgazasági Szemle, LVI. évf., 2009. jauár (1 18. o.) ORMOS MIHÁLY URBÁN ANDRÁS ZOLTÁN TAMÁS Logoptimális portfóliók empirikus vizsgálata A logoptimális portfólióelmélet matematikai bizoyítását, valamit

Részletesebben

VÉGTELEN SOROK, HATVÁNYSOROK

VÉGTELEN SOROK, HATVÁNYSOROK VÉGTELEN SOROK, HATVÁNYSOROK írta: SZILÁGYI TIVADAR. VÉGTELEN SOROK.. Alapfogalmak, a végtele mértai sor, további példák Az aalízisek a végtele sorok cím fejezete abból a problémából fejl dött ki, hogy

Részletesebben

Szerkesztõbizottság/Editorial Board. Szer kesz tõ ség/editors

Szerkesztõbizottság/Editorial Board. Szer kesz tõ ség/editors CIVIL SZEMLE WWW. CIVILSZEMLE.HU VII. ÉVFOLYAM 1. SZÁM Szerkesztõbizottság/Editorial Board Bíró Edre, Belia Aa, Harsáyi László, Kirscher Péter, Kuti Éva, Marschall Miklós, Miszlivetz Ferec, Nagy Ádám,

Részletesebben

Gonda János SZÁMÍTÓGÉPI MATEMATIKA

Gonda János SZÁMÍTÓGÉPI MATEMATIKA Goda Jáos SZÁMÍTÓGÉPI MATEMATIKA Budapest, 7 Letoálta: 3 TARTALOMJEGYZÉK ELİSZÓ 5 ANALÓG ÉS DIGITÁLIS SZÁMÍTÓGÉP, ALGORITMUS, NEUMANN-ELV 7 JELÁTALAKÍTÁS 9 SZÁMÁBRÁZOLÁS 9 DIGITÁLIS ARITMETIKA 49 LOGIKAI

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

Anyagok a föld mélyérôl

Anyagok a föld mélyérôl Ayagok a föld mélyérôl 2. Földgázból műayag Középpotba az acetilé 2.1. Az acetilé (eti) molekulájába a széatomok között háromszoros kovales kötés va Molekula eve Molekula szerkezete 2.3. Az acetilé l-addíciója

Részletesebben

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

Részletesebben

Ki a Köz és mi a haszon és Ki szerint? a Közhasznúság fogalmi és tartalmi deilemmái. a magyar civil crowdsourcing és crowdfunding jó gyakorlatai

Ki a Köz és mi a haszon és Ki szerint? a Közhasznúság fogalmi és tartalmi deilemmái. a magyar civil crowdsourcing és crowdfunding jó gyakorlatai c ivil szemle www.civilszemle.hu X. évfolyam 3. szám ElmélEtilEg Ki a Köz és mi a haszo és Ki szerit? a Közhaszúság fogalmi és tartalmi deilemmái (Sebestéy Istvá) KözösségEK és civil társadalom a magyar

Részletesebben

ő ü ó ľ ő ľ Ü Ő ľ ü ü ľ ľ ľ ő ź ő Ĺ ę ö ö ľ ľ ő ó ľ ľ ö Ĺ źýź ü ź ő ö ö ü ő ő ó ö ü źů ü ő ö ö ö ü ů ö ö ö Ĺ ő ü ö ö ü ů ź ó ý ű ö ę ő Ö ź ű ü ü ő ý ę ő ü ó ę ó ó ö ü ö ó ę ę Ü ö ü ź ü ń ľ ö ő ű ö ü ó

Részletesebben

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl Közgazdasági Szemle, LII. évf., 2005. júius (576 598. o.) BUGÁR GYÖNGYI UZSOKI MÁTÉ Nemzetközi részvéy befektetési lehetõségek Közép- és Kelet-Európa új európai uiós tagállamaiak szemszögébõl Taulmáyuk

Részletesebben

Járatszerkesztési feladatok

Járatszerkesztési feladatok Járatszeresztési feladato 1 Járatszeresztési feladato DR. BENKŐJÁNOS Agrártudomáyi Egyetem GödöllőMezőgazdasági Géptai Itézet A járat alatt a logisztiába általába a járműve meghatározott több állomást

Részletesebben

Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö

Részletesebben

ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü

Részletesebben

Az aktív foglalkoztatási programok eredményességét meghatározó tényezõk

Az aktív foglalkoztatási programok eredményességét meghatározó tényezõk Az aktív foglalkoztatás programok eredményességét meghatározó tényezõk GALASI ÉTER LÁZÁR GYÖRGY NAGY GYULA Budapest Munkagazdaságtan Füzetek BW. 1999/4 1999. máus 1 Budapest Munkagazdaságtan Füzetek.1999/4.

Részletesebben

1. Mi az érték és a hasznosság kapcsolata, és a hasznosság definíciója!

1. Mi az érték és a hasznosság kapcsolata, és a hasznosság definíciója! . M z éték és hszosság kpcsolt, és hszosság defícój! Az éték, hszosság egy embebe, egy embe sztuácób lkul k, egy yg jószág, egy tágy ömgáb hszotl. Hszosságot tuljdoítuk mdeek legye z yg vgy em yg jószág,

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

A TELJESÍTMÉNYMENEDZSMENT LEHETÕSÉGEI

A TELJESÍTMÉNYMENEDZSMENT LEHETÕSÉGEI csz10 tars 1 porub.qxd 2007. 02. 25. 18:16 Page 71 TÁRSADALOM ÉS ÁLLAM A TELJESÍTMÉNYMENEDZSMENT LEHETÕSÉGEI A NEMZETI CIVIL ALAPPROGRAMBAN A partersége alapuló állami pályáztatási modell értékelése Porubcsászki

Részletesebben

INFOKOMMUNIKÁCIÓ távoktatási segédletek-

INFOKOMMUNIKÁCIÓ távoktatási segédletek- INFOKOMMUNIKÁCIÓ ávokaási segédleek- Készíee: a GDF Redszerechikai Iéze Iformaikai Alkalmazások Taszék mukaközössége. TAGJAI: DR. HÁZMAN ISTVÁN DR. ZSIGMOND GYULA SPISÁK ANDOR PUSKÁS ISTVÁN LSI KÖNYVKIADÓ

Részletesebben

MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ

MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ 127 128 Műszaki és Természettudomáyi Szekció Kiterjedéssel redelkező autoóm robotok gyülekezése Bolla Kálmá 1, Kovács Tamás 2, Fazekas Gábor 2 1 Iformatika Taszék,

Részletesebben

MINŐSÉGÜGYI ELJÁRÁS VÁROSGAZDÁLKODÁSI ÉS KOORDINÁCIÓS IRODA VAGYONGAZDÁLKODÁSI FELADATOK FOLYAMATSZABÁLYOZÁSA

MINŐSÉGÜGYI ELJÁRÁS VÁROSGAZDÁLKODÁSI ÉS KOORDINÁCIÓS IRODA VAGYONGAZDÁLKODÁSI FELADATOK FOLYAMATSZABÁLYOZÁSA EI-05 MINŐSÉGÜGYI ELJÁRÁS VÁROSGAZDÁLKODÁSI ÉS KOORDINÁCIÓS IRODA VAGYONGAZDÁLKODÁSI FELADATOK FOLYAMATSZABÁLYOZÁSA 1. ELJÁRÁS CÉLJA Az eljárás szabályozza az ökormáyzat tulajdoába lévő lakások, em lakás

Részletesebben

1. Gyors folyamatok szabályozása

1. Gyors folyamatok szabályozása . Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után MATEMATIKA C. évflyam. mdul Srba, egymás utá Készítette: Kvács Kárlyé Matematika C. évflyam. mdul: Srba egymás utá Taári útmutató A mdul célja Időkeret Ajáltt krsztály Mdulkapcslódási ptk Srzat fgalma,

Részletesebben