Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától"

Átírás

1 Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest

2 IBNR kfutás háromszög IBNR: curred but ot reported Ikremetáls: C Kumulált: Kfutás háromszög Bekövetkezés dőperódusa 2 Beeletés/Kfzetés késése () å k C k

3 Tartalékolás techkák etermsztkus módszerek alsó háromszög ktöltése potbecslés a tartalékra Láclétra (kumulált károk) ráták függetleek től l ) ( 2 2 l

4 Adatok Két adatsor (két külöböző magar bztosítótól) Lakásbztosítás (7 éves) rövdebb kfutás KGFB (4 éves) hosszabb kfutás Kfutás háromszög (ált. kumulált): ap/hav/egedéves/éves kárszámok/károk károk: kfzetés/beeletés (kfzetés/beeletés késése szert) Külöböző eredméek

5 Célok Müche láclétra módszer tesztelése (kfzetés/beeletés háromszög által adott eredméek közt külöbség csökketése) A tartalék dőperódustól való függéséek vzsgálata Sztochasztkus tartalékolás módszerek tartalék kvatlseek meghatározásához

6 Müche láclétra (MCL) Káragságok (kumulált kfutás háromszög): kfzetés csak kfzetések (PP) beeletés csak kfzetések (IP) beeletés kfzetések tételes függőkártartalék (IPO) MCL: PP és IP háromszögek közt eltérés csökketése Mdkét háromszöget haszála az l ráták az P aktuáls ( P / I ) háadosoktól függek I

7 MCL eredméek PP IP aráok a sorok utolsó elemere (ksebb külöbség) Probléma: PP és IPO összemérhetők SCL MCL PP IPO ráták (ugaakkora külöbség) Ok: külöböző put adatok SCL MCL

8 etermsztkus/sztochasztkus Sokféle determsztkus módszer Külöböző eredméek (potbecslések) Cél: kvatlsek kofdecatervallumok ehhez sztochasztkus módszerek Nav sztochasztkus techkák l :..d. valószíűség változók (L ) Tapasztalat eloszlás: dszkrét egeletes az smert értékeke l ( )

9 Egeletesormáls (UN) modell L változó: dszkrét egeletes eloszlás a halmazo Várható érték: az alsó háromszög ktöltése a teles tartalék várható értéke a szóráségzet: ormáls közelítés (várható érték szóráségzet) kvatlsek a szóráségzet segítségével ïþ ï ý ü ïî ï í ì X X d : ) ( K ( ) å t L E ( ) å Õ ø ö è æ ø ö è æ k k L E ( ) ( ) å Õ Õ ø ö è æ ø ö è æ k k L E L E 2 2 2

10 UN: UN megegzések Egeletesgeerálás (UG) Várható érték: egk determsztkus módszer potbecslése ( lácszemháados átlagokkal ) UN: kvatlsek s adhatók UG: L valószíűség változók mt fet. sor tartaléka: ( L L L ) 2 teles tartalék: ()!(2)!! lehetséges érték 000 lehetséges kmeetel geerálása tapasztalat kvatlsek

11 MCMC modell Y Y 2 Y Y e X C C 2 C C e 2 X 2 C 2 C 22 C e X C C :. peródusba bekövetkezett () peródussal később beeletett károk száma ~Posso(e X Y ) e :. peródusba élő szerződések száma X : eg szerződésre utó kárszámteztás az. peródusba ~ d gamma Y : peródus késéssel beeletett károk aráa ~Beta(ab) eloszlás a é ê å 0 ë k Y k ù ú û tervallumo

12 MCMCtartalékolás a posteror eloszlások Baestétellel: [ ] [ ] [ ] Õ Õ c c ~ [ ] [ ] [ ] Õ Õ c c ~ [ ] ø ö è æ å ø ö è æ å µ Õ e c e c l a a c a e b a e c ø ö è æ å µ å Õ ø ö è æ å ] [

13 Markov Cha Mote Carlo mtavétel MetropolsHastgs módszer; avaslat eloszlás:. mtageerálás 2. [ t ] ì í î Z [ t] q(. ) ~ N a a ( 0.000) z ~ q (. ) vszg vszg t.. a m æ è f ( z ) ( [ t ]) f q q ( [ t ] z ) ( [ ]) ö z t ø

14 Mde lépésbe MCMCtartalékolás mta re mta ra tartalék: Possomta geerálása az aktuáls X és Y segítségével számolt paraméterrel: å å e 2 Várható érték és kvatlsek meghatározása a kapott értékek alapá

15 Eredméek: potbecslések Household (mothl) MTPL (mothl) CL UN UG MCMC 350 CL UN UG MCMC Household (quaterl) MTPL (quaterl) CL UN UG MCMC 350 CL UN UG MCMC

16 Eredméek: kvatlsek Household (mothl) MPTL (mothl) % 75% 90% 95% UN UG MCMC % 75% 90% 95% UN UG MCMC Household (quaterl) MTPL (quaterl) % 75% 90% 95% UN UG MCMC % 75% 90% 95% UN UG MCMC

17 Tartalékolás módszerek tesztelése Ola tervallumot választuk hog mde formácó smert lege: alsó háromszög s első három év (lakásbztosítás adatok) Becsült értékek összehasolítása a téleges értékkel C C 2 C 22 C 3 C 25 C 32 C 4 C 35 C 42 C 5 C 45 C 52 C 3 C 2 C 5 C 23 C 33 C 43 C 53 C 4 C 24 C 34 C 44 C 54 C 55

18 Teszteredméek Valód érték: 788 Láclétra: 990 Quatles of the reserve UN UG MCMC Real 50% 75% 90% 95%

19 Koklúzók Potbecslések em megbízhatók Sztochasztkus módszerek ago külöböző eredméeket adhatak Módszer és peródus választása: adatoktól s függőe (hosszú/rövd kfutás) teszteléssel Bootstrap crossvaldato módszerek

20 Köszööm a fgelmet!

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

1. Operáció kutatás matematikát matematikai statisztika és számítástechnika. legjobb megoldás optimum operációkutatás definíciója :

1. Operáció kutatás matematikát matematikai statisztika és számítástechnika. legjobb megoldás optimum operációkutatás definíciója : 1. Operácó kutatás Az operácó kutatás 1940 ó ta smeretes. Bár a techka felő dés, a termelés folamatok szervezése már korábba s géelte a matematka eszkö zö k felhaszálását, - amelekbe fellelhető k az operácó

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

I. Valószínűségelméleti és matematikai statisztikai alapok

I. Valószínűségelméleti és matematikai statisztikai alapok I. Valószíűségelmélet és matematka statsztka alapok. A szükséges valószíűségelmélet és matematka statsztka alapsmeretek összefoglalása Az alkalmazott statsztka módszerek tárgalása, amel e kötet célja,

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

STATISZTIKAI MÓDSZEREK

STATISZTIKAI MÓDSZEREK HAJTMAN BÉLA STATISZTIKAI MÓDSZEREK Egetem egzet Pázmá Péter Katolkus Egetem, Bölcsészettudomá Kar Plscsaba, 0. Bevezetés Az első félévbe (Bostatsztka) a statsztka alapat smertük meg. Természetese ez

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

LEGJOBB BECSLÉS Módszerek, egyszerűsítések

LEGJOBB BECSLÉS Módszerek, egyszerűsítések LEGJOBB BECSLÉS Módszerek, egyszerűsítések Tusnády Paula 2010. Június 24. 1 Tartalom Értékelési folyamat lépései Módszerek Arányosság elve Élet ági egyszerűsítések Nem-élet ági egyszerűsítések 2 Értékelési

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok Bevezetés a hpotézs vzsgálatba Lásd előadás ayagát. Kétoldal és egyoldal hpotézsek Hpotézsvzsgálatok Ebbe a ejezetbe egyajta határozókulcsot szereték ad a hpotézsvzsgálatba haszált próbákhoz. Először dötsük

Részletesebben

REGIONÁLIS ELEMZÉSI MÓDSZEREK. c. készülő egyetemi tankönyvből, szerkesztő: Nemes Nagy József várható megjelenés 2004., ELTE Eötvös Kiadó

REGIONÁLIS ELEMZÉSI MÓDSZEREK. c. készülő egyetemi tankönyvből, szerkesztő: Nemes Nagy József várható megjelenés 2004., ELTE Eötvös Kiadó Kézrat részletek a REGIONÁLIS ELEMZÉSI MÓDSZEREK c. készülő egetem takövből, szerkesztő: Nemes Nag Józse várható megjeleés 004., ELTE Eötvös Kadó 5 TERÜLETI EGYENLŐTLENSÉGEK 5. Fogalm keretek Az egelőtleség

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. eg. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

Statisztika II. előadás és gyakorlat 2. rész

Statisztika II. előadás és gyakorlat 2. rész előadás és gyakorlat. rész T.Nagy Judt Ajálott rodalom: Ilyésé Molár Emese Lovasé Avató Judt: Feladatgyűjteméy, Perekt, 006. Korpás Attláé (szerk.): Általáos, Nemzet Taköyvkadó, 1997. Molár Mátéé Tóth

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

. melléklet a 3 /2013. (XII. 29.) MNB rendelethez 12. melléklet a 38/2013. (XII. ) MNB rendelethez

. melléklet a 3 /2013. (XII. 29.) MNB rendelethez 12. melléklet a 38/2013. (XII. ) MNB rendelethez . melléklet a 3 /2013. (XII. 29.) MNB rendelethez 12. melléklet a 38/2013. (XII. ) MNB rendelethez A Kártalanítási Alap kezelőjének éves felügyeleti jelentése ÖSSZEFOGLALÓ TÁBLA Táblakód Megnevezés Adatszolgáltató

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE EG FÁZISÚ ÖBBOMPONENS RENDSZERE: AZ ELEGE ÉPZDÉSE AZ ELEGÉPZDÉS ERMODINAMIÁJA: GÁZO Általáos megfotolások ülöböz kéma mség komoesek keveredésekor változás törték a molekulárs kölcsöhatásokba és a molekulák

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

Hvezetés (írta:dr Ortutay Miklós)

Hvezetés (írta:dr Ortutay Miklós) Hveeé (íra:dr Orua Mkló. Hável módok:. Alapfogalmak 3. Feladaok 4. Háadá é kovekcó Hável, eergarapor hajóer (hmérékle külöbég haáára.. Hável módok: veeée hável, hveeé (elem réeckék hmogáa, cak lárd fába

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Ökonometria. /Elméleti jegyzet/

Ökonometria. /Elméleti jegyzet/ Ökoometra /Elmélet jegyzet/ Ökoometra /Elmélet jegyzet/ Szerző: Nagy Lajos Debrece Egyetem Gazdálkodástudomáy és Vdékfejlesztés Kar (1.,., 3., 4., 5., 6., és 9. fejezet) Balogh Péter Debrece Egyetem Gazdálkodástudomáy

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

SÚRLÓDÁSMENTES KÖZEG NUMERIKUS ÁRAMLÁSTANI MODELLEZÉSE ÉS ÉRVÉNYESÍTÉSE ÖSSZEFOGLALÁS

SÚRLÓDÁSMENTES KÖZEG NUMERIKUS ÁRAMLÁSTANI MODELLEZÉSE ÉS ÉRVÉNYESÍTÉSE ÖSSZEFOGLALÁS eress Árád Galla Tbor ohács József SÚÓDÁSMENTES KÖZEG NMEIKS ÁAMÁSTANI MODEEZÉSE ÉS ÉÉNYESÍTÉSE ÖSSZEFOGAÁS A ublkácó céla eg dmezós az összeomható áramlás modellezésére alkalmas ks számítógé kaactásgéel

Részletesebben

Szolvencia II. Biztosítástechnikai tartalékok 2005.04.27

Szolvencia II. Biztosítástechnikai tartalékok 2005.04.27 Szolvencia II. Biztosítástechnikai tartalékok 2005.04.27 Biztosítástechnikai tartalékok A. Nem-életbiztosítási tartalékok B. Életbiztosítási tartalékok C. Próbaszámolások 2005.04.27 2 A. Nem-életbiztosítási

Részletesebben

Eseményvezérelt szimuláció

Eseményvezérelt szimuláció Hálózat szmulácós technkák (BMEVITTD094/2005) október 3. Vdács Attla Dang Dnh Trang Távközlés és Médanformatka Tanszék Budapest Mszak és Gazdaságtudomány Egyetem Eseményvezérelt szmulácó DES Dscrete-Event

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit. modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően

Részletesebben

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra) BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka

Részletesebben

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL SZAKDOLGOZAT Készítette: Kovács Blázs Mtet BSc, tár szrá Tévezető: dr Wtsche Gergel, djutus ELTE TTK, Mtettítás és Módszert Közot Eötvös Lorád Tudoáegete Terészettudoá

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

ÖSSZEFOGLALÓ TÁBLÁZAT

ÖSSZEFOGLALÓ TÁBLÁZAT ÖSSZEFOGLALÓ TÁBLÁZAT Táblakód Megnevezés Adatszolgáltató Gyakoriság Beküldési határidő Éves jelentés 43D1 KGFB szerződések december 31-i évfordulóra történő átkötéseinek bemutatása KGFB É vonatkozási

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Alkalmazás: hatásvizsgálatok

Alkalmazás: hatásvizsgálatok Kétértékű függő vátozók mamum kehood becsés Mkroökoometra 7. hét Bíró Akó Kétértékű magarázó vátozók ásd: Bevezetés az ökoometrába Kvatatív formácók OS becsés haszáható Értemezés más: Etérő csoportátagok

Részletesebben

1. melléklet a./2011 ( ) PSZÁF rendelethez ÖSSZEFOGLALÓ TÁBLÁZAT

1. melléklet a./2011 ( ) PSZÁF rendelethez ÖSSZEFOGLALÓ TÁBLÁZAT ÖSSZEFOGLALÓ TÁBLÁZAT Táblakód Megnevezés Adatszolgáltató Gyakoriság Beküldési határidő Éves jelentés 43D1 1. melléklet a./2011 ( ) PSZÁF rendelethez KGFB szerződések december 31-i évfordulóra történő

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Modulzáró ellenőrző kérdések és feladatok (2)

Modulzáró ellenőrző kérdések és feladatok (2) Modulzáró ellenőrző kérdések és feladatok (2) 1. Definiálja az alábbi, technikai eszközök üzemi megbízhatóságával kapcsolatos fogalmakat (1): Megbízhatóság. Használhatóság. Hibamentesség. Fenntarthatóság.

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

Többváltozós függvények Riemann integrálja

Többváltozós függvények Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Az integrál konstrukciója tetszőleges változószám esetén Deiníció: n dimenziós

Részletesebben

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik:

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik: Elektromos zajok Átlagérték, négyzetes átlag, effektív érték Átlagérték dőben változó jel átlagértéke alatt a jel dő szernt ntegráljának és a közben eltelt dőnek a hányadosát értk: τ τ dt Négyzetes átlag

Részletesebben

10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai

10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai (C) htt://kgt.bme.hu/ 1 /8.1. ábra. A versenzı vállalat keresleti görbéje. A iaci árnál a vállalati kereslet vízszintes. Magasabb árakon a vállalat semmit nem ad el, a iaci ár alatt edig a teljes keresleti

Részletesebben

6. melléklet a 49/2014. (XI. 27.) MNB rendelethez

6. melléklet a 49/2014. (XI. 27.) MNB rendelethez 6. melléklet a 49/2014. (XI. 27.) MNB rendelethez Am kötelező gépjármű-felelősség terméket terjesztő biztosító éves felügyeleti jelentése ÖSSZEFOGLALÓ TÁBLÁZAT Táblakód Megnevezés Adatszolgáltató Gyakoriság

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Valószínűségszámítás és matematikai statisztika. Ketskeméty László

Valószínűségszámítás és matematikai statisztika. Ketskeméty László Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI

DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI OPERÁCIÓKUTATÁS No. 9. Szűcs Gábor DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI Budapest 007 Szűcs Gábor: DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI OPERÁCIÓKUTATÁS No. 9 A sorozatot szerkeszt: Komárom Éva Megjelek

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia. Szakmai felelős: Varga Júlia június

ELTE TáTK Közgazdaságtudományi Tanszék OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia. Szakmai felelős: Varga Júlia június OKTATÁSGAZDASÁGTAN OKTATÁSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék,

Részletesebben

A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE

A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE Manninger M., Edelényi M., Jereb L., Pödör Z. VII. Erdő-klíma konferencia Debrecen, 2012. augusztus 30-31. Vázlat Célkitűzések Adatok Statisztikai,

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

4. melléklet a 48/2015. (XII. 8.) MNB rendelethez

4. melléklet a 48/2015. (XII. 8.) MNB rendelethez 4. melléklet a 48/2015. (XII. 8.) MNB rendelethez 4. melléklet a../2015. ( ) MNB rendelethez A kisbiztosító-egyesületnek nem minősülő kisbiztosító aktuáriusi jelentése ÖSSZEFOGLALÓ TÁBLA Táblakód Megnevezés

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL MAGYAR TUDOMÁNY NAPJA DOKTORANDUSZOK FÓRUMA Mskolc Egyetem, 2006. ovember 9. AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL Mleff Péter,

Részletesebben

4. A méréses ellenırzı kártyák szerkesztése

4. A méréses ellenırzı kártyák szerkesztése 4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző

Részletesebben

Változók közötti kapcsolatok vizsgálata

Változók közötti kapcsolatok vizsgálata ) Eseméek függetlesége: p(ab) p(a) p(b) ) Koelácó: vö. az tutív tatalommal Változók között kapcsolatok vzsgálata Akko poztív, ha és átlagosa ugaaa az áa té el a saját váható étékétől, egatív ha elletétes

Részletesebben

vásárlót átlag 2 perc alatt intéz el (blokkolás, kártyaleolvasás), de ez az

vásárlót átlag 2 perc alatt intéz el (blokkolás, kártyaleolvasás), de ez az 1. Név:......................... Egy ABC-ben délután (5-t½ol 9 óráig) a vásárlók száma óránként 200 várható érték½u Poisson eloszlású valószín½uségi változó. A pénztáros egy vásárlót átlag 2 perc alatt

Részletesebben

卷 z 卷 卷 p z卷 r p ü M ü ü ü ű p 卷卷 卷p卷 örv 卷卷卷卷卷卷 v 卷卷卷卷卷卷卷卷 örv 卷 卷卷 卷 卷 p卷 r z z b z v z b r 卷卷 r z p b 卷 pü pü p pü p ü p pü pü pü p ü p p pü p pü p ü p pü pü pü p pü pü p pü pü p pü ü p ü p ü p ü pü

Részletesebben

Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602)

Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) Dr. Jelasty Márk Mesterséges ntellgenca. (602, B602) kurzus nyolcadk előadásának jegyzete (2008. október 20-a) Készítette: Bóna Bence BOBNAAT.SZE NF-MAT V. Bayes-áló Ebben a részben egy szsztematkus módszert

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar LOGO Kvatum-tömörítés Gyögyösi László BME Villamosméröki és Iformatikai Kar Iformációelméleti alaok összefoglalása A kódolási eljárás Az iformáció átadás hűsége és gazdaságossága a kódolástól függ Az iformáció

Részletesebben