AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN"

Átírás

1 AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA ESETÉN A mtaagyság meghatározására számos módszert dolgoztak k az elmúlt évszázadba a statsztkusok, a gyakorlatba mégs csak egy terjedt el gazá. Eek az a legfıbb oka, hogy a sokaság aráy tervallumbecslésé alapuló megközelítés akkor s alkalmazható, amkor a több módszer csıdöt mod, hsze kküszöböl azok legagyobb hbáját, vagys cs szükség az alapsokasággal kapcsolatos elızetes smeretekre (pl.: szórás). A következıkbe részletese smertetem a mtaagyság aráybecslése alapuló meghatározásáak két alapesetét, a végtele és a véges alapsokaság eseté törtéı mtaagyság meghatározást Végtele alapsokaság eseté Ha a mtaagyságot végtele alapsokaság eseté kívájuk meghatároz, akkor mdössze két paramétert kell rögzíteük: megbízhatóság szt, potosság szt. A feladat tehát az, hogy határozzuk meg azt a mtaagyságot, amely eleget tesz az elıbb paraméterek elıre rögzített értékeek. A kérdés úgy s megfogalmazható, hogy mlye mtaagyság mellett lesz a potosság szt egy elıre rögzített érték. A mtaagyság meghatározása eze a poto kapcsolódk az aráybecsléshez, hsze ha kfejezzük a potosság szt képletébıl a mtaelemszámot, már választ s kaptuk a kérdésükre. (1.) ~ z 2 π p (1 = 2 p) A képletbe törtéı behelyettesítéshez valamey paraméter adott, kvéve a mtabel aráy. Ez az formácó a mtaagyság meghatározásakor, vagys a kutatás tervezés fázsába ylvávalóa em áll redelkezésre. Értékét úgy kell megválaszta, hogy azt a mtaelemszámot adja eredméyül, amely mellett egy tetszıleges aráy tervallumbecslése legfeljebb az elıre rögzített potosság sztet eredméyez. Más szóval, keressük azt a mtabel aráyt, amely mellett a mtaelemszám maxmáls. A részfeladat megoldásához a függvéyta smeretekre kell támaszkoduk, ahoa tudjuk, hogy az f(p) = p (1 p) függvéy maxmuma ott va, ahol az

2 elsıredő dervált f' (p) = 0, a másodredő dervált pedg f" (p) < 0. A számítások elvégzése utá p = 0,5 eredméyt kell, hogy kapjuk. A mtabel aráy megfejtése utá az alábbak szert egyszerősíthetjük a végtele alapsokaság eseté alkalmazott mtaelemszámítás képletet. (2.) ~ 0,25 z 2 = π Véges alapsokaság eseté A mtaagyság meghatározásáak ebbe a potba még cs vége, ameybe em végtele, haem véges az alapsokaságot képezı elemek száma. A megbízhatóság és potosság szt mellett rögzíte kell az alapsokaság elemszáma, mt paraméter értékét. Ezt követıe írható fel az a képlet, amely felhaszálja a végtele alapsokaság eseté meghatározott mtaagyságot, vagys korrgálja azt véges alapsokaság esetre. Akkor jutuk erre a megoldásra, ha a potosság szt képletébıl kfejezzük a mtaelemszámot. (3.) ~ = ~ 1+ N Ahogy azt korábba már említettem, a társadalomtudomáy kutatások gyakorlatába többségébe véges alapsokasággal találkozhatuk, ezért az elıbbekbe leírtakat tartsuk szem elıtt a mtavétel terv készítéséek folyamatába. 2. A MINTANAGYSÁG MEGHATÁROZÁSA RÉTEGZETT (R) MINTA ESETÉN A rétegzett mtavétel a véletle mtavétel eljárások közé tartozó kétlépcsıs folyamat, amely sorá elıször a sokaságot osztjuk részsokaságokra, vagy más éve rétegekre. A rétegekek egymást kölcsööse kzáróak és együttese teljesek kell lee, amelybe mde sokaság elemet be lehet sorol egy, és csaks egy rétegbe, ugyaakkor egyetle elem sem marad k. Ezt követıe mde egyes rétegbıl egyszerő véletle (EV) mtavétel segítségével részmtákat veszük, amelyek együttese alkotják a teljes mtát. Azokat a változókat, amelyek segítségével az alapsokaságot egymást kölcsööse kzáró részekre osztjuk rétegképzı smérvekek evezzük. A rétegképzı smérveket úgy kell megválaszta, hogy a rétegeke belül az elemekek homogéek, a sokaságo belül a rétegek pedg heterogéek legyeek. A legelterjedtebb rétegképzı smérvek lakosság (B2C) kutatások eseté a demográfa változók (pl.: földrajz terület, em, életkor), üzlet (B2B) kutatások eseté pedg az általáos cégadatok (pl.: földrajz terület, létszám, árbevétel).

3 2.1. Felosztó (dvzív) rétegzés A rétegzett mtavétel agyo s gyakorlat kérdése a részmták és az általuk együttese alkotott teljes mta agyságáak meghatározása. Ha smertek feltételezzük a teljes mta elemszámát, akkor több megoldása létezk a mta rétegek között elosztás tervéek. Nevezzük ezeket a módszereket összefoglalóa az osztályozás eljárások aalógájára felosztó (dvzív) rétegzések. A dvzív rétegzés meetét a következı 6 lépés alkotja: 1. defáljuk a teljes sokaságot, 2. válasszuk k a rétegképzı smérveket és alakítsuk k a részsokaságokat, 3. rögzítsük a teljes mta megbízhatóság és potosság sztjét, 4. határozzuk meg a teljes mta agyságát, 5. válasszuk k az elosztás tervet, 6. a teljes mta felosztása megadja a részmták elemszámát Egyeletes elosztás Az egyeletes elosztás esetébe úgy jutuk a részmták elemszámához, hogy a teljes mta elemszámát elosztjuk a rétegek tervezett számával, vagys mde egyes rétegbıl azoos agyságú mtát veszük. (4.) = m Az egyeletes elosztás egyszerő, em géyel komolyabb tervezés-szervezés elıkészítést, kéyelmese végrehajtható, és bzoyos feltételek mellett az egyes rétegek mtavétel hbáak összege mmáls. Ha kívácsak vagyuk az egyes rétegek statsztka mutatóra elfogadható megbízhatóság és potosság szt mellett, akkor az egyeletes elosztás jó megoldásak tekthetı Aráyos elosztás Az aráyos elosztás léyege az, hogy a részmták úgy aráylaak a teljes mtához, mt a részsokaságok a teljes sokasághoz. Eek megfelelıe egy agyobb rétegbıl agyobb mtát veszük. (5.) = N N Az aráyos elosztás szté egyszerő, elıkészítése em géyel komolyabb erıfeszítést, köye végrehajtható, és a mtába ugyaazok az aráyok érvéyesülek, mt a sokaságba. A mta a rétegképzı smérvre ézve reprezetatívak tekthetı, ezért szokták ösúlyozó mtáak s evez Neyma-féle optmáls elosztás

4 A Neyma-féle optmáls elosztás esetébe a részmták elemszáma em csak a részsokaság aráyától, haem aak elıre smert vagy legalább becsült szórásától (σ ) s függ. Nagyobb szóródású rétegekbıl agyobb, ksebb szóródásúakból ksebb mtát veszük feltéve, hogy a részsokaságok egyforma agyságúak. (6.) N σ = m N σ = 1 Az elosztás elıyös tulajdosága, hogy a fıátlagot lye mtából számítva mmáls mtavétel hbához jutuk, végrehajtása azoba em egyszerő, hsze ehéz megbízható formácókat yer a rétegekét szórásokra, ezért ez az elosztás kzárólag az elmélet számára fotos. Azoos rétegekét szórások eseté a Neyma-féle optmáls elosztás megegyezk az aráyos elosztással Költségoptmáls elosztás A Neyma-féle optmáls elosztás továbbfejlesztett változata a költségoptmáls elosztás, amely a rétegek agysága és szórása mellett a részsokaságok megfgyelés egységköltséget (π ) s fgyelembe vesz. A mtavétel teljes költsége (C) az alább képlet segítségével kalkulálható. (7.) C = m π = 1 Rögzített költségkeret eseté a fıátlag mtavétel hbáját mmalzáló elosztás a következı formulába törtéı helyettesítéssel kapható meg. (8.) N σ π = m N σ = 1 π A részsokaságok egyforma agysága és szórása eseté abból a rétegbıl vesszük a agyobb mtát, amél ksebb a megfgyelés egységköltség. Azoos egységköltségek eseté a költségoptmáls elosztás megegyezk a Neyma-féle optmáls elosztással és redelkezk aak elıyös és hátráyos tulajdoságaval. Az smertek feltételezett teljes mta rétegek között elosztás terveek elmélet és gyakorlat aspektusból vett elıyös és hátráyos tulajdoságat az alább 1. táblázat tartalmazza.

5 1. táblázat Az elosztás tervek elıye és hátráya Egyeletes Aráyos Neyma-féle optmáls Költségoptmáls Elıye Egyszerő, köye végrehajtható; Alacsoy a rétegek mtavétel hbája Egyszerő, köye végrehajtható; Reprezetatív Fgyelembe vesz a rétegek szórását Fgyelembe vesz a rétegek megfgyelés egységköltségét Hátráya Nem reprezetatív Magas a rétegek mtavétel hbája Boyolult, eheze végrehajtható Boyolult, eheze végrehajtható A gyakorlat számára a legfotosabb elosztások az egyeletes és az aráyos, amelyek egyszerőek, köye végrehajthatók és kedvezı statsztka tulajdoságokkal redelkezek. A Neyma-féle optmáls és a költségoptmáls elosztások feltételezk a rétegekét szórás smeretét, amelyre a legrtkább esetbe áll redelkezésre, vagy érhetı el megbízható és potos formácó Összevoó (agglomeratív) rétegzés A részmták és az általuk együttese alkotott teljes mta elemszámáak meghatározása törtéhet összevoó (agglomeratív) rétegzéssel, amelyek az a léyege, hogy em a teljes mta agyságát rögzítjük elıre, haem a részmták agyságát. Mdezt aak érdekébe tesszük, hogy a rétegek ömagukba s elemezhetık legyeek elfogadható megbízhatóság és potosság szt mellett. Az agglomeratív rétegzés meetét a következı 5 lépés alkotja: 1. defáljuk a teljes sokaságot, 2. válasszuk k a rétegképzı smérveket és alakítsuk k a részsokaságokat, 3. rögzítsük mde egyes részmta megbízhatóság és potosság sztjét, 4. határozzuk meg a részmták agyságát, 5. a részmták összevoása megadja a teljes mta elemszámát. A dvzív és az agglomeratív rétegzés módok elıyös és hátráyos tulajdoságat a következı 2. táblázat tartalmazza. A vzsgálat szempotjat a mta agysága és költsége, valamt a teljes sokaság és a rétegek megbízhatóság és potosság sztje jeletették.

6 2. táblázat Az rétegzés módok elıye és hátráya Felosztó (dvzív) rétegzés Összevoó (agglomeratív) rétegzés Elıye Elfogadható megbízhatóság és potosság szt a teljes sokaságra ézve; Ksebb mta s elegedı hozzá; Kevésbé költséges Kváló megbízhatóság és potosság szt a teljes sokaságra ézve; A rétegek általába ömagukba s elemezhetık Hátráya A rétegek általába em elemezhetık ömagukba Nagyobb mta szükséges hozzá; Költségesebb Összefoglalva elmodható, hogy a dvzív rétegzés módokat akkor célszerő alkalmaz, amkor a kutatás költségvetés kerete relatíve ksebb (em több mt 400) mta vételét tesz lehetıvé, eze belül pedg az aráyos rétegzés bztosítja a mta súlyozás élkül reprezetatvtását. A dvzív rétegzést alkalmazva akkor jutuk ömagukba s elfogadható megbízhatóság és potosság szt mellett elemezhetı részmtákhoz, ha relatíve agyobb (mtegy ) mta áll a redelkezésükre és az egyeletes rétegzést választjuk. Abba az esetbe, amkor kutatás költségvetés kerete agyobb mtaelemszám vételét s lehetıvé tesz, célszerő agglomeratív rétegzést alkalmaz. Ezzel az eljárással ömagukba s elemezhetı részmtákhoz jutuk, em beszélve a teljes mta kváló megbízhatóság és potosság sztjérıl. IRODALOMJEGYZÉK [1] HAJDU: Többváltozós statsztka számítások, Közpot Statsztka Hvatal, 2003 [2] HUNYADI MUNDRUCZÓ VITA: Statsztka, Aula Kadó, 1997 [3] HUNYADI VITA (2002): Statsztka közgazdászokak, Közpot Statsztka Hvatal, 2002 [4] KETSKEMÉTY IZSÓ (2005): Bevezetés az SPSS programredszerbe, ELTE Eötvös Kadó, 2005 [5] MALHOTRA: Marketgkutatás, KJK-KERSZÖV Jog és Üzlet Kadó, 2002

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

A heteroszkedaszticitásról egyszerûbben

A heteroszkedaszticitásról egyszerûbben Mûhely Huyad László kaddátus, egyetem taár, a Statsztka Szemle főszerkesztője A heteroszkedasztctásról egyszerûbbe E-mal: laszlo.huyad@ksh.hu A heteroszkedasztctás az ökoometra modellezés egyk kulcsfogalma,

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka

Részletesebben

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Laboratóriumi mérések

Laboratóriumi mérések Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat

Részletesebben

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat

specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA

MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS SZERVEZETI EGYSÉGEKEN BELÜLI DÖNTÉSI FOLYAMATOK SZABÁLYOZÁSA ÁR-01 OLDAL: 1. 1. AZ ELJÁRÁS CÉLJA Szabályoz, hogy a szervezete belül kk, hol és mlye dötéseket hozak meg. Beazoosíta,

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970 Dr. Herma Sádor Dr. Rédey Katal Statsztka I. PÉCSI TUDOMÁNYEGYETEM KTK Közgazdaságtudomáy Kar Alapítva: 97 Mde jog fetartva. Jele köyvet vagy aak részletet a szerző egedélye élkül bármlye formába vagy

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

3.3 Fogaskerékhajtások

3.3 Fogaskerékhajtások PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú ..4. Óbuda Egyetem ák Doát Gépész és ztoságtechka Mérök Kar yagtudomáy és Gyártástechológa Itézet Termelés olyamatok II. Költségbecslés Dr. Mkó alázs mko.balazs@bgk.u-obuda.hu z dı- és költségbecslés eladata

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL MAGYAR TUDOMÁNY NAPJA DOKTORANDUSZOK FÓRUMA Mskolc Egyetem, 2006. ovember 9. AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL Mleff Péter,

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

Statisztika II. előadás és gyakorlat 2. rész

Statisztika II. előadás és gyakorlat 2. rész előadás és gyakorlat. rész T.Nagy Judt Ajálott rodalom: Ilyésé Molár Emese Lovasé Avató Judt: Feladatgyűjteméy, Perekt, 006. Korpás Attláé (szerk.): Általáos, Nemzet Taköyvkadó, 1997. Molár Mátéé Tóth

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára Zárthely dolgozat 04 B.... GEVEE037B tárgy hallgató zámára Név, Neptu kód., Néháy oro rövd léyegre törő válazokat adjo az alább kérdéekre! (5pot) a) Számítógépe mérőredzerek elépítée (rajz) (33.o.) b)

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Hajtástechnika \ Hajtásautomatizálás \ Rendszerintegráció \ Szolgáltatások MOVITRAC B. Üzemeltetési utasítás. Kiadás: 2009. 05.

Hajtástechnika \ Hajtásautomatizálás \ Rendszerintegráció \ Szolgáltatások MOVITRAC B. Üzemeltetési utasítás. Kiadás: 2009. 05. Hajtástechka \ Hajtásautomatzálás \ Redszertegrácó \ Szolgáltatások MOVITRAC B Kadás: 2009. 05. 16810961 / HU Üzemeltetés utasítás SEW-EURODRIVE Drvg the world Tartalomjegyzék 1 Fotos tudvalók... 5 1.1

Részletesebben

2.6. Az ideális gáz fundamentális egyenlete

2.6. Az ideális gáz fundamentális egyenlete Fejezetek a fzka kéából.6. Az deáls gáz fudaetáls egyelete A legegyszerűbb terodaka redszer az u. deáls gáz. Erre jellező, hogy a részecskék között az egyetle kölcsöhatás a rugalas ütközés, és a részecskék

Részletesebben

Hegedős Csaba NUMERIKUS ANALÍZIS

Hegedős Csaba NUMERIKUS ANALÍZIS Hegedős Csaba NUMERIKUS ANALÍZIS Jegyzet ELE, Iformata Kar Hegedős: Numerus Aalízs ARALOM Gép szám, hbá 3 Normá, egyelıtlesége 9 3 A umerus leárs algebra egyszerő traszformácó 6 4 Mátro LU-felbotása, Gauss-Jorda

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel

TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorgaizmusok számáak meghatározása telepszámlálásos módszerrel A telepszámlálásos módszerek esetébe a teyésztést szilárd táptalajo végezzük, így - szembe

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója

Részletesebben

Óbudai Egyetem. Doktori (PhD) értekezés. Mamdani-típusú következtetési rendszeren alapuló kockázatkiértékelő módszerek optimalizálása

Óbudai Egyetem. Doktori (PhD) értekezés. Mamdani-típusú következtetési rendszeren alapuló kockázatkiértékelő módszerek optimalizálása Óbuda Egyetem Dotor (PhD) érteezés Mamda-típusú öveteztetés redszere alapuló ocázatértéelő módszere optmalzálása Tóthé Laufer Edt Témavezető: Rudas Imre, DSc Taács Márta, PhD Alalmazott Iformata és Alalmazott

Részletesebben

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+ I ALAPFOGALMAK I BEVEZETİ Jelölése: K: véletle ísérlet, ω : elem eseméy, { : } Ω= ω : eseméytér, F Ω : eseméyalgebra, A F : eseméy, Ω F : bztos eseméy Mővelete eseméyeel: összegzés: A+B (halmazuó), szorzás:

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Az új építőipari termelőiár-index részletes módszertani leírása

Az új építőipari termelőiár-index részletes módszertani leírása Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató

Részletesebben

Walltherm rendszer. Magyar termék. 5 év rendszergaranciával. Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés

Walltherm rendszer. Magyar termék. 5 év rendszergaranciával. Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés Walltherm redszer 5 év redszergaraciával Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés Magyar termék WALLTHERM felületfûtés-hûtési redszer Egy fûtési- (hûtési) redszer kialakítása elôtt számtala

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,

Részletesebben

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája?

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája? FELADATOK MÉÉSELMÉLET tárgykörbe. Egy műszer osztálypotosság., végktérése 3 V. Mekkor mérés bszolút hbáj? H Op v / %,*3/ 7, V. A fet műszer V-ot mér. Mekkor mérés reltív hbáj? H h v % 6,% h 3. Egy mérés

Részletesebben

2.10. Az elegyek termodinamikája

2.10. Az elegyek termodinamikája Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,

Részletesebben

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2.1. Az iformációs társadalom és gazdaság fogalmáak külöbözô értelmezései 2.1.1. Az iformációs társadalom Bármely iformációs

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Ökonometria. /Elméleti jegyzet/

Ökonometria. /Elméleti jegyzet/ Ökoometra /Elmélet jegyzet/ Ökoometra /Elmélet jegyzet/ Szerző: Nagy Lajos Debrece Egyetem Gazdálkodástudomáy és Vdékfejlesztés Kar (1.,., 3., 4., 5., 6., és 9. fejezet) Balogh Péter Debrece Egyetem Gazdálkodástudomáy

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok Bevezetés a hpotézs vzsgálatba Lásd előadás ayagát. Kétoldal és egyoldal hpotézsek Hpotézsvzsgálatok Ebbe a ejezetbe egyajta határozókulcsot szereték ad a hpotézsvzsgálatba haszált próbákhoz. Először dötsük

Részletesebben

Július Augusztus Szeptember NAPRAKÉSZ VAGYOK! Üzleti gazdaságtanból. 2011-ben. Október November December

Július Augusztus Szeptember NAPRAKÉSZ VAGYOK! Üzleti gazdaságtanból. 2011-ben. Október November December 011 Júlus Augusztus Szeptember Határdő Feladat, program Üzlet gazdaságtaból 011-be Október November December Nevezetességek:. Vállalkozó jogvszoy Sul-Cég eve:... Sul-Cég székhelye:... Képvselője (a jog

Részletesebben

A populáció meghatározása

A populáció meghatározása A mintavétel Mi a minta? Minden kutatásban alapvetı lépés annak eldöntése, hogy hány személyt vonjunk be a vizsgálatba, és hogyan válasszuk ki ıket ezek a mintavétellel kapcsolatos alapvetı problémák.

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Széki Hírek A Magyarszékért Egyesület kiadványa

Széki Hírek A Magyarszékért Egyesület kiadványa Szék Hírek A Magyarszékért Egyesület kadáya X. éfolyam, 1. szám Karácsoy a árakozással tel szeretet üepe December 17-é fatalok adtak hagerseyt a templomba. K kegyetleül süöltött a hdeg szél, míg be melegséggel

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

STATISZTIKA I. Mekkora? Viszonyszá m = Viszonyszám. sa: 1. Két t statisztikai adat arány. egyik főf. csoportját t alkotják,

STATISZTIKA I. Mekkora? Viszonyszá m = Viszonyszám. sa: 1. Két t statisztikai adat arány. egyik főf. csoportját t alkotják, Mekkora? STATISZTIKA I. 3. Előad adás, Vszoyszámok Előad adó: Dr. Huzsva LászlL szló egyetem doces Vszoyszámok. Két t statsztka adat aráy yát kfejező számok, 2. Az ú. leszármaztatott számok egyk főf csoportját

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben