Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék"

Átírás

1 Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző típusú mérést hajtuk végre a köryezetvédelem és a földtudomáyok területé. A mérések eredméyeképpe agyo sok adat keletkezk. Ezekből a yers mérés adatokból szereték a lehető legtöbb haszosítható formácót kyer egy-egy köryezet probléma hatékoy megoldásáál. Ehhez szükséges a megfelelő adatfeldolgozás, lletve adatértékelés, amely lehetővé tesz azt, hogy az eredet mérés adatakat megfelelőe redezve, feldolgozva és értelmezve maxmáls meységű formácót yerjük. Ez csak agy hatásfokú, a köryezet és földta adatok specaltásat fgyelembe vevő eljárások segítségével lehetséges. A geostatsztka például specaltáskét fgyelembe vesz a köryezet vagy földta adatok térbelségét, hsze a felszí alatt közegbe az egymáshoz közel eső mérés potok adata között sokkal agyobb korrelácó valószíűsíthető a természet törvéyek alapjá, mt a távol eső potok között. Az alább relácós összefüggés mutatja be azt, hogy az adatfeldolgozásak ge fotos helye és szerepe va abba, hogy a költséges mérésekből mél több haszosítható formácót yerjük a téyleges dötéshozatalok előtt. Mérések Adatok Adatfeldolgozás Értelmezés - Iformácó A megredelőket és dötéshozókat elsősorba a mérésekből származtatott formácók érdeklk, és azok alapjá hozzák meg a külöböző szakma dötéseket. Közös érdekük az, hogy a meglévő adatokból a lehetséges legtöbb és legmegbízhatóbb formácót kyerjük. A köryezet és földta adatok esetébe agyo fotos a térbel korrelácó szerepe, mt ahogy fetebb említettük. A kőzetképződés és egyéb törvéyszerűségeket fgyelembe véve megállapítható, hogy az egymás közelébe mért adatok agy valószíűséggel sokkal jobba hasolítaak egymásra, mt a távolabb adatok. A térbel függések ezt a jellegét a hagyomáyos statsztka módszerek em tudják kezel. A geostatsztka módszerekek tehát potosa ez a legfőbb tulajdoságuk, hogy kezel tudják az adatok térbelségét, és az ebből adódó összefüggéseket és korrelácós kapcsolatokat. A térbel korrelácó jelesége mellett a korszerű geostatsztka módszerekek kezelük kell tud azt s, hogy a mérés adatok em csak Gauss vagy más éve ormál eloszlásúak, haem Chauchy vagy akár ferde eloszlású s lehetek, lletve a valóságba sohasem tudjuk előre azt, hogy mlye típusú adatredszerrel lesz végül s dolguk. Vagys az alkalmazott adatfeldolgozás és adatértékelés módszerekek agy mértékű robusztusságot kell mutatuk. Csak a robusztus módszerek képesek agy hatásfokkal működ a kdulás adatok eloszlástípusától függetleül. Emellett mdg kell számol arra s, hogy az adatak között ú. keső vagy outler adatok s leszek, amelyeket szté csak megfelelő módszerekkel lehet kezel. Az adatfeldolgozás eljárások keső adatokra való vszoylagos érzéketleségét rezsztecáak evezzük.

2 Egy-egy komolyabb köryezet vagy földta adatredszer agyo sokfajta adatot foglal magába. Többváltozós regresszós vzsgálatok alkalmazásával válk lehetőségük arra, hogy a külöböző típusú változók között kapcsolatokat, lletve azok erősségére voatkozó mérőszámokat feltárjuk. A széles körbe alkalmazott motorg mérések sorá a külöböző típusú változókat valamlye dőközökét redszerese mérjük. Így adatak térbelsége mellett megjelehet az dőbelség s, azaz egy-egy változó esetébe dősorokat hozuk létre. Az dősorok feldolgozása szté specáls adatfeldolgozás algortmusokat géyel.. Adatok statsztka jellemzése Az adatok alapjá meghatározott jellemző értékek Adatak száma () sokszor ge agy lehet, am megehezít a szakember számára az adatok átláthatóságát. Sok esetbe egy-egy adatredszer ráadásul külöböző típusú adatokat s tartalmazhat. Célszerű, ha a eheze kezelhető agyszámú adatukat éháy statsztka jellemzővel helyettesítjük. Egy-egy adatsor vagy adatredszer statsztka jellemzése lehetővé tesz azt, hogy adatakról egy általáos jellemző képet kapjuk, amely megköyíthet az összehasolító vzsgálatokat és az értelmezést. Az adatok statsztka jellemzése sorá legkább az adatok tömörödés helyére, lletve az adatokba rejlő bzoytalaságra, valamt az adatok szmmetra vagy asszmetra vszoyara vagyuk kívácsak. Eek féyébe egy elemű mérés adatredszer esetébe haszos lehet olya paramétereket talál, amelyek jól jellemezhetk például az adatredszer sűrűsödés vagy tömörödés helyét, lletve az adatredszer terjedelmével kapcsolatos bzoytalaságot. E célak megfelelőe első lépéskét defálhatjuk az ú. hely (T) és skála (S) paramétereket, amelyeket jól haszálhatuk adatredszerek jellemzésére, lletve összehasolítására. Ha egy adatredszer külöböző típusú adatokból áll, akkor az adatok statsztka jellemzését mdegyk típusra elvégezhetjük. Egy elemű adatsor esetébe a legelterjedtebb becslés eljárás a hely (T) és skála (S) paraméterek becslésére a számta átlag és az emprkus szórás, amelyeket a következőképpe adhatuk meg. T = x = x = S = σ = = ( x x ) A hagyomáyos statsztka e két legkább haszált jellemző a köryezet vagy földta adatok vzsgálatáál gyakra félrevezetők lehetek, mvel md a számta átlag, md pedg az emprkus szórás ge érzékeyek az ú. keső adatokra. E hátráyos tulajdoság matt sokkal kább javasolható a Medá és a közepes eltérés haszálata. A Medá egy sorba redezett elemű adatsor esetébe a középső elemet jelet. Ha az elemszám páratla, akkor egyetle középső elem va, míg ha az

3 3 páros, akkor a Medát a két középső elem számta átlagakét számítjuk. Eek megfelelőe egy sorba redezett elemű adatsor estébe a Medá defícója a következőképpe adható meg. Med = x +, ha páratla Med = x + x +, ha páros A Medá haszálatakor skála paraméterekét legkább a közepes eltérést (d) adjuk meg, amely az alábbak szert számítható: d = = x Med. A közepes eltérés (d) mellett sokszor az terkvartls félterjedelmet (q) haszáljuk skála paraméterkét, amely szté előyös robusztus és rezsztes tulajdoságokkal redelkezk. A kvartlsek előtt azoba defáluk kell a kvatlseket tetszőleges p valószíűséghez. A p-kvatls a sorba redezett elemű adatsort p:(-p) aráyba osztja ketté. A Medá esetébe p=0.5. Az alsó kvartls esetébe p=0.5, míg a felső kvartls esetébe p=0.75. A skála paraméterkét haszálható terkvartls félterjedelem (q) a következőképpe számítható. q=(felső kvartls alsó kvartls)/ Vagys egy q szélességű sávba helyezkedk el adatak 50 %-a. Nézzük ezutá egy kokrét példát a számta átlag és a Medá alkalmazására. Vegyük egy 7 elemű adatsort az. táblázat szert. A másodk adatsor csak abba külöbözk, hogy az első adatsor legagyobb eleme () helyett aak tízszeresét (0) szerepeltetjük. Így most a másodk adatsorba egy keső adat hatását szmuláljuk.. táblázat x x x 3 x 4 x 5 x 6 x 7 x Med Láthatjuk, hogy míg a rezsztes Medá értékét a keső adat em befolyásolta, addg a számta átlag ge érzékeye reagált a keső adatra. Eredméyül a számta átlag esetébe egy olya becslést kaptuk a helyparaméterre, amek cs köze az adatok téyleges tömörödés helyéhez. Hasoló következtetésre jutottuk vola, ha a szórás és a közepes eltérés vagy terkvartls fél-terjedelem jellemzőket hasolítottuk vola össze. A Medá és a hozzátartozó bzoytalaság jellemző haszálata tehát mdeféleképpe előyös a számta átlag és a szórás alkalmazásával szembe, ha köryezet vagy földta adatokat vzsgáluk. Létezk azoba olya módszer, amely még a Medá alkalmazásáál s kedvezőbb rezsztes és robusztus tulajdoságokkal redelkezk. Ez pedg a leggyakorbb értékek módszere, amelyet a Mskolc Egyetem

4 4 Műszak Földtudomáy Kará működő geostatsztka team dolgozott k Dr. Steer Ferec vezetésével. A számtala elmélet és gyakorlat vzsgálat bebzoyította azt, hogy a leggyakorbb értékek módszere kválóa alkalmazható köryezet és geoadatok feldolgozása sorá. A témakörbe a módszer kdolgozó számtala taulmáyt és köyvet jeletettek meg. Egy elemű adatsor esetébe a leggyakorbb érték (M) és a hozzátartozó skála paraméter egy kettős terácós algortmusba szmultá határozható meg. A leggyakorbb érték módszer skála paramétere a dhézó, amelyetε jelöl. M = ε ε + ( x M ) = x ε ε + ( x M ) ε 3 = ( x M ) = [ ε + ( x M ) ] = [ ε + ( x M ) ] Mvel terácós algortmusról va szó, ezért szükséges egy kezdő érték M és a dhézó számára. A kezdő érték M-re lehet például a számta átlag vagy a Medá, míg a dhézó kezdő értékére megadhatjuk az emprkus szórás, vagy a közepes eltérés, vagy az terkvartls félterjedelem értékét. Az terácót az M és az ε számítására akkor célszerű leállíta, amkor már egy adott potosság határo belül vagyuk. A fetebb megadott két példa adatsoro kpróbáltuk az ge erős robusztus és rezsztes jelleggel bíró leggyakorbb érték számítást s. Az eredméyeket az alább. táblázatba láthatjuk.. táblázat x x x 3 x 4 x 5 x 6 x 7 x M Köryezet és földta adatok esetébe hagyomáyos számta átlag alkalmazása helyett javasolható még az ú. α -levágott átlag számítása, ha egy elemű adatsor helyparaméterére vagyuk kívácsak. Ebbe az esetbe s a mtaátlagot képezzük a legksebb és a legagyobb mtaelemek elhagyása utá. Így, ha az elhagyott adatokak az összes adatszámhoz vszoyított α aráyát jól választottuk meg, akkor többé-kevésbé védve vagyuk a keső ( outler ) adatok torzító vagy potosság csökkető hatásától. Az így számított átlagot α -levágott átlagak evezzük. Az elhagyás szmmetrkusa törték, azaz a legksebb és legagyobb értékekből mdg ugyaay (α ) darabot hagyak el. Ha az α em lee egész szám, akkor az ehhez legközelebb szám lesz a mérvadó.

5 5 Fotos tulajdosága az adatakak a szmmetrkus vagy aszmmetrkus jelleg. Szmmetrkus adatredszer esetébe adatak szmmetrkusa helyezkedek el a helyparaméter körül. Köryezet vagy földta adatok esetébe azoba sokszor kell számítauk aszmmetrára. Elsősorba a agyobb értékek ráyába törtéő elyúltságak va agyobb valószíűsége. A szmmetra vagy aszmmetra fokát a ferdeség mérőszámával tudjuk jellemez. Egy elemű adatsor esetébe a ferdeség (g) mérőszámát a következőképpe tudjuk számíta a számta átlag és az emprkus szórás segítségével: ( x = x g 3 ( ) ( ) σ = 3 ). A ferdeség (g) értéke szmmetrkus adatsor esetébe zérus vagy közel zérus lesz. Ha az elyújtság a agyobb adatok ráyába található, akkor a ferdeség értéke poztív szám lesz, ellekező esetbe egatív ferdeségről beszélük. Sűrűség- és eloszlásfüggvéyek A természetbe a legtöbb esetbe azzal a feltételezéssel élhetük, hogy a mért paramétereket valószíűség változókét kezelhetjük. A valószíűség elmélet azokat a meységeket, amelyre voatkozó adatak véletle jellegű gadozást mutatak, valószíűség változóak evez. A valószíűség változók esetébe defálhatjuk azok elmélet vagy emprkus sűrűségfüggvéyét és eloszlásfüggvéyét. Redezzük adatakat agyság szert sorredbe. Készíthetük egy lépcsős függvéyt, amely mde x értékhez megadja, hogy háy eél ksebb adatuk va. Az így defált függvéy az emprkus eloszlásfüggvéy (lásd. ábra). Az emprkus eloszlásfüggvéy függőleges tegelyé tehát valószíűség értékek, vagy ú. relatív gyakorság értékek találhatók. Egy elemű, agyság szert sorba redezett adatsor esetébe a k-k adathoz tartozó p relatív gyakorság értéke a következőképpe defálható. k p = Bzoyos esetekbe célszerűbb a korrgált relatív gyakorsággal számol, amelyek értéke az alábbak szert alakul: k p =. + Adatak felhaszálásával készíthetük hsztogramot s. A hsztogram segítségével agyo jól szemléltethető az adatredszer adatsűrűsödés tedecája, képet kapuk a szmmetra vagy aszmmetra vszoyokról, és természetese az adatok előfordulás tartomáyáról (lásd. ábra). Az adatok előfordulás tartomáyát résztervallumokra osztjuk. Ez utá meghatározzuk, hogy az egyes résztervallumba háy darab adat található. A darabszámak megfelelő magasságba az egész résztervallum fölött húzuk egy, az x tegellyel párhuzamos egyeest. Az így származtatható lépcsős függvéyt evezzük hsztogramak. A résztervallum hosszáak helyes

6 6 megválasztását lletőe smeretesek külöböző szabályok. A hsztogram oszlopaak a száma (k) természetese kapcsolatba va az adatok számával. Általáosságba azt a legksebb oszlopszámot (k) fogadjuk el, amely mellett teljesülek az alább egyelőtleségek: k, vagy k + 3. lg( ), ahol k - a hsztogram oszlopaak a száma, - az adatok száma. A kapott hsztogram tájékoztatást ad arra voatkozólag s, hogy a vzsgált valószíűség változóak mlye típusú elmélet sűrűségfüggvéye, lletve elmélet eloszlásfüggvéye lehet. A hsztogram tehát közelítőleg tekthető a vzsgált adatredszer emprkus sűrűségfüggvéyéek s.. ábra. Egy mért valószíűség változó ( adat) emprkus eloszlásfüggvéye. Kellőe agy elemszámú adatsorból meghatározott emprkus eloszlásfüggvéy brtokába egyértelműe válaszolhatuk arra a kérdésre, hogy adatak mlye F(x) eloszlás függvéyel redelkezek. Azaz válaszolhatuk arra a kérdésre, hogy adatak mlye aráyba ksebbek valamlye x értékél. A F(x) smeretébe persze azt s meg tudjuk határoz, hogy adatak mlye f(x) sűrűségfüggvéyel jellemezhetőek, hsze a két függvéy között az alább kapcsolat áll fe.

7 7 x F ( x) = f ( x) dx A sűrűségfüggvéy -re ormált volta matt az F(x) mooto övekszk, és maxmáls értéke az. Móduszak evezzük azt az abcssza értéket, amelyél a sűrűségfüggvéyek maxmuma va. A természetbe előforduló eloszlások attól függőe, hogy a sűrűségfüggvéyek háy csúcspotja va lehetek umodálsak és polmodálsak. 00 Termál-f. hõmérséklet adatok hsztogramja 60 Gyakorság [db] Hõmérséklet [Celsus]. ábra. A Mskolc-Tapolcá található Termál-forrás hőmérséklet adataak (=600) hsztogramja. Természetese a sűrűségfüggvéy s meghatározható akkor, ha smerjük az eloszlás függvéyt a következő egyelet segítségével. d( F( x) f ( x) = dx

8 8 Ismerjük meg éháy evezetes szmmetrkus sűrűségfüggvéy stadard alakját. Ez alatt azt értjük, hogy függvéy helyparaméterét az orgóba helyezzük (T=0), míg a függvéy szélességét szabályozó skálaparamétert egységyek tektjük (S=). Az alábbakba smertetett sűrűségfüggvéyek esetébe az általáos alak úgy kapható meg a stadard alakból, hogy x helyére (x-t)/s-et íruk, és az így adódó függvéyt S- sel osztjuk. A legsmertebb valószíűség sűrűségfüggvéy a Gauss-féle, vagy ormál sűrűségfüggvéy. Sajos, még ma s elég széles körbe elterjedt az a tévht, hogy a természetbe lejátszódó folyamatok a Gauss-sűrűségfüggvéyel jellemezhetők. Számtala köryezet és földta adato végzett típus meghatározás vszot az gazolta, hogy a természetbe szte bármlye típusú sűrűségfüggvéyel s lehet dolguk. A Gauss-féle sűrűségfüggvéy: f Gauss ( x) = e π x (T=0, S=) A Laplace-féle sűrűségfüggvéy: f x L ( x) e (T=0, S=) = A Chauchy-féle sűrűségfüggvéy: f Chauchy ( x) = (T=0, S=) π + x Bzoyos esetekbe célszerű sűrűségfüggvéy modell-családokat defál, hsze a gyakorlatba, mt említettük, agyo sokfajta sűrűségfüggvéyel lehet dolguk. Egy modell-család esetébe egy paraméter segítségével más és más jellegű sűrűségfüggvéyhez jutuk. Egy lye lehetséges modell-család az f a (x) szupermodell, amely agyo jól alkalmazható külöböző köryezet vagy földta feladok megoldásáál. A szmmetrkus szuper-modell az alább alakba adható meg: f x) = ( a) (T=0, S=, a>0), ahol a ( a [ + x ] / (a) egy ormálás együttható. Ha az a modell paraméter értéke, akkor egy széles száryú eloszlással va dolguk, amely a Chauchy-féle sűrűségfüggvéy. Ha az a értéke a végtelehez tart, akkor a Gauss vagy ormál sűrűségfüggvéyel lesz dolguk. Ha az a értéke 5, akkor beszélük az ú. geostatsztka sűrűségfüggvéyről. A természetbe sokszor aszmmetrkus eloszlások s előfordulak, ezért az lye típusú sűrűségfüggvéyekkel s foglalkozuk kell. Egy gyakra alkalmazott aszmmetrkus modell-család a logorm (f l (x)) szupermodell, amelyet az alábbak szert defáluk: f l ( x ) ( p ) x (l x ) / p = e (x>0, p>0), ahol

9 9 (p) a ormálás faktor, p pedg a modellparaméter. A 3. ábrá jól látható, hogy a p modellparaméter változtatásával hogya kapuk külöböző típusú aszmmetrkus sűrűségfüggvéyeket. Látható, hogy a p paraméter értékéek övekedésével csökke az aszmmetra mértéke. 3. ábra. A logorm szupermodell külöböző sűrűségfüggvéye. Mért adatak esetébe agyo fotos lee, hogy meg tudjuk moda azt, hogy az adatak mlye valószíűség sűrűségfüggvéyel jellemezhetők. Egyk lehetőség az, hogy valamlye sűrűségmodellt llesszük az adatakból készített hsztogramra (emprkus sűrűségfüggvéyre), vagy valamlye eloszlásmodellt llesszük az emprkus eloszlásfüggvéyre. Az llesztés gyakorlat megvalósítása azoba em köyű matematka feladat, hsze többváltozós mmalzálást kell végrehajtauk az emprkus és a számított függvéyek között. Ezért a típusmeghatározás sorá alkalmazhatuk egyszerűbb, de kevésbé hatékoy módszereket s. Egy lye eljárás az ú. grafkus próba alkalmazása. E próbák azt haszálják k, hogy em túl agy gyakorlattal bíró szakember s képes legye ráézésre megítél egy statsztkusgadozást mutató potsorról, hogy azok a potok egyeest defálak-e vagy sem. A típusra voatkozó grafkus próbák tehát agyo egyszerűek. A külöböző típusú eloszlásokhoz a statsztkusok ú. valószíűség papírokat készíteek, amelyeke ábrázolhatjuk a mérés adatakat. A 4. ábra egy egyszerű példát mutat be. Va egy Gauss-papíruk, amelyek függőleges tegelyé valószíűségértékek vaak megadva. A vízsztes tegely szabado skálázható az adatak értéktartomáyáak megfelelőe. Ha elkészítjük az adatakból az emprkus eloszlás függvéyt a fetebb említett módo, akkor a relatív gyakorság értékeket felhordjuk az ábrá az adott adat értékekél. Ezutá agyo egyszerű dolgot kell teük. Ha adatak közelítőleg egy egyeesre esek, akkor elfogadjuk a hpotézst, vagys az adatakat Gauss-

10 0 sűrűségfüggvéyel jellemezhetjük. Ha em kapuk egyeest, akkor a kdulás hpotézst el kell vetük. Ebbe az esetbe azoba csak azt tudjuk állíta, hogy adatak em Gauss-eloszlásúak. Ezutá esetleg tovább valószíűség papírt alkalmazhatuk típus-meghatározásra. 4. ábra. Típus meghatározás Gauss valószíűség papír segítségével. A 4. ábrá szereplő Gauss-papíro két külöböző adatsor értéke vaak feltütetve. Jól látható, hogy az egyk adatsor esetébe Gauss-eloszlással va dolguk, míg a másk esetbe az a feltételezést el kell vetük. Végül esse szó az ú. lapultság együtthatóról s (kurtoss, C k ), amelyek az értéke egy elemű adatsor esetébe az

11 alább módo adható meg a egyedk cetráls mometum és a szórás egyedk hatváyáak függvéyébe: 4 ( x x) = Ck = 3. 4 ( ) ( ) σ A lapultság együttható a vzsgált eloszlás csúcsosságáak a mérőszáma: ha C k >0, a sűrűségfüggvéy középső szakasza a Gauss eloszláshoz vszoyítva magasabba helyezkedk el, és megfordítva. A fet kfejezésbe az addtív tag (-3) úgy került be, hogy ormáls eloszlás eseté a tört értéke 3. Korrelácós vzsgálatok Mérések sorá gyakra előfordul, hogy külöböző típusú adatokat mérük. Az így előálló adatredszer egyes adatsora között sokszor próbáluk kapcsolatot keres. A külöböző típusú adatok között esetleges kapcsolatok elemzésére korrelácós vzsgálatokat hajtuk végre. Az egyszerű korrelácós vzsgálatok sorá égy külöböző módszert s alkalmaztuk. Az első módszer léyege aak a két adatsorak a vzuáls megjeleítése, amelyek között a feltételezett kapcsolatot keressük. A vzsgált görbék együttmozgás hasolósága alapjá már eze a szubjektív úto s következtethetük a mért adatok között korrelácós vszoyokra. Természetese joggal merül fel az géy arra voatkozólag, hogy a korrelácó erősségét téyleges mérőszámok segítségével s kfejezzük. Így az alkalmazott másk három módszer matematka képletekkel defált korrelácós együttható számításo alapult. A hagyomáyos (Pearso-féle) korrelácós együttható Az adatok között sztochasztkus vagy más éve korrelácós kapcsolatok szorosságáról többek között az r egyszerű (Pearso-féle) korrelácós együttható ad felvlágosítást. Az egyszerű korrelácós együttható számítására az adott két vzsgált (pl. x és y), adatsorral redelkező valószíűség változóál a következő összefüggést haszáljuk: r = = = ( x x )( y ( x x ) = y ) ( y y ), ahol x y - az adatok száma, - az x adatok számta átlaga, - az y adatok számta átlaga. Az így számolt korrelácós együttható értéke (-) és (+) között változhat. Ha a két változó leársa függetle, akkor r=0. Ha r értéke poztív, akkor a kapcsolat poztív ráytagesű, ha egatív, akkor egatív ráytagesű egyeessel írható le. Ha r=, vagy r=-, abba az esetbe a vzsgált változók között tökéletes leárs függvéykapcsolat létezk. Általába elmodhatjuk, ha a változók között korrelácós

12 együttható abszolút értéke 0.8-ál agyobb, akkor a változók között vszoylag erős leárs kapcsolat meglétét tételezhetjük fel. A szakemberek az r értéke mellett sokszor r értékét s meg szokták ad. Az r azt fejez k, hogy az egyk vzsgált adatsor változása a másk adatsorba törtéő változásokat háy százalékba magyarázza. Például, ha r=0.9, akkor az x adatok értékéek változása 8%-ba írja le az y adatsor értékebe törtét változást. Robusztus korrelácós együttható Ezt a korrelácós együtthatót a Mskolc Egyetem Geofzka Taszéké működő geostatsztka kutatócsoport (vezetője: Dr. Steer Ferec Professzor Emertus) fejlesztette k. Ez a mérőszám a földtudomáy adatredszerek feldolgozására kfejezette alkalmas leggyakorbb értékek elvére épül. Kküszöböl a hagyomáyos (Pearso-féle) korrelácós együttható legagyobb hbáját, az outler (keső pot vagy hbás adat) érzékeységet. A robusztus korrelácós együttható tovább előye emellett, hogy érzéketle a vzsgált valószíűség változók eloszlására s. A robusztus korrelácós együttható a következőképpe számítható: r M = = = Sx ( x M Sx ( x M ) x x ) Sy ( y = M Sy ( y y ) M y ), ahol M x M y Sx Sy - az adatok száma, - az x adatok leggyakorbb értéke, - az y adatok leggyakorbb értéke, - az x adat leggyakorbb érték szert súlya, - az y adat leggyakorbb érték szert súlya. Sperma korrelácós együttható Bzoyos esetekbe célszerű em paraméteres korrelácós együtthatók alkalmazása s. Ilye esetekbe a hagyomáyos statsztka eljárások a korrelácós dexet (I) számítják. A földtudomáyok esetébe azoba legkább a Sperma-féle ragkorrelácó terjedt el, mt em paraméteres számítás eljárás. Ebbe az esetbe a változók téyleges mért értéke helyett azok ragsoraval számoluk a ragkorrelácó megadásakor. A Sperma korrelácós együttható előye az, hogy alkalmas em leárs kapcsolattal közelíthető korrelácós vszoyok vszoylag potos értékelésére s. A Sperma korrelácós együttható megadható: + + ( R )( S ) = rs =, ahol ( ) / R - az adatok száma, - az x adat ragja (háyadk a agyság szert sorba redezett adatsorba)

13 3 S - az y adat ragja (háyadk a agyság szert sorba redezett adatsorba). Adatredszerek ábrázolása. Box-Whsker Plot Adatredszerek esetébe valamlye grafkus szemléltetés agy segítséget jelethet az adatfeldolgozás vzsgálatok sorá, elsősorba azzal, hogy így gyorsabb és átfogóbb áttektést tesz a szakember számára lehetővé, és ez által az adatredszerre voatkozó következtetések s potosabbak lehetek. Az adatredszerek grafkus ábrázolását lletőe agyo sok módszer terjedt el, mt például a fetebb említett hsztogram vagy emprkus eloszlás függvéy. Ezek mellett érdemes megsmer az ú. doboz dagrammok alkalmazásáak a lehetőségét s. Az adatredszerek grafkus megjeleítésére és értelmezésére a földtudomáy gyakorlatba agyo jól haszálhatóak az ú. doboz dagrammok vagy Box- Whsker plotok. A dobozok hossza a vzsgált adatredszer alsó kvartls (5 %-os) értékétől a felső kvartls (75 %-os) értékég terjed, mt ahogy az alább két magyarázó ábrá s látszk. A dobozo belül voal az adatredszer középső eleméek, azaz medájáak a helyét jelöl k. A dobozo kívül voalak ( bajszok ) az adatredszer elyújtságát és terjedelmét szemléltetk. Bzoyos esetekbe lehetőség va az adatredszer tömörödés helyétől ge távol eső adatok keső ( outler ) adatkét való feltütetésére s. Ha a bajszok hosszabbak, mt a doboz hosszúságáak.5 szerese, akkor ott már keső adatokra kell számítauk. Az így jelölt adatok mdeképp fgyelmet érdemleek, hsze lehet, hogy va téyleges fzka magyarázata a távol eső adatokak s, de lehet hogy egyszerű mérés hba törtét. A teljes adatredszer tovább értelmezése előtt ezért mdeképp célszerű tsztáz a keső adatok eredetéek magyarázatát. Ha a keső adatokat ember hba okozta, akkor ezeket az adatokat célszerű eltávolíta az értelmezés fázs előtt. 5. ábra. A Box-Whsker dagram típus főbb statsztka eleme.

14 4 Kegyelítő vagy regresszós számítások A kegyelítő számításokat regresszós vzsgálatokak s evezhetjük. A kegyelítések sorá a mért adatakat (y ) egy számított adatsorral (y cal ) próbáljuk közelíte. A számított adatsort egy függvéykapcsolat segítségével állítjuk elő. A feltételezett függvéy kapcsolat változója (x ) s mért adat. A regresszós számítás sorá a függvéykapcsolat paraméteret határozzuk meg. Először smerkedjük meg a leárs regresszó alkalmazásával, ahol az alább egyeletből duluk k. cal y = b + 0 b x A feladat a b 0 és a b paraméterek azo értékeek a megtalálása, amelyek mellett a mért és a számított adatok eltérésredszere mmáls lesz. Ezt a kíváalmat az alább legkább alkalmazott legksebb égyzetes feltétel fejez k. = ( y y cal ) = m. cal A y helyére beírhatjuk a leárs egyees egyeletét. Így most már a legksebb égyzetes mmum feltételbe szerepelek a meghatároz kívát paraméterek. = ( y b 0 b x ) = m. Ha a fet kfejezés mmum értéket mutat, akkor a b 0 és b paraméterek szert dervált zérus értéket kell, hogy adjo. A feltétel segítségével juthatuk el az ú. ormál egyeletredszerhez az smeretleek szert derválások utá, amely esetükbe a következőképpe írható. = y = b 0 + b = x = x y = b 0 = x + b = x A ormál egyeletredszer megoldása szolgáltatja a b 0 és b paraméterek értékét, amelyek alapjá a kegyelítő egyees megszerkeszthető. Természetese az említett eset mellett akár többváltozós em leárs regresszós kapcsolatokat s defálhatuk. A fetebb említett legksebb égyzetes kegyelítések jeletős hátráya az, hogy ge érzékeye reagál a keső adatokra és az adatok eloszlás típusáak változására. Ezt a hátráyt képes ellesúlyoz a fetebb említett leggyakorbb értékek elvére épülő (MFV) regresszó. A 6. ábra a kétfajta kegyelítés között külöbséget mutatja be. Két kútba mértek vízszt adatokat. Az egyéb hdraulka vzsgálatok alapjá tudjuk, hogy a két kútba mért vízszt adatok között erős kapcsolat va. A legksebb égyzetes regresszó azoba agyo érzékeye reagál éháy kugró adatra, míg a

15 5 leggyakorbb értékek szert regresszó a téyleges leárs kapcsolatot képes meghatároz a mérés adatok alapjá Vízsztek a. kútba [m] MFV regresszó Legksebb égyztes regresszó Vízsztek az. kútba [m] 6. ábra. A legksebb égyzetes és az MFV regresszó gyakorlat alkalmazása. Kugró értékek vzsgálata A kugró vagy keső adatok felsmerése agy fotossággal bír a köryezet vagy földta adatok feldolgozása sorá. A kugró vagy keső adatok oka lehet mérés hba, vagy egyéb olya ok, amely cs kapcsolatba a mért adatok természetével. Azoba a kugró adatokak bzoyos esetekbe téyleges köryezet vagy földta oka s lehetek. Ezért, ha keső adatokat detektáluk, akkor mde esetbe tovább kell vzsgálód, hogy megállapíthassuk a kugró adatok okát. Egy több dmezós adatredszer esetébe célszerű mde változó esetébe elvégez a következő elemzést. Mde olya x adatot, amely em felel meg az alább feltételek, egyedleg meg kell vzsgál, mert az adat feltehetőleg keső értékek tekthető. ( 3 σ ) x ( x + 3 σ ) x A fet egyelőtleség azo a valószíűségelmélet téye alapul, hogy ormál eloszlás esetébe például aak a valószíűsége, hogy a mért változó értéke a fet tervallumba esk, 99.7%. Tehát azok az x adatok, amelyek em teljesítk a fet feltételt, agy valószíűséggel keső adatokak tekthetők. A kugró értékek meghatározására haszálhatjuk a leggyakorbb értékek módszerét s. A leggyakorbb érték (M) számítása sorá az egyes x adathoz automatkusa

16 6 számítódó súlyok (w(x )) kerülek meghatározásra. Ezek értéke a leggyakorbb érték és a dhézó smeretébe az alább módo adhatóak meg. Mt látható, a súlyok értéke 0 és között változhatak. ε w( x ) = ε + ( x M ) Általába azokat az adatokat már keső vagy kugró adatokak tekthetjük, amelyek esetébe a súly értéke ksebb, mt Köryezet jellemzők dősoraak jellemzése A köryezet vagy földta jellemzők méréséél agyo gyakra alkalmazuk t dőközökét smétlődő méréseket. Az lye motorg mérések sorá az egyes változókat lletőe dősorok állak elő. Az egyes dősorok elemzésére, lletve az dősorok között kapcsolatok feltárására haszálhatjuk azokat a statsztka eljárásokat s, amelyeket fetebb megsmertük. Itt vszot most bemutatuk éháy olya specáls módszert és eljárást, amelyeket elsősorba dősorok adataak elemzésére dolgoztak k. Az auto-kovaraca és a kereszt-kovaraca függvéyek alkalmazása agyo gyakor vzsgálat eszköz a külöböző dősorok jellemzésére. Egy dősor esetébe az autokovaraca függvéy matematka kfejezése a következő: C x( k ) = ( xt x ) ( xt+ k x ), ahol k t= k az dőbel eltolás mértékét adja meg. Az auto-kovaraca függvéy a vzsgált változó emlékezetéek tekthető. Ha egy megtörtét köryezet vagy földta eseméyek hosszú távú hatása va a mért dősorra, akkor az auto-kovaraca függvéy egyeletese csökke a k dőköz külöbséggel. Ha a k dőtervallum külöbség zérus (k=0), akkor a vzsgált dősor varacáját, vagys a szórását kapjuk meg. Az auto-kovaraca számításáál k értékét általába 0 és /4 között változtatjuk. A külöböző k értékekhez tartozó C x (k) értékekből tudjuk előállíta és megrajzol az auto-kovaraca (vagy auto-varaca) függvéyt (lásd 7. ábra). Hasoló módo adható meg két külöböző dősor alapjá számítható keresztkovaraca függvéy: C xy ( k ) = ( xt x ) ( yt+ k y ). k t= A kereszt-kovaraca függvéy teljese hasolóa értelmezhető külöböző mért változók között kapcsolat vzsgálatára, mt az auto-kovaraca függvéy. Ha k=0, akkor megkapjuk az ú. kovaracát (COV), amely a két vzsgált dősor együttváltozás jellegét fejez k egy mérőszám segítségével az alább módo.

17 7 COV = t= ( x t x) ( y t y) Természetese, mt látható, a kovaracáak szoros kapcsolata va a korábba megsmert korrelácós kfejezésekkel. 7. ábra. Egy mért dősor auto-kovaraca függvéye. Köryezet dősorok esetébe persze egyszerűbb grafkus vzsgálatokat s elvégezhetük aak érdekébe, hogy feltárjuk a mért és vzsgált változók között esetleges kapcsolatokat. A motorg eredméyekét előálló adatsorokat az dő függvéyébe például egy közös koordáta redszerbe ábrázolhatjuk. A vzsgált görbék együttmozgás hasolósága alapjá már eze a szubjektív úto s következtethetük a mért adatok között kapcsolatokra, lletve korrelácós vszoyokra. A 8. ábra Mskolc-Tapolca köryezetébe 3 külöböző (Termál-forrás, Új-kút, Egyetem-kút) helye mért karszt vízszt dősorokat mutat be. Az ábrázolt dősorok jól mutatják be azt, hogy a tapolca karsztredszer egymástól em túl távol eleme között bzoy erőteljes hdraulka kapcsolat áll fe. Jól haszálhatóak az dősorok elemzésére a fetebb már smertetett doboz dagrammok. A 9. ábra mutat be lye gyakorlat példát, amelye jól elválk a 8. ábrá feltárt korrelácó elleére a két külöböző helye (Új-kút és Termál-forrás) mért vízszt dősorok között karaktersztkus külöbség. Md a kereszttel jelölt keső adatokat, md pedg az dősorok adataak szmmetra vszoyat lletőe jeletős külöbségek észlelhetők a doboz dagram segítségével. A korábba megsmert regresszós vzsgálatok s jól haszálhatók dősorok elemzésére. Az egy vagy több változós kegyelítés számítások sorá meghatározhatjuk a lehetséges függvéykapcsolatokat a mért változók között. A 0. ábra bemutatja két külöböző helye mért felszí alatt vízszt adatok dősora között feálló vszoyokat leárs regresszó alkalmazásával.

18 8 A Termál-f., az Új-kút és az Egyetem vízszt adata Vízszt [mbf] Új-kút vízszt [mbf] Termál-f. vízszt [mbf] Egyetem vízszt [mbf] Idő [ap] 8 ábra. Külöböző helyeke mért vízszt dősor adatok ábrázolása. 8 Box-Whsker Plot 6 Vízszt [mbf] 4 0 Új-kút vízszt [mbf] Termál-f. vízszt [mbf] 9. ábra. A Box-Whsker dagram alkalmazása dősorok elemzésére.

19 9 8.0 A Kertészet és a Termál-f. vízszt adataak regresszós vzsgálata 7.5 Termál-f. vízszt [mbf] y =.0645x R = Mért vízsztek [mbf] Leárs regresszó Kertészet vízszt [mbf] 0. ábra. Regresszós vzsgálat alkalmazása dősorok elemzésére. A Dszkrét Fourer Traszformácó (DFT) alkalmazása dősorok elemzésére A köryezet és földta vzsgálatok sorá a külöböző váltózókhoz tartozó adatakat az dő függvéyébe mérjük. Vagys dőtartomáybel adatsorokkal va dolguk. Ezzel elletétbe lehetséges az s, hogy egy matematka traszformácó segítségével az adatakat a frekveca tartomáyba vzsgáljuk. A Fourer traszformácó lehetőséget teremt arra, hogy egy dőtartomáybel adatsort áttraszformáljuk a frekveca tartomáyba. A gyakorlatba a mért adatsorok em folytoosak, haem valamlye mtavétel dőköz segítségével mérjük azokat. Vagys dszkrét dősorokkal va dolguk. A köryezetük jobb megsmerését szolgáló külöböző motorg redszerek dszkrét adatsorokat állítaak elő. Egy vzsgált hosszabb dőtervallum 0 és T dő között felosztható N darab tervallumra, ahol a mtavétel dő egyelő: t = T / N. f jelöl a folytoos f(t) függvéy értékét t dőél. Az adatok dőbel dexe a következő lehet: = 0,,,., N-. Ebbe az esetbe egy dősor dszkrét Fourer traszformáltja (DFT) megadható az alább kfejezéssel: N kω0 Fk f e = 0 = k = 0 to N-. A Fourer traszformált értékekből megadható az verz Fourer traszformácó összefüggése:

20 0 N kω0 f Fk e N k = 0 = = 0 to N-, ahol ω = / N. 0 π A. és a. ábrák segítséget yújtaak ahhoz, hogy megértsük a Fourer traszformácó léyegét, amely kapcsolatot termet az dő és a frekveca tartomáy között. Perodkus jelek esetébe mdeféleképpe célszerűek tűk a frekveca tartomáybel vzsgálat, hsze egy-egy domás dőtartomáybel peródus a frekveca tartomáyba egyetle domás jelkét jelek meg egy-egy, az dőperódusak megfelelő frekveca értékél.. ábra. Összefüggés az dőtartomáybel és a frekveca tartomáybel jelek között a dszkrét Fourer traszformácó alkalmazása esetébe A DFT módszer gyakorlat alkalmazhatóságát jól bzoyítja a következő példa. A DFT módszer alkalmazásával jól lehet vzsgál vízszt adatok dőbel mérése alapjá az adott hdrodamka redszer főbb sajátságat. A DFT alkalmazása segítséget jelethet a külöböző helyeke mért vízszt adatok között hdraulka folytoosság mértékéek meghatározására. Emellett a dszkrét Fourer traszformácó kválóa alkalmas arra s, hogy megállapítsuk az eredet jelbe vagy dősorba szereplő fotosabb perodctásokat. A Bükkbe több mérés helyből álló komplex motorg redszer üzemel a karsztvíz redszer tulajdoságaak feltárása érdekébe. A mért dősoroko a Dszkrét Fourer Traszformácó (DFT) alkalmazásával például köye bebzoyítottuk azt a fotos

21 hdrodamka feltételezést, hogy a hdeg karsztvzes redszer a Bükk egy jeletős területé egységes hdraulka vselkedést mutat (lásd 3. ábra).. ábra. Összefüggés az dőtartomáybel és a frekveca tartomáybel jelek között a dszkrét Fourer traszformácó alkalmazása esetébe 000 Ampltude spectrum [m] Nagyvsyó Szva Perodc tme [hour] 3. ábra. Egymástól távol eső bükk karsztvízszt dősorok frekveca tartomáybel ampltúdó spektruma. 3. Geostatsztka alapok A köryezet és földta adatok esetébe agyo fotos a térbel korrelácó szerepe és jeleléte. A kőzetképződés és egyéb törvéyszerűségeket fgyelembe véve

22 megállapítható, hogy az egymás közelébe mért adatok agy valószíűséggel sokkal jobba hasolítaak egymásra, mt a távolabb adatok. A térbel függések ezt a jellegét a hagyomáyos statsztka módszerek em tudják kezel. Mathero professzor mukássága által az 950-es évekbe eldított geostatsztka módszerekek tehát potosa az a legfőbb tulajdoságuk, hogy kezel tudják az adatok térbelségét, és az ebből adódó összefüggéseket és korrelácós kapcsolatokat. A geostatsztkába a térbel változékoyságot leíró függvéyek közül legkább az emprkus félvarogram haszálata terjedt el. E geostatsztka alapfüggvéy defícója az alább módo adható meg. ( h γ ( h ) = ( h ) = )[ ] Z( X ) Z( X + h ), ahol (h) az egymástól h távolságra lévő Z(X ) és Z(X +h ) értékpárok száma. A számított emprkus félvarogramak számos sajátossága lehet. A folytoosság a γ ( h ) függvéy övekedéséek mértékéből látható. Bzoyos típusú adatok esetébe a övekedés ge lassú. A függvéy az orgóból dul. Bzoyos adatok esetébe (például amkor a térbel szeyeződés található egy tszta ayakőzetbe) ks távolságoko belül gyors változás következhet be. Ilye esetekbe a γ ( h ) függvéy em az orgóból dul, haem egy röghatásak evezett C 0 >0 értékről dul, majd emelkedő tedecát mutat. A folytoosság teljes megszűéséről beszélük, ha a félvarogramak cs határozott felszálló ága, haem a tapasztalat félvarogram potja egy a h tegellyel párhuzamos egyees köryezetébe helyezkedek el. A fetebb írtakak megfelelőe röghatásak evezzük a félvarogram γ ( h ) tegelymetszetét. Hatástávolság alatt azt a távolságot értjük, amelye belül a mta még hatást gyakorol a köryezetére. Eze távolságo túl a mták gyakorlatlag függetleek egymástól. A mták köryezetre gyakorolt hatása a távolság övekedésével az autokovaraca függvéy tedecáját követve csökke. A félvarogram esetébe a hatástávolságot (H) aak a potak az abszcsszája jelet, amelyél a függvéy értéke álladósul. A vzsgált paraméter zotrópája (ráyfüggetlesége) vagy azotrópája a külöböző ráyokba számított félvarogramok összehasolítása alapjá látható. Ha a félvarogram felszálló ága az eltérő ráyokba külöböző meredekséget mutatak és a hatástávolság s ráyokét változó, akkor a vzsgált paraméter azotróp jellegű (lásd 4. ábra). Izotróp paraméterél a hatásterület körrel, míg azotrópál ellpszssel közelíthetjük. Az emprkus félvarogramokat külöböző típusú elmélet függvéyekkel közelíthetjük. Az egyk lye gyakra haszált közelítés az alább ú. szférkus modell. 3 h h γ ( h ) = C.5 0.5, ha 0 h H H H γ ( h ) = C, ha h>h

23 3 4. ábra. A félvarogram ráyfüggése azotróp köryezet paraméter esetébe. A félvarogram szerkesztés elsődleges célja a h távolságtól függő kovaracák meghatározása a következő módo: COV [ Z( x ), Z( x )] = VAR[ Z( x )] γ ( h ) + h. Mvel az adatok között korrelácó csak bzoyos H távolságg áll fe, azo túl a kovaraca értéke zérus értéket vesz fel. A félvarogram haszálatával a fet kfejezés az alább módo egyszerűsödk. COV [ Z( x ), Z( x )] = γ ( H ) γ ( h ) + h A szférkus modell kfejezését fgyelembe véve a geostatsztka számításokál agyo széleskörűe alkalmazott kovaraca értéke agyo egyszerűe meghatározható a félvarogramból (lásd 5 ábra jelöléset). COV [ Z( x ), Z( x )] = C γ ( h ) A krgelés Be em mért térrészek jellemzőek meghatározására az egyk széleskörűe alkalmazott geostatsztka becslés a krgelés. A krgelés alapgodolata egyszerűe összefoglalható: a kérdéses potbel érték az smert adatok súlyozott átlagakét számítadó, mégpedg olya súlyokkal, hogy az eredméyek mmáls legye a szórása. A súlyokról kkötjük, hogy összegük legye. Egy be em mért P 0 potbel + h

24 4 Z(P 0 ) értéket darab közel P pot Z(P ) értékéek súlyozott átlagakét akarjuk megbecsül: Z( P ) s 0 = s = Z( P ), ahol =. 5. ábra. A kovaraca meghatározása félvarogram segítségével. E becslés szóráségyzetéek (varacájáak, VAR) a mmumát megkövetelve határozzuk meg az s súlyokat. A mmum feltétel a következő. VAR Z( P ) s Z( P ) 0 = = m. E mmum feltétel egy + smeretlees egyeletredszerre vezet, amelybe agy szerepet kapak a bemért potok között kovaracák. c j = COV ( Z( P ), Z( Pj )) E kovaraca értékek agyo köye számíthatók a fetebb leírt módo a mért adatok alapjá előálló félvarogramból. Az darab súly érték mellett még egy ú. Lagrage-multplkátor ( λ ) s smeretlekét fog szerepel az + sorú egyeletredszerbe, amely az alábbak szert foglalható össze.

25 = = = = s s s c s c s c s c c s c s c s c c s c s c s c λ λ λ Az egyeletredszer K mátrxát Krge-mátrxak szokás evez: = c c c c c c c c c K. Bevezetve az S 0 és C oszlopvektorokat a következők szert: = λ s s s S.. 0 és. = λ c c c C Ezek utá az smeretle s súlyokat és a Lagrage-multplkátort s tartalmazó S 0 oszlopvektor köye számítható. 0 0 C K S = Mt korábba említettük, a K és a C 0 mátrxba szereplő kovaraca értékek köye számíthatók a vzsgált területre érvéyes félvarogram alapjá. A legkább számításgéyes művelet a K mátrx verzója lehet, amely azoba a számítástechka jeleleg sztjé még egésze agy elemszám esetébe s csak agyo rövd dőt géyel. A krgeléssel kapott érték hbája köye becsülhető, hsze éppe a becslés hbájáak mmalzálása, mt alapkövetelméy a krgelés kdulópotja. A krgelés valód hbáját persze csak a számított és a valód mért értékek külöbsége alapjá adhatjuk meg. 4. Kockázatelemzés

26 6 A kockázat fogalmát valamely emkíváatos eseméy bekövetkezéséek valószíűségekét defáljuk. A emkíváatos eseméy lehet műszak tökremeetel, redszer meghbásodás, egészségkárosodás, ember élet, köryezet vagy érték veszélyeztetése. Általáosságba a kockázat értékét megadhatjuk valamely emkíváatos eseméy bekövetkezés valószíűségéek és a következméy súlyosságáak szorzatakét. R = P S R kockázat becsült értéke P a vzsgált emkíváatos eseméy bekövetkezés valószíűsége S a emkíváatos eseméy súlyossága A kockázat becslése a gazdaság, mérök, orvos tevékeységek széles skálájá jellemző vzsgálat. A kockázatbecslés fogalmát a köryezetvédelem területé köryezet, vagy humá egészségkockázat meghatározásakor haszáljuk, úgy hogy azt az ember egészséget károsító hatás (expozícó) bekövetkezés valószíűsége és kvattatív módo megadott következméye szorzatakét adjuk meg. A kockázatfelmérés módszertaát számos szerző smertet, valamelyest eltérő kockázatbecslő eljárásokat határozva meg [NRC, 98; USEPA, 984;]. Általáosa a kockázatfelmérés valamely veszélyes körülméyhez vagy eseméyhez köthető expozícót és/vagy tökremeetelt befolyásoló kockázat téyezők becslésére alkalmazott szsztematkus eljárás. Az eljárást szeyezett földta köryezet vzsgálatára alkalmazva - szeyező ayagok köryezetbe való kjutásából eredő expozícós szceárókhoz kapcsolódó kockázat téyezők becslésekét defáljuk. A szeyezett területek vzsgálatakor alkalmazott kockázatfelmérés egy szsztematkus, szabváyosított eljárás, amely sorá vzsgált forrásból származó expozícó mde lehetséges egészségkárosító hatásáak következméyét, gyakorságát becsüljük, feltütetve a becslés bzoytalaságát s. Ha a kockázatfelmérés végpotjába ember áll, az expozícó emberre kfejtett kockázatát becsüljük és humá-egészségügy kockázatfelmérésről, ha vzsgálatuk célja az ökoszsztémára vagy aak valamely fajára ható kockázat becslése, akkor ökológa kockázatfelmérésről beszélük. Mt azt később részletese kfejtem, a kockázatfelmérés egy hatékoy eszköz eltérő típusú, például eltérő köryezet közeg útjá ható, vagy külöböző vegyületek által okozott köryezet ártalmak pragmatkus vzsgálatára és összehasolítására. Az eljárás legfőbb jellemző a szükségszerű bzoytalaságok és a multdszcplartás, am a feladatot végző csoport összetételébe s megjelek. A kockázatfelmérés számos területe alkalmazott eljárás, ksebb-agyobb módszerta eltérésekkel a feladat céljáak megfelelőe. A mérök létesítméyek, redszerek kockázatfelmérése elsősorba a redszerbe bekövetkező meghbásodások forrásat, azok valószíűségét és következméyét elemz. Az lye típusú - elsősorba az parba haszálatos -eljárást evezzük létesítméy közpotú

27 7 kockázatfelmérések, melyek kdolgozásába úttörő szerepet a ukleárs par szakembere játszottak. Azokat az eljárásokat, amelyek valamlye eseméy (pl. baleset), mukahely vagy köryezet expozícó emberre gyakorolt káros hatásat vzsgálják, emberközpotú kockázatfelmérések s evezk. Ide tartozak a mukahely baleseteket, veszélyes ayagok traszportját és egészségkárosító expozícókat elemző kockázatbecslő eljárások, vagy a szeyezett területek egészségkárosító hatásáak vzsgálata s. A két eljárás számos esetbe egymásra épül vagy egymást kegészít, de a megválaszoladó kérdés más-más jellegű. Dolgozatomba és eddg tevékeységem sorá elsősorba az utóbb tevékeységhez tartozó eljárásokkal, azok kármetesítéshez kapcsolódó kérdésevel, eze belül s a humá-egészségügy kockázatfelméréssel foglalkoztam. A továbbakba a kockázatfelmérés szó haszálatakor erre az eljárásra utalok. Az egészségkárosító hatásokat széles körbe értelmezve az 3. táblázat szert csoportokba oszthatjuk. Nylvávaló, hogy a felsorolt változatos köryezet ártalmak mdegyke em vzsgálható azoos módszerekkel, mégs egy-egy probléma vzsgálatakor egyre kább előtérbe kerül az átfogó szemléletű, széleskörű kockázatfelmérés alkalmazása. Az elszeyezett és felhagyott parterületek fejlesztés és újrahaszosítás tervehez (ú. browfeld vagy bara mező kocepcó) készítedő kockázatfelmérések gyakra a köryezetszeyezés okozta kockázatok számbavétele mellett a társadalm hatások (pl. mukaélkülség, bűözés, stb.) kockázatat, és gazdaság szempotokat s fgyelembe veszk és mérlegelk a dötéshozatalkor.

28 8 3. Táblázat Köryezet ártalmak csoportosítása és jellemző előfordulásuk típusa Veszélyforrás Leggyakorbb típusa Kéma hatások Gázok, gőzök, ásváy ayagok, fémek, savak, lúgok, oldószerek, széhdrogéek, stb. Bológa hatások Vírusok, baktérumok, gombák, állat termékek, övéy szövetek, edvek, olajok, polle, stb. Fzka hatások Zaj, hőmérséklet, yomás, mágeses mező, mkro-hullámú sugárzás, fravörös-látható- ultravola sugárzás, lézer sugár, radoaktív sugárzás, stb. Ergoóma hatás Testtartás, tehermozgatás, zárt térbe tartózkodás, mozgástér, megvlágítás, stb. Társadalm, szocáls és Stressz, félelem, szorogás, hajszoltság, stb. pszchológa hatás A fet hatások közül a szeyezett területek esetébe leggyakrabba a kéma kéma expozícóval kell foglalkozuk. A kockázat fogalma em azoos az általáosa haszált veszély fogalmával. Veszélyek evezük mde olya helyzetet, cselekvést vagy jeleséget, am emkíváatos következméy(eke)t hordoz magába. A veszély em mde esetbe jelek meg kockázatkét, a kockázatos eseméyek vszot mdg valamlye veszélyforrás eredméye. A köryezet kockázat defícó szert értelmezéséhez az 6. ábrá vázolt három téyező: a szeyező, az expozícós útvoal és a receptorok térbel és dőbel egybeesése szükséges. Bármelyk háya esetébe a kockázat fogalma cs értelmezve. Szeyezők Receptorok Expozícós útvoalak Kockázat 6. ábra: A kockázat fogalmáak három szükséges összetevője [Health Caada, 993] Nem beszélhetük kockázatról abba az esetbe például, ha egy par tevékeység következtébe bekövetkezett talajvízszeyezés em juthat el olya közösségekg (receptor), akk a talajvzet felhaszálák. Amíg receptor em azoosítható, az adott esetbe kockázattal em számoluk, bár a veszély létezk. Az lye látes kockázat helyzetek em elhayagolhatók, mvel a peremfeltételek változásával reáls kockázat

29 9 helyzetek kalakulásához vezethetek. Hasoló módo em jelet kockázatot adott szeyező forrás a közvetle köryezetébe élő település lakó számára, ha em létezk olya expozícós útvoal, amely a szeyező ayagot továbbítaá. Látjuk tehát, hogy bár egyk említett példa sem kíváatos állapotot tükröz és mdkét esetbe reáls veszélyforrással va dolguk, de azok em jeleteek humá kockázatot mdaddg, amíg az említett feltételek teljesülek. A kockázatfelmérés célja A kockázatfelmérés eljárásáak hagyomáyos alkalmazás módja a predktív (előretektő) kockázatfelmérés, am egy jól defált jeleség vagy eseméy várható emkíváatos következméyevel foglalkozk. Emellett egyre agyobb aráyba kapak teret a korábba bekövetkezett kockázatos eseméyek (pl. talajszeyezés) meglévő hatásáak vzsgálata, amkor a múltba bekövetkezett szeyezések lejátszódott vagy jeleleg s folyamatba lévő ártalmat számszerűsítjük. Az lye típusú kockázatfelmérés a retrospektív (vsszatektő) kockázatfelmérések körébe tartozk. A retrospektív kockázatfelmérés elvégzését dokolttá tehet korábba em smert szeyező forrás feltárása, ú. öröklött köryezetszeyezések (veszélyes hulladéklerakók, felhagyott raktárak, vegy üzemek feltárása), valamlye káros hatás észlelése (halpusztulás, betegségek ugrásszerű megjeleése), vagy bzoyított expozícó (pl. mérgezés). A kockázatfelmérés alkalmazásával mdegyk esetbe az a céluk, hogy a redelkezésre álló legmegbízhatóbb adatok és korszerű smeretek felhaszálásával olya tézkedéseket fogaatosíthassuk, am a köryezet- és az egészség megfelelő sztű védelmet bztosítja. Megállapítható, hogy apjakra a kockázatfelmérés a legdamkusabba fejlődő eszközzé vált a szeyezett területek kármetesítés stratégájáak előkészítésére és értékelésére. A szeyezett területek kapcsá a kockázatfelmérés lehetséges célktűzése az alábbak lehetek: - Szeyezett területek ragsorolása (prortás lsta összeállítása) - Meglévő szeyezésekből származó kockázatok becslése - Kármetesítés célérték meghatározása - Beruházások potecáls köryezet hatásaak kockázat típusú megadása - Kármetesítés techológa kválasztásáak támogatása - Kármetesítés hatékoyságáak meghatározása - Szeyezett területek tulajdoított egészségkárosodás gazolása/cáfolása A kockázatfelmérés sosem öcélú vzsgálat, aak megállapítása mdg a kockázatkezelő dötéshozók számára bztosítaak szükséges formácókat. A kockázatkezelés az egészséget vagy ökoszsztémát veszélyeztető kockázatok csökketését szolgáló tézkedések azoosításáak, értékeléséek, kválasztásáak és kvtelezéséek folyamata. Célja, hogy megalapozott, költséghatékoy és koheres tézkedésekkel csökketse a kockázatot, mközbe esetekét társadalm, etka, poltka és jog szempotokat s mérlegel.

30 30 A kockázatkezelés hat lépésből áll:. A probléma megfogalmazása és köryezetbe llesztése. A vzsgált kockázat becslése 3. A kockázatok kezelését célzó alteratívák értékelése 4. Az alkalmaz kívát alteratíva kválasztása 5. Dötés végrehajtás 6. A beavatkozás eredméyességéek értékelése A kockázatbecslő eljárás a kockázatkezelés folyamatához az alább területeke tud hozzájárul: - Valós és feltételezett veszélyek azoosítása és ragsorolása - Mde smert és feltételezett jövőbel expozícós szceáró következetes vzsgálata - Az összes veszélyhelyzethez és expozícós szceáróhoz tartozó kockázat kvaltatív és/vagy kvattatív megadása - A krtkus terjedés útvoalakat, expozícós szceárókat és az összkockázatot jeletőse befolyásoló téyezők számbavétele - Költséghatékoy kármetesítés alteratívák támogatása - A kármetesítő beavatkozáshoz kapcsolódó bzoytalaságok forrásaak megadása A kockázatelemző és kezelő folyamatak agyo fotos része a folyamatos kommukácó a szakemberek, dötéshozók, a közvéleméy és mde értett fél között. Rövd törtéet áttektés A moder köryezet kockázatfelmérés előzméyeek megértéséhez vssza kell utaluk a kockázat defícójára (R=P S). Az egészségügy kockázat fogalmáak két ylvávaló pllére a matematka valószíűségelmélet, és az ember (élő szervezetek) egészséget károsító köryezet hatásokkal foglalkozó tudomáyág, ma evé toxkológa. E két tudomáyág fejlődése előfeltétele volt a kockázatfelmérés módszerta alapjaak lefektetéséhez. Mdkét szakterület vszoylag fatalak modható a moder tudomáyok között, fejlődésük az elmúlt évszázadba s ge damkus volt. A valószíűségelmélet kvattatív kocepcója em volt smert Pascal kora előtt, ak 567-be publkálta valószíűségelméletét. Pascal, Cramer, Beroull mukássága utá Laplace volt az, ak a kvattatív kockázatfelmérés valód prototípusát smertette 79-be, amkor a halálozás valószíűségét vzsgálta hmlő védőoltás esetébe és aélkül. Damkus övekedések a matematka eze ága csak a XVIII-XIX. századba dult, feltehetőe bzoyos gazdaság géyek és azokhoz kapcsolódó bztosítás ügyletek következtébe. Halley volt az, ak elsőek közölt várható

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970

KTK. Dr. Herman Sándor Dr. Rédey Katalin. Statisztika I. PÉCSI TUDOMÁNYEGYETEM. Közgazdaságtudományi Kar. Alapítva: 1970 Dr. Herma Sádor Dr. Rédey Katal Statsztka I. PÉCSI TUDOMÁNYEGYETEM KTK Közgazdaságtudomáy Kar Alapítva: 97 Mde jog fetartva. Jele köyvet vagy aak részletet a szerző egedélye élkül bármlye formába vagy

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

VASBETON ÉPÜLETEK MEREVÍTÉSE

VASBETON ÉPÜLETEK MEREVÍTÉSE BUDAPET MŰZAK É GAZDAÁGTUDOMÁY EGYETEM Építőmérök Kar Hdak és zerkezetek Taszéke VABETO ÉPÜLETEK MEREVÍTÉE Oktatás segédlet v. Összeállította: Dr. Bód stvá - Dr. Farkas György Dr. Kors Kálmá Budapest,.

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

2.10. Az elegyek termodinamikája

2.10. Az elegyek termodinamikája Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,

Részletesebben

Ökonometria. /Elméleti jegyzet/

Ökonometria. /Elméleti jegyzet/ Ökoometra /Elmélet jegyzet/ Ökoometra /Elmélet jegyzet/ Szerző: Nagy Lajos Debrece Egyetem Gazdálkodástudomáy és Vdékfejlesztés Kar (1.,., 3., 4., 5., 6., és 9. fejezet) Balogh Péter Debrece Egyetem Gazdálkodástudomáy

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak Geostatsztka I. BSc geográfus alapszak hallgatóak Dr. Szabó Norbert Péter egyetem adjuktus Mskolc Egyetem Geofzka Itézet Taszék e-mal: orbert.szabo.phd@gmal.com Ajálott rodalom Steer Ferec, 990. A geostatsztka

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra) BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

A heteroszkedaszticitásról egyszerûbben

A heteroszkedaszticitásról egyszerûbben Mûhely Huyad László kaddátus, egyetem taár, a Statsztka Szemle főszerkesztője A heteroszkedasztctásról egyszerûbbe E-mal: laszlo.huyad@ksh.hu A heteroszkedasztctás az ökoometra modellezés egyk kulcsfogalma,

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Dr. Hanka László PhD. KOCKÁZAT BECSLÉSE A VALÓSZÍNŰSÉG KISZÁMÍTÁSA NÉLKÜL, A MEGBÍZHATÓSÁGI INDEX ÉS ALKALMAZÁSA

Dr. Hanka László PhD. KOCKÁZAT BECSLÉSE A VALÓSZÍNŰSÉG KISZÁMÍTÁSA NÉLKÜL, A MEGBÍZHATÓSÁGI INDEX ÉS ALKALMAZÁSA XXII. évfolyam, 01.. szám Dr. Haka László PhD. Óbuda Egyetem Bák Doát Gépész és Bztoságtechka Mérök Kar, Mechatroka Itézet E-mal: haka.laszlo@gbk.u-obuda.hu KOCKÁZAT BECSLÉSE A VALÓSZÍNŰSÉG KISZÁMÍTÁSA

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

A lakosság egészségi állapotát befolyásoló tényezők

A lakosság egészségi állapotát befolyásoló tényezők A lakosság egészség állapotát befolyásoló téyezők Számos kockázat téyező befolyásolja a lakosság egészség állapotát. Szükséges eze kockázat téyezőkre való odafgyelés az egyé, a család, a házorvos, a mukahely,

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek Termékjellemzők optmalzálásáál haszálatos formácós módszerta 1 Bevezetés Koczor Zoltá, Némethé Erdőd Katal, Kertész Zoltá, Szecz Péter Óbuda Egyetem, RKK, Mőségráyítás és Techológa Szakcsoport Napjak aktuáls

Részletesebben

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

2.6. Az ideális gáz fundamentális egyenlete

2.6. Az ideális gáz fundamentális egyenlete Fejezetek a fzka kéából.6. Az deáls gáz fudaetáls egyelete A legegyszerűbb terodaka redszer az u. deáls gáz. Erre jellező, hogy a részecskék között az egyetle kölcsöhatás a rugalas ütközés, és a részecskék

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú ..4. Óbuda Egyetem ák Doát Gépész és ztoságtechka Mérök Kar yagtudomáy és Gyártástechológa Itézet Termelés olyamatok II. Költségbecslés Dr. Mkó alázs mko.balazs@bgk.u-obuda.hu z dı- és költségbecslés eladata

Részletesebben

Települési fejlődési pályák a Csereháton

Települési fejlődési pályák a Csereháton Település ejlődés pályák a Csereháto Pézes Jáos 1 Tóth Tamás 2 1. A terület lehatárolása és általáos jellemző A tájöldrajz értelembe vett Cserehát a magyar-szlovák országhatártól délre, a Herád- és a Bódva-

Részletesebben

Laboratóriumi mérések

Laboratóriumi mérések Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002.

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002. A geodéza tárgya, felosztása, alapfogalmak NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérök Szak Dr. Bácsatya László GEODÉZIA I. Kézrat Sopro, 00. . A geodéza tárgya, felosztása, alapfogalmak A gyűjtögető,

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE EG FÁZISÚ ÖBBOMPONENS RENDSZERE: AZ ELEGE ÉPZDÉSE AZ ELEGÉPZDÉS ERMODINAMIÁJA: GÁZO Általáos megfotolások ülöböz kéma mség komoesek keveredésekor változás törték a molekulárs kölcsöhatásokba és a molekulák

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/ 5 öveli a traszformátorok öveli a traszformátorok A techológia előyei A költségek csökketéseek folyamatos kéyszere és a zavartala eergiaellátás ehézségei szükségessé teszik a traszformátorok tervezett

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL MAGYAR TUDOMÁNY NAPJA DOKTORANDUSZOK FÓRUMA Mskolc Egyetem, 2006. ovember 9. AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL Mleff Péter,

Részletesebben

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok Bevezetés a hpotézs vzsgálatba Lásd előadás ayagát. Kétoldal és egyoldal hpotézsek Hpotézsvzsgálatok Ebbe a ejezetbe egyajta határozókulcsot szereték ad a hpotézsvzsgálatba haszált próbákhoz. Először dötsük

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

RUGÓTERHELÉSŰ BIZTONSÁGI SZELEP MŰKÖDÉSÉNEK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA

RUGÓTERHELÉSŰ BIZTONSÁGI SZELEP MŰKÖDÉSÉNEK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR RUGÓTERHELÉSŰ BIZTONSÁGI SZELEP MŰKÖDÉSÉNEK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA PhD ÉRTEKEZÉS KÉSZÍTETTE: SIMÉNFALVI ZOLTÁN OKLEVELES GÉPÉSZMÉRNÖK GÉPÉSZMÉRNÖKI TUDOMÁNYOK

Részletesebben

DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI

DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI OPERÁCIÓKUTATÁS No. 9. Szűcs Gábor DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI Budapest 007 Szűcs Gábor: DISZKRÉT SZIMULÁCIÓ MATEMATIKAI ALAPJAI OPERÁCIÓKUTATÁS No. 9 A sorozatot szerkeszt: Komárom Éva Megjelek

Részletesebben

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.

Részletesebben

HAGYOMÁNYOS MÓDSZEREK ÉS ÚJ KIHÍVÁSOK AZ ÁGAZATON BELÜLI KERESKEDELEM MÉRÉSÉBEN* ERDEY LÁSZLÓ

HAGYOMÁNYOS MÓDSZEREK ÉS ÚJ KIHÍVÁSOK AZ ÁGAZATON BELÜLI KERESKEDELEM MÉRÉSÉBEN* ERDEY LÁSZLÓ ÓDSZERTANI TANULÁNYOK HAGYOÁNYOS ÓDSZEREK ÉS ÚJ KIHÍVÁSOK AZ ÁGAZATON BELÜLI KERESKEDELE ÉRÉSÉBEN* ERDEY LÁSZLÓ Az ágazato belül kereskedelem témaköre az 960-as évekbe, az Európa Gazdaság Közösség létrehozásával

Részletesebben

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest Lektorálta: Zukál Edre Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

I. Valószínűségelméleti és matematikai statisztikai alapok

I. Valószínűségelméleti és matematikai statisztikai alapok I. Valószíűségelmélet és matematka statsztka alapok. A szükséges valószíűségelmélet és matematka statsztka alapsmeretek összefoglalása Az alkalmazott statsztka módszerek tárgalása, amel e kötet célja,

Részletesebben

Átfolyó-rendszerű gázvízmelegítő teljesítményének és hatásfokának meghatározása Gazdaságossági számításokhoz

Átfolyó-rendszerű gázvízmelegítő teljesítményének és hatásfokának meghatározása Gazdaságossági számításokhoz Átfolyó-redszerű gázvízmelegítő teljesítméyéek és hatásfokáak meghatározása Gazdaságossági számításokhoz Szuyog Istvá 005 Készült az OTKA T-0464 kutatási projekt keretébe A Gázipari oktatási laboratórium

Részletesebben

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája?

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája? FELADATOK MÉÉSELMÉLET tárgykörbe. Egy műszer osztálypotosság., végktérése 3 V. Mekkor mérés bszolút hbáj? H Op v / %,*3/ 7, V. A fet műszer V-ot mér. Mekkor mérés reltív hbáj? H h v % 6,% h 3. Egy mérés

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Pókháló-entrópia mint új rendszervizsgálati megközelítés a területi elemzésekben

Pókháló-entrópia mint új rendszervizsgálati megközelítés a területi elemzésekben DR. GODA PÁL DR. TÓTH TAMÁS Pókháló-etróa mt ú redszervzsgálat megközelítés a terület elemzésekbe Gyakra szembesülük azzal a kérdéssel, hogy mtől lesz egy felesztés stratéga fetartható. Mt s elet a fetarthatóság,

Részletesebben

(1) Milyen esetben beszélünk tartós nyugalomról? Abban az esetben, ha a (vizsgált) test a helyzetét hosszabb időn át nem változtatja meg.

(1) Milyen esetben beszélünk tartós nyugalomról? Abban az esetben, ha a (vizsgált) test a helyzetét hosszabb időn át nem változtatja meg. SZÉCHENYI ISTVÁN EGYETEM MECHNIK - STTIK LKLMZTT MECHNIK TNSZÉK Elmélet kérdések és válaszok egetem alapképzésbe (Sc képzésbe) résztvevő mérökhallgatók számára () Mle esetbe beszélük tartós ugalomról?

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

A SOKASÁGI ARÁNY MEGHATÁROZÁSÁRA IRÁNYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS MINTÁK ESETÉN LOLBERT TAMÁS 1

A SOKASÁGI ARÁNY MEGHATÁROZÁSÁRA IRÁNYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS MINTÁK ESETÉN LOLBERT TAMÁS 1 ÓDSZERTAI TAULÁYOK A SOKASÁGI ARÁY EGHATÁROZÁSÁRA IRÁYULÓ STATISZTIKAI ELJÁRÁSOK VÉGES SOKASÁG ÉS KIS ITÁK ESETÉ LOLBERT TAÁS 1 A ckk ő célja aak vzsgálata, hogy az elleőrzés gyakorlatba széles körbe haszált

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben