Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

Save this PDF as:
Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás"

Átírás

1 Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée. Tapasztalat eloszlás eloszlásüggvéye: tapasztalat eloszlásüggvéy: F (lépcsısüggvéy). F (z)=/, ( ) ( ) ha () 0 =-, () = < z Ha a mta X,X,,X valószíőség változó-sorozat, F (z) s valószíőség változó. Példa Kumulált gyaorság soro a/ ormáls eloszlás özelítése, = z a/ ormáls eloszlás özelítése, = z Táblázatos megelelıje a tapasztalat eloszlásüggvéye: megadja, hogy az adott osztályöz elsı határáa megelelı és aál sebb értée háyszor (ll. mlye aráyba) ordula elı. Lehet leele s umulál: az adott osztályöz alsó határáa megelelı és aál agyobb értée háyszor (ll. mlye aráyba) ordula elı. Értéösszegsor Az osztályohoz az azoba tartozó meggyelése smérvértéee az összegét redel Ha a gyaorság sor osztályözöel va megadva és csa a megoszlás smert, aor becsüljü (osztályözép és gyaorság szorzata). Lehet relatív értéösszegsort s épez (a teljes értéösszeggel elosztva az osztályo értéösszegét) Graus ábrázolás Oszlopdagram: a gyaorságoal aráyos az oszlopo magassága Meység smérvere: Gyaorság polgo Hsztogram Megoszlás szemléltetése lehetséges ördagrammal s.

2 Hsztogram (meység smérvere) Adataat osztályoba sorolju (mdegyet potosa egybe, pl. az -ed osztály: a <a ), a csoporto relatív gyaorsága megegyeze az osztály ölé rajzolt téglalap területével. Összterület: (hasoló a sőrőségüggvéyhez) Példá Túl so osztály Frequecy Potszámo graus ábrázolása potszám Példá Túl evés osztály Frequecy Potszámo graus ábrázolása Példá Jó osztályszám Frequecy Potszámo graus ábrázolása potszám potszám Középértée: átlag Mtaátlag:... : = ha az egyes értée (l ) gyaorsága ( ) adotta: = Ha csa az osztályözöbe esı értée gyaorságát smerjü, az egyes értéeet becsüljü az osztályözéppel és alalmazzu az elızı épletet. l... l : Medá A sorbaredezett mta özépsı eleme (ha páros so eleme va: a ét özépsı átlaga). Közelítés osztályözös gyaorságora: ' me Me= l h : l a medát magába oglaló osztály alsó határa me : umulált gyaorság a medát megelızı osztályg bezárólag me : a medát magába oglaló osztály gyaorsága h: a medát magába oglaló osztály szélessége. : a mta elemszáma me

3 Módusz A leggyaorbb (tpus) érté. Az eloszlás lehet umodáls, bmodáls vagy polmodáls(egy-, ét- vagy többmóduszú). Meghatározása: A gyaorság polgo mamumhelye (a modáls osztályöz özépértée). Közelítése em szmmetrus esetbe Mo= mo Ahol mo a móduszt tartalmazó osztály alsó határa 0 a móduszt tartalmazó osztály gyaorsága 0- a móduszt tartalmazó osztályt megelızı osztály gyaorsága 0 a móduszt tartalmazó osztályt övetı osztály gyaorsága h a móduszt tartalmazó osztály szélessége h Tapasztalat vatlse Elmélet vatls: abszolút olytoos, szgorúa mooto F eseté q z =F - (z) Általába: {:F()>z} A tapasztalat eloszlás vatlse: tapasztalat vatlse. Esetleg leárs terpolácóval lehet potosíta a becsléseet. z=/: medá. z=/4, 3/4: vartlse Alapstatsztá graus megjeleítése boplot Az egyes dobozo az alsó vartlstól Gam a elsı vartlsg tartaa. Középvoal a medá. T5 A voala a teljes terjedelmet Norm elölel, ha ez az egyes ráyoba em agyobb a U05 vartlse özött ülöbség.5- szereséél. Ha eze ívül s vaa poto, azoat ülö-ülö jeleít meg Graoo/: Éves mamáls vízálláso Graoo/: halálozás rátá relatív gyaorság Hsztogram Survval probablty mortalty e00 6 e Mortalty Rate Survval probablty probablty rato Rato o Mortalty Rates Age at death Magyar éphaladóság (000, olytoos voal) USA éphaladóság (950, szaggatott voal) Meggyelése (cm) 3

4 Graoo/3: Relámampáyo Kvatlse számítása Webull becslése Webull becslése Osztályözös gyaorság sorból eml l eml l Potdagramo pn Qp = ' h = Webull becslése eml l = = 4 Webull becslése eml l = 0 Ahol a vatlst tartalmazó osztály alsó határa N a mta elemszáma - umulált gyaorság a vatlst tartalmazó osztályt megelızı osztályyal bezárólag a vatlst tartalmazó osztály gyaorsága h a vatlst tartalmazó osztály szélessége Szóródás Meység smérv értéee ülöbözısége Mérıszáma: Terjedelem: ma( )-m( ) Átlagos abszolút eltérés: 3... d = Gyaorság sorra: d =... Tapasztalat szórás Tapasztalat szóráségyzet: ( ) ( ) ( 3 )... ( ο = ) Gyaorság sorora: ( ) ( )... ( ο = ) Kszámítás lehetıség: ο = Négyzetgyöe a tapasztalat szórás. Optmumtulajdoságo A mtaátlag adja az átlagos égyzetes eltérése mmumhelyét, a mmum értée a szóráségyzet: ο ( a) = m a,a megoldás : a= A medá pedg az átlagos abszolút eltérést mmalzálja: m a a,a megoldás : a= medá Redezett mta Az X,...,X mta elemet agyság szert sorbaredezve apju az X () X ()... X () redezett mtát. Mostatól: az X,...,X mta eleme üggetle, azoos eloszlásúa. Ha eltesszü, hogy a özös eloszlásu abszolút olytoos, aor elírható a redezett mta -ad elemée, X () -e a sőrőségüggvéye. 4

5 Redezett mta elemee sőrőségüggvéye, ( ) Spec.: mmum: mamum: F = ( ) ( )( ( )) A grao éháy esetre. F, ( ) = ( )( F ( )), ( ) = ( ) F ( ) Becsléselmélet A mta eloszlásáa smeretle paraméterét özelítjü a mta üggvéyével (elevezés: becslés, becslıüggvéy) Statszta: a mta üggvéye. A becslése magu s statsztá. Tovább példá statsztára: tapasztalat mometumo: X = Tapasztalat szóráségyzet stb. / Becslése tulajdosága Torzítatlaság. θ valós paramétert becslü a T(X) statsztával. Ez torzítatla, ha, E T (X ) mde θ paraméterértére. Példá: ( ) θ θ = Valószíőség becslése relatív gyaorsággal. Várható érté becslése mtaátlaggal Korrgált tapasztalat szóráségyzet ( X X) /( ) = 5

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

Statisztikai adatok elemzése

Statisztikai adatok elemzése Statszta adato elemzése Gazdaságstatszta A soaság jellemzése özépértéeel Eloszlásjellemző A soaság jellemzésée szempotja A soaság jellemzésée szempotja: A soaság tpus értéée meghatározása. Az adato ülöbözőségée

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya Matematikai statisztika előadás survey statisztika MA szakosokak 206/207 2. félév Zempléi Adrás. előadás: Bevezetés Irodalom, követelméyek A félév célja Matematikai statisztika tárgya Törtéet Alapfogalmak

Részletesebben

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Statisztika október 27.

Statisztika október 27. Statisztika 2011. október 27. Külöbség valószíőségszámítás és statisztika között Kísérlet: 4-szer dobuk fel egy érmét. Megszámoljuk a fejek számát. Valszám: Ismert a fejdobás valószíősége. Milye valószíőséggel

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika ... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a

Részletesebben

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus. Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Valószínőségszámítás helye a tudományok között. Véletlen tömegjelenségek. Történeti áttekintés 1. Modellezés. Történeti áttekintés 3.

Valószínőségszámítás helye a tudományok között. Véletlen tömegjelenségek. Történeti áttekintés 1. Modellezés. Történeti áttekintés 3. Valószíőségszámítás és statsztka elıadás Ifo. BSC B-C szakosokak 4/5. félév Zemplé Adrás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/. elıadás: Bevezetés Irodalom, követelméyek A félév célja Valószíőségszámítás

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- 5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,

Részletesebben

STATISZTIKA. ltozók. szintjei, tartozhatnak: 2. Előad. Intervallum skála. Az adatok mérési m. Az alacsony mérési m. Megszáml Gyakoriság módusz

STATISZTIKA. ltozók. szintjei, tartozhatnak: 2. Előad. Intervallum skála. Az adatok mérési m. Az alacsony mérési m. Megszáml Gyakoriság módusz A változv ltozók k mérés m sztje STATISZTIKA. Előad adás Az adatok mérés m sztje, Cetráls mutatók A változv ltozók k az alább típusba t tartozhatak: Nomáls (kategorkus és s dszkrét) Ordáls Itervallum skála

Részletesebben

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Változók függőségi viszonyainak vizsgálata

Változók függőségi viszonyainak vizsgálata Változók függőség vszoyaak vzsgálata Ismétlés: változók, mérés skálák típusa kategoráls változók Asszocácós kapcsolat számszerű változók Korrelácós kapcsolat testsúly (kg) szemüveges em ő 1 3 férf 5 3

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában 9. tétel: Elsı- és másodfoú egyelıtlesége, pozitív számo evezetes özepei, és eze felhaszálása szélsıérté-feladato megoldásáa Egyelıtleség: Két relációsjellel összeapcsolt ifejezés vagy függvéy. Az egyelıtleséget

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani

Részletesebben

MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE

MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE Köryezettudomáy alapo taöyvsorozat A öryezetta alapja A öryezetvédelem alapja Köryezetfza Köryezet áramláso Köryezet ásváyta Köryezet mtavételezés Köryezetéma Köryezetmősítés

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FELADATOK Taylor- (Maclaurin-) sorok, hibabecslés

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FELADATOK Taylor- (Maclaurin-) sorok, hibabecslés FELADATOK Taylor- (Maclauri- soro, hibabecslés Határozzu meg az e üggvéy -örüli Taylor-sorát! Adju meg a hatváysor overgecia sugarát, ill. overgecia halmazát! Számítsu i a deriváltaat a -helye: e, e, e,

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra) BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

KEZELÉSE ÉS ÉRTÉKELÉSE

KEZELÉSE ÉS ÉRTÉKELÉSE MÉRÉSI ADATOK KEZELÉSE ÉS ÉRTÉKELÉSE Köryezettudomáy alapo taöyvsorozat A öryezetta alapja A öryezetvédelem alapja Köryezetfza Köryezet áramláso Köryezet ásváyta Köryezet mtavételezés Köryezetéma Köryezettudomáy

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Az anyagáramlás intenzitása

Az anyagáramlás intenzitása Az ayagáramlás teztása Az ayagáramlás teztása () alatt meghatározott dőegység (dőtervallum) alatt (t) mozgatott ayagmeységet (M) értü. M (g, t, E, db, stb./ dőegység) t Szaaszos műödésű ayagmozgató redszere

Részletesebben

VEKTORGEOMETRIA. Mit nevezünk null vektornak? Olyan vektort, amelynek a nagysága (abszolút értéke) 0 és az iránya tetszőleges.

VEKTORGEOMETRIA. Mit nevezünk null vektornak? Olyan vektort, amelynek a nagysága (abszolút értéke) 0 és az iránya tetszőleges. VEKTORGEOMETRIA Mt evezü vetora? Olya meységet, amelye ráya és agysága va. Mt evezü egységvetora? Olya vetort, amelye a agysága (abszolút értée). Mt evezü ull vetora? Olya vetort, amelye a agysága (abszolút

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája?

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája? FELADATOK MÉÉSELMÉLET tárgykörbe. Egy műszer osztálypotosság., végktérése 3 V. Mekkor mérés bszolút hbáj? H Op v / %,*3/ 7, V. A fet műszer V-ot mér. Mekkor mérés reltív hbáj? H h v % 6,% h 3. Egy mérés

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset:

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset: Tartalom A bootstrap módszer Zempléi Adrás TTK, Valószíőségelméleti és Statisztika Taszék 2010. október 21 Bevezetés A függetle, azoos eloszlású eset: emparaméteres paraméteres eset Alkalmazások a rétegzett

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Adatsorok jellegadó értékei

Adatsorok jellegadó értékei Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület

Részletesebben

ÁR kulcsrakész ÁR lapraszerelt

ÁR kulcsrakész ÁR lapraszerelt Szélesség (cm) 90 Magasság (cm) 85 52 266 Ft 39 412 Ft 54 057 Ft 41 203 Ft 54 095 Ft 41 005 Ft 54 455 Ft 41 365 Ft 55 143 Ft 42 052 Ft 57 396 Ft 44 305 Ft 56 886 Ft 43 795 Ft 58 146 Ft 45 055 Ft 55 316

Részletesebben

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak Geostatsztka I. BSc geográfus alapszak hallgatóak Dr. Szabó Norbert Péter egyetem adjuktus Mskolc Egyetem Geofzka Itézet Taszék e-mal: orbert.szabo.phd@gmal.com Ajálott rodalom Steer Ferec, 990. A geostatsztka

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Statisztika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Statisztika Statisztika A statisztika adatok gyűjtésével, redszerezésével, illetve adatsorok elemzésével, szemléltetésével foglalkozik. Adatok redszerezése DEFINÍCIÓ: (Populáció) Populációak (statisztikai sokaságak)

Részletesebben

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat Fzka feladatok: F.1. Cuam A cuam hullám formájáak változása, ahogy a sekélyebb víz felé mozog (OAA) (https://www.wdowsuverse.org/?page=/earth/tsuam1.html) Az ábra, táblázat a cuam egyes jellemzőt tartalmazza.

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Geostatisztika c. tárgy a BSc földrajz alapszak hallgatóinak

Geostatisztika c. tárgy a BSc földrajz alapszak hallgatóinak Geostatsztka c. tárgy a BSc földrajz alapszak hallgatóak Dr. Szabó Norbert Péter egyetem taársegéd Geofzka Taszék e-mal: orbert.szabo.phd@gmal.com gfmal@u-mskolc.hu Tematka Adatredszerek, hsztogrammok

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

VII. FEJEZET A STATISZTIKA ÉS A VALÓSZÍNŰSÉGSZÁMÍTÁS ELEMEI. VII.1. Statisztikai adatok és jellemzőik

VII. FEJEZET A STATISZTIKA ÉS A VALÓSZÍNŰSÉGSZÁMÍTÁS ELEMEI. VII.1. Statisztikai adatok és jellemzőik Statszta és valószíűségszámítás 305 VII. FEJEZET A STATISZTIKA ÉS A VALÓSZÍNŰSÉGSZÁMÍTÁS ELEMEI VII.. Statszta adato és jellemző VII... Statszta adato és ábrázolásu A mdea életbe gyara hallu statszta adatoról.

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

Valószínőségszámítás

Valószínőségszámítás Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

(arcsin x) (arccos x) ( x

(arcsin x) (arccos x) ( x ALAPDERIVÁLTAK ( c ) (si ) cos ( ) (cos ) si ( ) ( ) ( tg) cos ( e ) e ( ctg ) si ( a ) a l a ( sh) ch (l ) ( ch) sh (log a ) ( th) l a ch (arcsi ) (arccos ) ( arctg ) DERIVÁLÁSI SZABÁLYOK. ( c ) c. c

Részletesebben

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás előadás formata BSC/ szaosoa és matemata elemző BSC-see 2015/2016 1. félév Zemplé drás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye

Részletesebben

8. tétel: Adatsokaságok jellemzıi, a valószínőségszámítás elemei

8. tétel: Adatsokaságok jellemzıi, a valószínőségszámítás elemei 9 8 7 6 5 4 3 0 4 3.5 3.5.5 0.5 0 3 4 5 7 8 9 Magyar Eszter Emelt szitő érettségi tétele 8. tétel: Adatsoaságo jellemzıi, a valószíőségszámítás elemei ADATSOASÁGO JELLEMZİI STATISZTIA: Statisztia: Tömegese

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Hipotéziselmélet. Statisztikai próbák I. Statisztikai próbák II. Informatikai Tudományok Doktori Iskola

Hipotéziselmélet. Statisztikai próbák I. Statisztikai próbák II. Informatikai Tudományok Doktori Iskola Hpotézselmélet Iformatka Tudomáyok Doktor Iskola Statsztka próbák I. 0.0.. Dr Ketskeméty László előadása Statsztka próbák II. Dötés eljárást dolgozuk k aak eldötésére, hogy a ullhpotézs gaz-e. Ha úgy kell

Részletesebben

Távközlő hálózatok és szolgáltatások Kapcsolástechnika

Távközlő hálózatok és szolgáltatások Kapcsolástechnika Távözlő hálózato és szolgáltatáso Kapcsolástechia émeth Krisztiá BME TMIT 015. ot. 1-8. A tárgy felépítése 1. Bevezetés. IP hálózato elérése távözlő és ábel-tv hálózatoo 3. VoIP, beszédódoló 4. Kapcsolástechia

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

9. évfolyam Javítóvizsga felkészülést segítő feladatok

9. évfolyam Javítóvizsga felkészülést segítő feladatok Halmazok: 9. évfolam Javítóvizsga felkészülést segítő feladatok. Adott két halmaz. A : a ; a : páros és B : ;;8;0;;;8;0;. Add meg a következő halmazműveleteket az elemek felsorolásával és készíts Venn

Részletesebben