Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás"

Átírás

1 Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée. Tapasztalat eloszlás eloszlásüggvéye: tapasztalat eloszlásüggvéy: F (lépcsısüggvéy). F (z)=/, ( ) ( ) ha () 0 =-, () = < z Ha a mta X,X,,X valószíőség változó-sorozat, F (z) s valószíőség változó. Példa Kumulált gyaorság soro a/ ormáls eloszlás özelítése, = z a/ ormáls eloszlás özelítése, = z Táblázatos megelelıje a tapasztalat eloszlásüggvéye: megadja, hogy az adott osztályöz elsı határáa megelelı és aál sebb értée háyszor (ll. mlye aráyba) ordula elı. Lehet leele s umulál: az adott osztályöz alsó határáa megelelı és aál agyobb értée háyszor (ll. mlye aráyba) ordula elı. Értéösszegsor Az osztályohoz az azoba tartozó meggyelése smérvértéee az összegét redel Ha a gyaorság sor osztályözöel va megadva és csa a megoszlás smert, aor becsüljü (osztályözép és gyaorság szorzata). Lehet relatív értéösszegsort s épez (a teljes értéösszeggel elosztva az osztályo értéösszegét) Graus ábrázolás Oszlopdagram: a gyaorságoal aráyos az oszlopo magassága Meység smérvere: Gyaorság polgo Hsztogram Megoszlás szemléltetése lehetséges ördagrammal s.

2 Hsztogram (meység smérvere) Adataat osztályoba sorolju (mdegyet potosa egybe, pl. az -ed osztály: a <a ), a csoporto relatív gyaorsága megegyeze az osztály ölé rajzolt téglalap területével. Összterület: (hasoló a sőrőségüggvéyhez) Példá Túl so osztály Frequecy Potszámo graus ábrázolása potszám Példá Túl evés osztály Frequecy Potszámo graus ábrázolása Példá Jó osztályszám Frequecy Potszámo graus ábrázolása potszám potszám Középértée: átlag Mtaátlag:... : = ha az egyes értée (l ) gyaorsága ( ) adotta: = Ha csa az osztályözöbe esı értée gyaorságát smerjü, az egyes értéeet becsüljü az osztályözéppel és alalmazzu az elızı épletet. l... l : Medá A sorbaredezett mta özépsı eleme (ha páros so eleme va: a ét özépsı átlaga). Közelítés osztályözös gyaorságora: ' me Me= l h : l a medát magába oglaló osztály alsó határa me : umulált gyaorság a medát megelızı osztályg bezárólag me : a medát magába oglaló osztály gyaorsága h: a medát magába oglaló osztály szélessége. : a mta elemszáma me

3 Módusz A leggyaorbb (tpus) érté. Az eloszlás lehet umodáls, bmodáls vagy polmodáls(egy-, ét- vagy többmóduszú). Meghatározása: A gyaorság polgo mamumhelye (a modáls osztályöz özépértée). Közelítése em szmmetrus esetbe Mo= mo Ahol mo a móduszt tartalmazó osztály alsó határa 0 a móduszt tartalmazó osztály gyaorsága 0- a móduszt tartalmazó osztályt megelızı osztály gyaorsága 0 a móduszt tartalmazó osztályt övetı osztály gyaorsága h a móduszt tartalmazó osztály szélessége h Tapasztalat vatlse Elmélet vatls: abszolút olytoos, szgorúa mooto F eseté q z =F - (z) Általába: {:F()>z} A tapasztalat eloszlás vatlse: tapasztalat vatlse. Esetleg leárs terpolácóval lehet potosíta a becsléseet. z=/: medá. z=/4, 3/4: vartlse Alapstatsztá graus megjeleítése boplot Az egyes dobozo az alsó vartlstól Gam a elsı vartlsg tartaa. Középvoal a medá. T5 A voala a teljes terjedelmet Norm elölel, ha ez az egyes ráyoba em agyobb a U05 vartlse özött ülöbség.5- szereséél. Ha eze ívül s vaa poto, azoat ülö-ülö jeleít meg Graoo/: Éves mamáls vízálláso Graoo/: halálozás rátá relatív gyaorság Hsztogram Survval probablty mortalty e00 6 e Mortalty Rate Survval probablty probablty rato Rato o Mortalty Rates Age at death Magyar éphaladóság (000, olytoos voal) USA éphaladóság (950, szaggatott voal) Meggyelése (cm) 3

4 Graoo/3: Relámampáyo Kvatlse számítása Webull becslése Webull becslése Osztályözös gyaorság sorból eml l eml l Potdagramo pn Qp = ' h = Webull becslése eml l = = 4 Webull becslése eml l = 0 Ahol a vatlst tartalmazó osztály alsó határa N a mta elemszáma - umulált gyaorság a vatlst tartalmazó osztályt megelızı osztályyal bezárólag a vatlst tartalmazó osztály gyaorsága h a vatlst tartalmazó osztály szélessége Szóródás Meység smérv értéee ülöbözısége Mérıszáma: Terjedelem: ma( )-m( ) Átlagos abszolút eltérés: 3... d = Gyaorság sorra: d =... Tapasztalat szórás Tapasztalat szóráségyzet: ( ) ( ) ( 3 )... ( ο = ) Gyaorság sorora: ( ) ( )... ( ο = ) Kszámítás lehetıség: ο = Négyzetgyöe a tapasztalat szórás. Optmumtulajdoságo A mtaátlag adja az átlagos égyzetes eltérése mmumhelyét, a mmum értée a szóráségyzet: ο ( a) = m a,a megoldás : a= A medá pedg az átlagos abszolút eltérést mmalzálja: m a a,a megoldás : a= medá Redezett mta Az X,...,X mta elemet agyság szert sorbaredezve apju az X () X ()... X () redezett mtát. Mostatól: az X,...,X mta eleme üggetle, azoos eloszlásúa. Ha eltesszü, hogy a özös eloszlásu abszolút olytoos, aor elírható a redezett mta -ad elemée, X () -e a sőrőségüggvéye. 4

5 Redezett mta elemee sőrőségüggvéye, ( ) Spec.: mmum: mamum: F = ( ) ( )( ( )) A grao éháy esetre. F, ( ) = ( )( F ( )), ( ) = ( ) F ( ) Becsléselmélet A mta eloszlásáa smeretle paraméterét özelítjü a mta üggvéyével (elevezés: becslés, becslıüggvéy) Statszta: a mta üggvéye. A becslése magu s statsztá. Tovább példá statsztára: tapasztalat mometumo: X = Tapasztalat szóráségyzet stb. / Becslése tulajdosága Torzítatlaság. θ valós paramétert becslü a T(X) statsztával. Ez torzítatla, ha, E T (X ) mde θ paraméterértére. Példá: ( ) θ θ = Valószíőség becslése relatív gyaorsággal. Várható érté becslése mtaátlaggal Korrgált tapasztalat szóráségyzet ( X X) /( ) = 5

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Statisztika október 27.

Statisztika október 27. Statisztika 2011. október 27. Külöbség valószíőségszámítás és statisztika között Kísérlet: 4-szer dobuk fel egy érmét. Megszámoljuk a fejek számát. Valszám: Ismert a fejdobás valószíősége. Milye valószíőséggel

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai

Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás Erdei János. Gazdaságstatisztika. II. rész A matematikai statisztika alapjai Budapest Műszak és Gazdaságtudomáy Egyetem Gazdaság- és Társadalomtudomáy Kar Üzlet Tudomáyok Itézet Meedzsmet és Vállalatgazdaságta Taszék Dr. Tóth Zsuzsaa Eszter Dr. Jóás Tamás Erde Jáos Gazdaságstatsztka

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra)

BEVEZETÉS AZ SPSS ALAPJAIBA. (Belső használatra) BEVEZETÉS AZ SPSS ALAPJAIBA (Belső haszálatra) TARTALOMJEGYZÉK. Statsztka alapfogalmak..... Sokaság...4.2. Ismérvek és mérés skálák...6.3. Statsztka sorok...7 2. SPSS alapfogalmak...9 3. Alapvető statsztka

Részletesebben

VEKTORGEOMETRIA. Mit nevezünk null vektornak? Olyan vektort, amelynek a nagysága (abszolút értéke) 0 és az iránya tetszőleges.

VEKTORGEOMETRIA. Mit nevezünk null vektornak? Olyan vektort, amelynek a nagysága (abszolút értéke) 0 és az iránya tetszőleges. VEKTORGEOMETRIA Mt evezü vetora? Olya meységet, amelye ráya és agysága va. Mt evezü egységvetora? Olya vetort, amelye a agysága (abszolút értée). Mt evezü ull vetora? Olya vetort, amelye a agysága (abszolút

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Az anyagáramlás intenzitása

Az anyagáramlás intenzitása Az ayagáramlás teztása Az ayagáramlás teztása () alatt meghatározott dőegység (dőtervallum) alatt (t) mozgatott ayagmeységet (M) értü. M (g, t, E, db, stb./ dőegység) t Szaaszos műödésű ayagmozgató redszere

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája?

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája? FELADATOK MÉÉSELMÉLET tárgykörbe. Egy műszer osztálypotosság., végktérése 3 V. Mekkor mérés bszolút hbáj? H Op v / %,*3/ 7, V. A fet műszer V-ot mér. Mekkor mérés reltív hbáj? H h v % 6,% h 3. Egy mérés

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak

Geostatisztika I. Dr. Szabó Norbert Péter. BSc geográfus alapszak hallgatóinak Geostatsztka I. BSc geográfus alapszak hallgatóak Dr. Szabó Norbert Péter egyetem adjuktus Mskolc Egyetem Geofzka Itézet Taszék e-mal: orbert.szabo.phd@gmal.com Ajálott rodalom Steer Ferec, 990. A geostatsztka

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

ÁR kulcsrakész ÁR lapraszerelt

ÁR kulcsrakész ÁR lapraszerelt Szélesség (cm) 90 Magasság (cm) 85 52 266 Ft 39 412 Ft 54 057 Ft 41 203 Ft 54 095 Ft 41 005 Ft 54 455 Ft 41 365 Ft 55 143 Ft 42 052 Ft 57 396 Ft 44 305 Ft 56 886 Ft 43 795 Ft 58 146 Ft 45 055 Ft 55 316

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Hegedős Csaba NUMERIKUS ANALÍZIS

Hegedős Csaba NUMERIKUS ANALÍZIS Hegedős Csaba NUMERIKUS ANALÍZIS Jegyzet ELE, Iformata Kar Hegedős: Numerus Aalízs ARALOM Gép szám, hbá 3 Normá, egyelıtlesége 9 3 A umerus leárs algebra egyszerő traszformácó 6 4 Mátro LU-felbotása, Gauss-Jorda

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Közúti közlekedésüzemvitel-ellátó. Tájékoztató

Közúti közlekedésüzemvitel-ellátó. Tájékoztató 12/2013. (III. 29.) NFM rendelet szakma és vzsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 841 02 Közút közlekedésüzemvtel-ellátó Tájékoztató A vzsgázó az első lapra írja fel

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

A konfidencia intervallum képlete: x± t( α /2, df )

A konfidencia intervallum képlete: x± t( α /2, df ) 1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

(arcsin x) (arccos x) ( x

(arcsin x) (arccos x) ( x ALAPDERIVÁLTAK ( c ) (si ) cos ( ) (cos ) si ( ) ( ) ( tg) cos ( e ) e ( ctg ) si ( a ) a l a ( sh) ch (l ) ( ch) sh (log a ) ( th) l a ch (arcsi ) (arccos ) ( arctg ) DERIVÁLÁSI SZABÁLYOK. ( c ) c. c

Részletesebben

8. tétel: Adatsokaságok jellemzıi, a valószínőségszámítás elemei

8. tétel: Adatsokaságok jellemzıi, a valószínőségszámítás elemei 9 8 7 6 5 4 3 0 4 3.5 3.5.5 0.5 0 3 4 5 7 8 9 Magyar Eszter Emelt szitő érettségi tétele 8. tétel: Adatsoaságo jellemzıi, a valószíőségszámítás elemei ADATSOASÁGO JELLEMZİI STATISZTIA: Statisztia: Tömegese

Részletesebben

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél Valószíűségszámítás előadás formata BSC/ szaosoa és matemata elemző BSC-see 2015/2016 1. félév Zemplé drás zemple@ludes.elte.hu http://www.cs.elte.hu/~zemple/ 1. előadás: Bevezetés Irodalom, övetelméye

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

Távközlő hálózatok és szolgáltatások Kapcsolástechnika

Távközlő hálózatok és szolgáltatások Kapcsolástechnika Távözlő hálózato és szolgáltatáso Kapcsolástechia émeth Krisztiá BME TMIT 015. ot. 1-8. A tárgy felépítése 1. Bevezetés. IP hálózato elérése távözlő és ábel-tv hálózatoo 3. VoIP, beszédódoló 4. Kapcsolástechia

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i . konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR

STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR ALAPFOGALMAK Statisztika: latin status szóból ered: állapot Mindig egy állapotot tükröz Véletlen tömegjelenségek tanulmányozásával foglakozik Adatok megfigyelés, kísérlet

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N

Ha n darab standard normális eloszlású változót négyzetesen összegzünk, akkor kapjuk a χ 2 - eloszlást: N Krály Zoltá: Statsztka II. Bevezetés A paraméteres eljárások alkalmazásához, a célváltozóra ézve szgorú feltételek szükségesek (folytoosság, ormaltás, szóráshomogetás), ekkor a hpotézseket egy-egy paraméterre

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok

Bevezetés a hipotézis vizsgálatba. Hipotézisvizsgálatok. Próbák leírása. Kétoldali és egyoldali hipotézisek. Illeszkedésvizsgálatok Bevezetés a hpotézs vzsgálatba Lásd előadás ayagát. Kétoldal és egyoldal hpotézsek Hpotézsvzsgálatok Ebbe a ejezetbe egyajta határozókulcsot szereték ad a hpotézsvzsgálatba haszált próbákhoz. Először dötsük

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+ I ALAPFOGALMAK I BEVEZETİ Jelölése: K: véletle ísérlet, ω : elem eseméy, { : } Ω= ω : eseméytér, F Ω : eseméyalgebra, A F : eseméy, Ω F : bztos eseméy Mővelete eseméyeel: összegzés: A+B (halmazuó), szorzás:

Részletesebben

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.: 6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

STATISZTIKA I. x ÁR. x ÁR. x ÁR. x ÁR. Számosállat. Egységhozam. Termelési érték, árbevétel. Az ár. Hogyan lehet ezeket összehasonlítani?

STATISZTIKA I. x ÁR. x ÁR. x ÁR. x ÁR. Számosállat. Egységhozam. Termelési érték, árbevétel. Az ár. Hogyan lehet ezeket összehasonlítani? Hogya lehet ezeket összehasolítai? STATSZTKA. 8. Előadás dexek, adatábrázolás 2/22 Számosállat Egységhozam Állatteyésztési, statisztikai, valamit üzemszervezési mértékegység, amely külöböző fajú, fajtájú,

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Laboratóriumi mérések

Laboratóriumi mérések Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Zárthelyi dolgozat 2014 C... GEVEE037B tárgy hallgatói számára

Zárthelyi dolgozat 2014 C... GEVEE037B tárgy hallgatói számára Záthely dlgzat 4 C.... GEVEE37B tágy hallgató számáa Név, Nept ód., Néháy ss övd léyege töő válaszat adj az alább édésee! (5xpt a Ss és páhzams mmácós ptll felslása és legftsabb jellemző. Páhzams ptll

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben