1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél"

Átírás

1 Valószíűségszámítás előadás formata BSC/ szaosoa és matemata elemző BSC-see 2015/ félév Zemplé drás 1. előadás: Bevezetés Irodalom, övetelméye félév célja Valószíűségszámítás tárgya Törtéet lapfogalma Valószíűsége számítása Irodalom Jegyzet Barót-Bogáré-Fejes Tóth-Mogyoród: Valószíűségszámítás jegyzet programozó szaos hallgatóa Taöyve: Préopa: Valószíűségelmélet Solt: Valószíűségszámítás Pál: valószíűségszámítás és a statszta alapja I-II Réy: Valószíűségszámítás Példatár Bogáré-Mogyoród-Préopa-Réy-Szász: Valószíűségszámítás feladatgyűjteméy rató-proaj-zemplé: Valószíűségszámítás eletrous jegyzet (taoyvtar.hu) Számoérés Gyaorlato gyaorlat jegy: csoportoét zh- alapjá Vzsga: írásbel, ésőbb egyeztetedő dőpotba Előadáso ayaga: Cél Valószíűségszámítás alapjaa smertetése Feladatmegoldás észség alaítása (elsősorba gyaorlato) lalmazás lehetősége bemutatása (szmulácó, véletle számo stb.) Matemata statszta (övetező félév) megalapozása Valószíűségszámítás helye a tudomáyo özött Matemata tudomáy, mert precíze megfogalmazott axómáxra épül. Gyaorlat alalmazása: statszta öveteztetése levoása (pl.: ha egy érmével 1000 dobásból 550 fej jött, aor 99.9% valószíűséggel állítható, hogy az érme em szabályos). 1

2 Törtéet áttetés 1. Első smert feladat 1494-ből: játé dő előtt abbahagyása eseté hogya osztozzaa? Helyes megoldás több, mt 100 évvel ésőbb: Pascal ( ), Fermat ( ) Köye adható szmulácós megoldás (precíz számítás a gyaorlato) Cardao (1540 örül) öyvet írt a ocajátéohoz apcsolódó valószíűségszámítás érdéseről Törtéet áttetés 2. de Mére lovag érdése: Egy ocával égyszer dobva előyös arra fogad, hogy lesz hatos, de 2 ocával 24-szer dobva már em előyös arra fogad, hogy lesz (6,6) a dobáso özött. Megoldás: Pascal, Fermat (1654) Huyges (1657): z első valószíűségszámítás öyv de Wtt, Halley (1671): életjáradé-számítás valószíűség alapo Törtéet áttetés 3. Jacob Beroull (1713): rs Cojectad (agy számo törvéye) XVIII-XIX. sz: Movre, Bayes, Gauss, Posso Buffo: geometra valószíűség bevezetése paradoxoo XIX.sz: Csebsev, Marov, Ljapuov Törtéet áttetés 4. xomatzálás: Kolmogorov (1933) Moder alalmazáso: Iformácóelmélet (Shao) Játéelmélet (Neuma) Matemata statszta (Fsher) Sztochasztus folyamato Magyar tudóso: Jordá Károly ( ) Réy lfréd ( ) Véletle ísérlete Olya ísérleteel foglalozu, amelye eredméyét em tudju előre bztosa megmoda (ocadobás, lottóhúzás, meteorológa, tőzsde eseméye stb). z összes lehetséges eredméy: eseméytér. lapfogalma Eseméytér Kísérlet egy lehetséges meetele: elem eseméy, jelölése ω. Elem eseméye összessége: eseméytér, Ω. Ω részhalmaza: eseméye (,B,C,...). Eseméy aor övetez be, ha az őt alotó elem eseméye valamelye beövetez. 2

3 Példá Kocadobás: Ω={1,2,,6}. Ha az eseméy: páros számot dobtu, aor ={2,4,6}. Érmét étszer feldobva: Ω={II,IF,FI,FF} ={II,IF} az az eseméy, hogy az első dobás írás. Érmét addg dobu, míg fejet em apu. Ω={F,IF,IIF,...,ω } ahol ω =III. (azaz mde dobás írás) Eseméye Eseméy: Ω részhalmaza Specáls eseméye: Ω (bztos eseméy) (lehetetle eseméy) z eseméye összessége: (halmazredszer Ω részhalmazaból) Művelete eseméyeel: szoásos loga művelete = halmazművelete Művelete eseméyeel B: vagy vagy B beövetez (az s lehet, hogy mdettő) B: és B s beövetez Tulajdoságo \ B B B B (De Morga) eseméy elletettje: Példá Kocadobás: ={páros számot dobu} B={legalább 3-ast dobu} B={4,6} B={2,3,4,5,6} \B={2} ={1,3,5} Valószíűség Szemléletes megfelelője: relatív gyaorság. Ha egymástól függetleül, azoos örülméye özött végrehajtott ísérletből az adott eseméy -szor övetezett be, aor a relatív gyaorság /. Nagy -re a relatív gyaorság egy fx szám örül gadoz: ezt evezzü az valószíűségée.koca-ísérlet 3

4 valószíűség Jele: relatív gyaorság tulajdoságaból: Nemegatív: mde -ra Egymást záró eseméyere, azaz, ha : (addtvtás) Ω)=1 (Ω,,P): valószíűség mező B 0 Tulajdoságo 1. ddtvtás eseméyre: ha 1, 2,..., pároét záró eseméye, aor ) 1 ) 2 )... ) Bzoyítás: ducóval. )=0. Bzoyítás: Ω= Ω felbotásból és az addtvtásból Tulajdoságo 2. \ Bzoyítás: = ( (\ felbotásból és az addtvtásból Bzoyítás: B= B (\ felbotásból, az addtvtásból és az előző tulajdoságból. Eseméytér Nem mdg lehet mde Ω eseméy (pl. agy megszámlálhatóál agyobb Ω eseté), ezért az eseméy-redszer strutúrája: σ-algebra. 1. Ω 2. (azaz zárt a omplemeter-épzés műveletére) 3. zárt a megszámlálható uó műveletére Példá σ-algebrára ={,Ω} ={,,, Ω} Ω mde részhalmazából álló halmazredszer (hatváyhalmaz, P (Ω)) Kolmogorov-féle valószíűség mező (Ω,,P): Kolmogorov-féle valószíűség mező, ha Ω emüres halmaz az Ω részhalmazaa σ-algebrája P : [0,1] halmazfüggvéy (valószíűség), melyre 1. P (Ω)=1 2. σ-addtvtás: ha 1, 2,..., pároét záró eseméye, aor P...) ) )... ( 4

5 Véges valószíűség mező Ω={ω 1, ω 2,,ω }, = P (Ω). Jelölés: p =P (ω ). p 1 1 az addtvtásból. ) ) 1 : ) : zaz a p emegatív, 1 összegű számo meghatározzá a valószíűséget. p Klasszus valószíűség mező 1 p =1/ mde -re (azoos valószíűségűe az elem eseméye). Eor ahol az elemszáma, pedg az összes esetszám. Máséppe: =edvező esete száma/ összes esetszám. Klasszus valószíűség mező 2 lasszus valószíűség mező alalmazása előtt mdg meg ell győződ a feltételeről! Példa: születésap Soág a valószíűséget általába s így próbáltá defál, de ez em fed le mde esetet. Vsszatevéses mtavétel N termé, melyből M selejtes elemű mta vsszatevéssel : potosa selejtes va a mtába (=0,,) M M 1 N N azaz a valószíűség fejezhető a p=m/n selejtaráy segítségével: p p 1 Mtavétel Vsszatevés élül mtavétel N termé, melyből M selejtes elemű mta vsszatevés élül : potosa selejtes va a mtába (=0,,) Mtavétel M N M P ( N valószíűség tovább tulajdosága valószíűség végese s addtív: ha 1, 2,..., pároét záró eseméye, aor P... ) ) )... ( Bzoyítás. +1 = +2 = = választással alalmazzu a σ-addtvtást. Tehát a orábba belátott tulajdoságo a Kolmogorov-féle valószíűség mezőre s érvéyese. ) 5

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

A valószínőség folytonossága

A valószínőség folytonossága Valószíőségszámítás és statszta elıadás f. BC/B-C szasa. elıadás szeptember 9. Megszámlálható valószíőség mezı Ω{ω, ω,,ω, }, A P Ω. Jelölés: p P ω, valószíőségelszlás: p, az összegü. A σ-addtvtás matt

Részletesebben

3. Valószínűségszámítás

3. Valószínűségszámítás Biometria az orvosi gyaorlatba 3. Valószíűségszámítás 3. Valószíűségszámítás 3.. Bevezetés 3.. Kombiatoria 3... Permutáció 3... Variáció 3..3. Kombiáció 3 3.3. Biomiális együttható tulajdoságai 3 3.4.

Részletesebben

Valószínûség számítás

Valószínûség számítás Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

VEKTORGEOMETRIA. Mit nevezünk null vektornak? Olyan vektort, amelynek a nagysága (abszolút értéke) 0 és az iránya tetszőleges.

VEKTORGEOMETRIA. Mit nevezünk null vektornak? Olyan vektort, amelynek a nagysága (abszolút értéke) 0 és az iránya tetszőleges. VEKTORGEOMETRIA Mt evezü vetora? Olya meységet, amelye ráya és agysága va. Mt evezü egységvetora? Olya vetort, amelye a agysága (abszolút értée). Mt evezü ull vetora? Olya vetort, amelye a agysága (abszolút

Részletesebben

A valószínűségszámítás alapjai

A valószínűségszámítás alapjai A valószíűségszámítás alapjai Kombiatoria Permutáció (ismétlés élül): elem összes lehetséges sorredje: P = (-)(-) =!!- fatoriális Variáció ismétlés élül elem -ad osztályú ismétlés élüli variációja - elemből

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

8. tétel: Adatsokaságok jellemzıi, a valószínőségszámítás elemei

8. tétel: Adatsokaságok jellemzıi, a valószínőségszámítás elemei 9 8 7 6 5 4 3 0 4 3.5 3.5.5 0.5 0 3 4 5 7 8 9 Magyar Eszter Emelt szitő érettségi tétele 8. tétel: Adatsoaságo jellemzıi, a valószíőségszámítás elemei ADATSOASÁGO JELLEMZİI STATISZTIA: Statisztia: Tömegese

Részletesebben

Valószínűségszámítás és matematikai statisztika. Ketskeméty László

Valószínűségszámítás és matematikai statisztika. Ketskeméty László Valószíűségszámítás és matematka statsztka Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 4. Kombatorka alapfogalmak 5 Elleőrző kérdések és gyakorló feladatok 7. A valószíűségszámítás

Részletesebben

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra

Példák 2. Teljes eseményrendszer. Tulajdonságok. Példák diszkrét valószínőségi változókra Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 28 dszkrét valószíőség változókra X(ω)=c mde ω-ra. Elevezés: elfajult eloszlás. P(X=c)=1. X akkor 1, ha egy adott,

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

Az anyagáramlás intenzitása

Az anyagáramlás intenzitása Az ayagáramlás teztása Az ayagáramlás teztása () alatt meghatározott dőegység (dőtervallum) alatt (t) mozgatott ayagmeységet (M) értü. M (g, t, E, db, stb./ dőegység) t Szaaszos műödésű ayagmozgató redszere

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév Diszkrét matematika I. legfotosabb tételek/defiíciók (II. javított verzió) 2014/2015. I. félév 1. Előszó A jegyzet a Diszkrét matematika I. (DE IK PTI, tárgykód: INDK101-K5, Dr. Burai Pál) tatárgy 2014/2015.

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+ I ALAPFOGALMAK I BEVEZETİ Jelölése: K: véletle ísérlet, ω : elem eseméy, { : } Ω= ω : eseméytér, F Ω : eseméyalgebra, A F : eseméy, Ω F : bztos eseméy Mővelete eseméyeel: összegzés: A+B (halmazuó), szorzás:

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Hegedős Csaba NUMERIKUS ANALÍZIS

Hegedős Csaba NUMERIKUS ANALÍZIS Hegedős Csaba NUMERIKUS ANALÍZIS Jegyzet ELE, Iformata Kar Hegedős: Numerus Aalízs ARALOM Gép szám, hbá 3 Normá, egyelıtlesége 9 3 A umerus leárs algebra egyszerő traszformácó 6 4 Mátro LU-felbotása, Gauss-Jorda

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Diszkrét matematika I. gyakorlat 1. gyakorlat Gyakorlatvezet : Dr. Kátai-Urbán Kamilla Helyettesít: Bogya Norbert 2011. szeptember 8. Tartalom Információk 1 Információk Honlapcímek Számonkérések, követelmények

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar LOGO Kvatum-tömörítés Gyögyösi László BME Villamosméröki és Iformatikai Kar Iformációelméleti alaok összefoglalása A kódolási eljárás Az iformáció átadás hűsége és gazdaságossága a kódolástól függ Az iformáció

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 8. Valószíűségszámítás ESEMÉNYEK 174 Eseméyek formális leírása, műveletek 175 Feladatok 176 A VALÓSZÍNŰSÉG FOGALMA 177 A valószíűség tulajdoságai 178 Mitapéldák 179 Feladatok 181 VALÓSZÍNŰSÉGI VÁLTOZÓK

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

Folytonos valószínűségi változó: Lehetséges értéei egy folytonos tartományt alotna. Minden egyes érté 0 valószínűségű, csa tartományona van pozitív va

Folytonos valószínűségi változó: Lehetséges értéei egy folytonos tartományt alotna. Minden egyes érté 0 valószínűségű, csa tartományona van pozitív va Valószínűségi változó (véletlen változó, random variables) Változó: Névvel ellátott érté. (Képzeljün el egy fióot. A fió címéje a változó neve, a fió tartalma pedig a változó értée.) Valószínűségi változó:

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

file:///l:/valsz%c3%a1mstatv%c3%a9gleges/bernoulli/introduction...

file:///l:/valsz%c3%a1mstatv%c3%a9gleges/bernoulli/introduction... 1 / 5 2011.03.17. 14:23 Virtuális laboratóriumo > 10. Bernoulli ísérlete > 1 2 3 4 5 6 1. Bevezetés Alapelmélet A Bernoulli ísérlet folyamat, melyne névadója Jacob Bernoulli a valószínűségszámítás egyi

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Óbudai Egyetem. Doktori (PhD) értekezés. Mamdani-típusú következtetési rendszeren alapuló kockázatkiértékelő módszerek optimalizálása

Óbudai Egyetem. Doktori (PhD) értekezés. Mamdani-típusú következtetési rendszeren alapuló kockázatkiértékelő módszerek optimalizálása Óbuda Egyetem Dotor (PhD) érteezés Mamda-típusú öveteztetés redszere alapuló ocázatértéelő módszere optmalzálása Tóthé Laufer Edt Témavezető: Rudas Imre, DSc Taács Márta, PhD Alalmazott Iformata és Alalmazott

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

SZÁMHALMAZOK Halmazábrán ábrázolom a valós számok halmazát és részhalmazait (néhány példával). (C) pl. 1/4; 1/2. pl. 1;2;0;-1; N pl. 0. pl.

SZÁMHALMAZOK Halmazábrán ábrázolom a valós számok halmazát és részhalmazait (néhány példával). (C) pl. 1/4; 1/2. pl. 1;2;0;-1; N pl. 0. pl. 2. tétel Számhalmazo (a valós számo halmaza és részhalmazai), oszthatósággal apcsolatos problémá, számredszere. SZÁMHALMAZOK Halmazábrá ábrázolom a valós számo halmazát és részhalmazait (éháy példával).

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Előző óra összefoglalása. Programozás alapjai C nyelv 3. gyakorlat. Karakter típus (char) Karakter konstansok. Karaktersorozatot lezáró nulla

Előző óra összefoglalása. Programozás alapjai C nyelv 3. gyakorlat. Karakter típus (char) Karakter konstansok. Karaktersorozatot lezáró nulla Programozás alapja C yelv 3. gyakorlat Szeberéy Imre BME IIT Programozás alapja I. (C yelv, gyakorlat) BME-IIT Sz.I. 25..3.. -- Előző óra összefoglalása Algortmus leírása Sztaxs leírása

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

VENTS ifan Eladva (eladó neve, bélyegzõje)

VENTS ifan Eladva (eladó neve, bélyegzõje) INTELLIGENS AXIÁLIS VENTILÁTOR HASZNÁLATI UTASÍTÁS ok ep A ventilátor üzemeltetésre alkalmas. M ÁTVÉTELI ELISMERVÉNY Átvevõ MEO jegy Típus Gyártási dátum ifan ifan Move VENTS ifan Eladva (eladó neve, bélyegzõje)

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Menet. A klasszikus interpretáció. Condorcet kockák, De Mére probléma Pétervári paradoxon

Menet. A klasszikus interpretáció. Condorcet kockák, De Mére probléma Pétervári paradoxon 1Valószínűség Menet Történeti megjegyzések 2 A klasszikus interpretáció Nevezetes Példák Condorcet kockák, De Mére probléma Pétervári paradoxon Történeti megjegyzések A valószínűségszámítás a hazárdjátékok

Részletesebben

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula. Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk

Részletesebben

A Szekszárdi I. Béla Gimnázium Helyi Tanterve

A Szekszárdi I. Béla Gimnázium Helyi Tanterve A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag

Részletesebben

Adatlap alapszak megnevezése Matematika alapképzési szak szakképzettség Alapokleveles matematikus szakirány

Adatlap alapszak megnevezése Matematika alapképzési szak szakképzettség Alapokleveles matematikus szakirány I. Adatlap 3. Az indítandó alapsza megnevezése: Matematia alapépzési sza 4. Az olevélben szereplő szaépzettség megnevezése: Alapoleveles matematius 5. Az indítani tervezett szairány(o) megnevezése: matematia-x

Részletesebben

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és Feladatok 2 zh-ra 205 április 3 Eseményalgebra Feladat Az A és B eseményekr l tudjuk, hogy P (A) = 0, 7, P (B) = 0, 4 és P (A B) = 0, 5 Határozza meg az A B esemény valószín ségét! P (A B) = 0, 2 2 Feladat

Részletesebben

I. fejezet A matematikai indukció, mint alapvető bizonyítási módszer

I. fejezet A matematikai indukció, mint alapvető bizonyítási módszer I ejezet A matemata ducó, mt alapvető bzoyítás módszer A matemata ducó a matematába haszált egy legotosabb bzoyítás és emcsa bzoyítás, haem például deálás módszer s A özépsola taayagba természetese jele

Részletesebben

Laboratóriumi mérések

Laboratóriumi mérések Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása Diszrét matematia I. özépszint Alapfogalmahoz tartozó feladato idolgozása A doumentum a övetező címen elérhető alapfogalmahoz tartozó példafeladato lehetséges megoldásait tartalmazza: http://compalg.inf.elte.hu/~merai/edu/dm1/alapfogalma.pdf

Részletesebben

Mérések kiértékelése

Mérések kiértékelése Budapest Műsza és Gazdaságtudomáy Egyetem ermészettudomáy Kar Szatmáry Zoltá Mérése értéelése Egyetem jegyzet Budapest, 00 artalomjegyzé Előszó... 7 Jelölése... 0. Bevezetés..... A rugalmasság együttható

Részletesebben

c.) b.) FF 6/30 b.)

c.) b.) FF 6/30 b.) Valószí ségszámítás gyaorlat Megoldáso, megoldásvázlato, végeredméye Matematia alapsza, matematiai elemz szairáy Programtervez iformatius alapsza, modellez iformatius szairáy Bármilye, a segédayaggal apcsolatos

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Távközlő hálózatok és szolgáltatások Kapcsolástechnika

Távközlő hálózatok és szolgáltatások Kapcsolástechnika Távözlő hálózato és szolgáltatáso Kapcsolástechia émeth Krisztiá BME TMIT 015. ot. 1-8. A tárgy felépítése 1. Bevezetés. IP hálózato elérése távözlő és ábel-tv hálózatoo 3. VoIP, beszédódoló 4. Kapcsolástechia

Részletesebben

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

Valószínűségszámítás és statisztika. István Fazekas

Valószínűségszámítás és statisztika. István Fazekas Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Valószínűségszámítás

Valószínűségszámítás Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Útvonalak száma, rekurzív számlálással

Útvonalak száma, rekurzív számlálással Útvoala száma, reurzív számlálással Tuzso Zoltá, Széelyudvarhely Napjaiba is gyara találozhatu olya feladatoal, ahol azt ell megszámolu, hogy adott potból, vagy potoból iidulva, adott feltétele mellett

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben