ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,"

Átírás

1 A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés helyességét. Eek érdekébe éréseket végzük, és ezek alapjá kíváuk dötei. Ez forálisa azt jeleti, hogy elleőrizi akarjuk, X,..., X függetle egyfora eloszlású valószíűségi változók egy sorozata (ait itáak is evezük), µ várható értékű valószíűségi változókból áll-e. Feltételezzük, hogy ezek a valószíűségi változók orális eloszlásúak. (E feltételezés ögött a űszaki életbe hibatörvéyek evezett jeleség va.) b) Két külöböző véletle eyiség va, és ezek µ és µ várható értékét akarjuk összehasolítai. Va aikor arra vagyuk kivácsiak, hogy egyelőek-e ezek a várható értékek, va aikor arra, hogy igaz-e, hogy µ µ. A kérdés eldötése érdekébe függetle éréseket végzük. Bizoyos X,..., X µ várható értékű, és Y,..., Y µ várható értékű függetle éréseket végzük, és ezek alapjá kíváuk dötést hozi. Most is feltesszük, hogy a ért értékek orális eloszlásúak. Mid a két feladat vizsgálatába egkülöböztetük két külööző esetet. Az első (egyszerűbb) eset az, aikor iserjük a egfigyelt véletle érések igadozását érő szóráségyzetet, a ásodik (boyolultabb) eset az, aikor ezt e iserjük. Az első esetbe a cetrális határeloszlástétel segítségével tudjuk egadi az eljárást. Akkor, aikor iserjük a egfigyelt valószíűségi változó szóráségyzetét, az a) kérdésre adott eljárást egyitás U-próbáak, a b) kérdésre adott eljárást kétitás U-próbáak evezzük. (Va, ahol ezeket az eljárásokat Z-próbáak hívják.) Egyitás U-próba. Legye adva függetle orális eloszlású µ várható értékű és (isert) σ szóráségyzetű valószíűségi változók X,..., X sorozata. Készítsük el e valószíűségi változók X = X + +X átlagát és a U(X,..., X ) = X µ σ próbafüggvéyt. Az U(X,..., X ) próbafüggvéy a feti tulajdoságok teljesülése eseté stadard orális eloszlású. Eze összefüggés alapjá tuduk előírt ε elsőfajú hibával redelkező jó dötést hozi arról, hogy elfogadjuk-e az EX = µ vagy EX µ feltevést. Kétitás U-próba. Legye adva függetle orális eloszlású valószíűségi változók X,..., X sorozata µ várható értékkel és (isert) σ szóráségyzettel, illetve függetle orális eloszlású valószíűségi változók Y,..., Y sorozata µ várható értékkel és (isert) σ szóráségyzettel. Tegyük fel azt is, hogy az X,..., X és Y,..., Y valószíűségi változók sorozata függetle egyástól. Vezessük be az X = X + +X és Ȳ = Y + +Y átlagokat valait az U(X,..., X, Y,..., Y ) = X Ȳ σ + σ

2 próbafüggvéyt. Az U(X,..., X, Y,..., Y ) próbafüggvéy a feti tulajdoságok teljesülése eseté stadard orális eloszlású. Eze összefüggés alapjá tuduk előírt ε elsőfajú hibával redelkező jó dötést hozi arról, hogy elfogadjuk-e a µ = µ vagy µ µ feltevést. Ha e iserjük a szóráségyzetet, akkor érdees azt jól egbecsüli, és a(z iseretle) szóráségyzet helyett aak becsült értékével száoli. Eze alapul az egy és kétitás U-statisztika eljárása. Eek kidolgozása érdekébe oldjuk eg először a következő feladatot..) Legye adva függetle F (x) eloszlású valószíűségi változók ξ,..., ξ sorozata. Legye ξ = ξ k. Mutassuk eg, hogy az S = (ξ j ξ) kifejezés a k= szóráségyzet torzítatla becslése, azaz ES = σ. Továbbá Var S = ( E(ξ Eξ ) 4 3 ) (Var ξ ). Megoldás: Írjuk át az S kifejezést száukra alkalasabb alakba. S = = ξj Továbbá, E (ξ j ξ) = ξj ξ = Eξ, E ( (ξj + ξ ξξ j ) = ) ξ j = ξj Eξ j + ( ) j<k ξ j Eξ j ξ k = Eξ + ( )Eξ ξ = Eξ + ( )(Eξ ). Ie ES = Eξ Eξ (Eξ ) = Eξ (Eξ ) = Var ξ. A Var S szóráségyzetet száoljuk ki először abba a speciális esetbe, aikor Eξ = 0. Ekkor Var S = Var ( ) ξ j ξ i ξ j ( ) i<j = Var ξ j + Var ( ) ξ iξ j, i<j ert a ξ j és ( ) ξ iξ j valószíűségi változók korrelálatlaok. A i<j ( ) további korrelálatlaságok iatt Var ξ j = Var ξ = (Eξ4 (Eξ) ), és.

3 Var ( i<j ( ) ξ iξ j ) = ( ) (Eξ ), ahoa Var S = ( Eξ 4 3 ) (Eξ ). Ie következik a feladat állítása abba a speciális esetbe, ha Eξ = 0. Az általáos eset visszavezethető erre a speciális esetre a ξ j = ξ j Eξ j, ˆξ = ξ j változók bevezetésével az ( ξ j ˆξ) azoosság felhaszálásával. (ξ j ξ) = Abba az esetbe, ha e iserjük a egfigyelt véletle eyiségek szóráségyzetét, a szóráségyzet helyett aak becslését, az úgyevezett tapasztalati szóráségyzetet haszáljuk. Isertete a tapasztalati szóráségyzet defiicióját, illetve azt a tételt, aely a vizsgált kérdések egoldására javasolt ódszerek hátterébe va akkor, ha a a szóráségyzetet e iserjük. Ezeket a ódszereket egyitás és kétitás t-próbáak hívják. Tapasztalati szóráségyzet defiiciója. Legye X,..., X függetle egyfora eloszlású valószíűségi változók sorozata. Az S = (X j X), ahol X = X k (A) képlettel egadott kifejezést e valószíűségi változók tapasztalati szóráségyzetéek evezik. Az előző feladat célja aak egagyarázása volt, hogy iért érdees a tapasztalati szóráségyzet fet bevezetett alakját haszáli. Ez azt utatja, hogy a tapasztalati szóráségyzet a valódi szóráségyzet olya torzítatla becslése, aelyek a szóráségyzete agy ita esetébe kicsi, agyságredű. Függetle stadard orális valószíűségi változók esetébe további tartalas eredéyeket lehet bizoyítai a tapasztalati szóráségyzet viselkedését. Ezt odja ki a következő tétel, aely a t- statisztikák hátterébe va. Tétel. Legye X,..., X függetle stadard orális eloszlású valószíűségi változók sorozata. Ekkor az általuk az (A) képletbe defiiált S valószíűségi változó és az X = X j valószíűségi változók egyástól függetleek. Továbbá az ( )S valószíűségi változó eloszlása az szabadságfokú χ-égyzet, az változó eloszlása a stadard orális eloszlás. X valószíűségi A későbbi eredéyek egfogalazása érdekébe érdees bevezeti a Studet eloszlás defiicióját. 3

4 Studet eloszlás defiiciója. Legye X és Y két függetle valószíűségi változó, aelyek közül X stadard orális eloszlású, Y pedig szabadságfokú χ-égyzet eloszlású. Ekkor az X háyados eloszlása az szabadságfokú Studet eloszlás. Y Megfogalazo az egy és kétitás t-próbák alapjául szolgáló eredéyeket. Egyitás t-próba. Legye adva függetle orális eloszlású µ várható értékű és (iseretle) σ szóráségyzetű valószíűségi változók X,..., X sorozata. Készítsük el e valószíűségi változók X = X + +X átlagát és a t (X,..., X ) = X µ S próbafüggvéyt, ahol az S kifejezést az (A) képletbe defiiáltuk. A t (X,..., X ) próbafüggvéy eloszlása a feti tulajdoságok teljesülése eseté az szabadságfokú Studet eloszlás. Eze összefüggés alapjá tuduk előírt ε elsőfajú hibával redelkező jó dötést hozi arról, hogy elfogadjuk-e az EX = µ vagy EX µ feltevést. Kétitás t-próba. Legye adva függetle orális eloszlású valószíűségi változók X,..., X sorozata µ várható értékkel és (iseretle) σ szóráségyzettel, illetve függetle orális eloszlású valószíűségi változók Y,..., Y sorozata µ várható értékkel és (iseretle) σ szóráségyzettel. (Feltettük, hogy a két sorozat iseretle szóráségyzete egegyezik.) Tegyük fel azt is, hogy az X,..., X és Y,..., Y valószíűségi változók sorozata függetle egyástól. Vezessük be az X = X + +X és Ȳ = Y + +Y átlagokat valait az t + (X,..., X, Y,..., Y ) = X Ȳ ( + ) ( )S + ( )S + próbafüggvéyt, ahol az S valószíűségi változót az (A) képletbe defiiáltuk, és az S valószíűségi változót szité hasolóa defiiáljuk az (A) forula segítségével azzal a külöbséggel, hogy az Y,..., Y itát haszáljuk az X,..., X ita helyett. A t + (X,..., X, Y,..., Y ) próbafüggvéy eloszlása a feti tulajdoságok teljesülése eseté az úgyevezett szabadságfokú Studet eloszlás. Eze összefüggés alapjá tuduk előírt ε elsőfajú hibával redelkező jó dötést hozi arról, hogy elfogadjuke az µ = µ vagy µ µ feltevést. A következő, a MobiDIÁK köyvtár Feladatok a hipotézisvizsgálat téaköréből szárazó. példa az egy és kétitás U-próbára utat példát..) Egy kiterjedt épegészségügyi vizsgálat sorá egállapították, hogy az egészséges felőtt populáció eseté a diasztolés (alsó) véryoás értékek átlaga 84.8 higayilliéter, szórása pedig.8 higayilliéter. Az Alsóbezgeyei Atlétikai Klub hat 4

5 véletleszerűe kiválasztott verseyzőjéél a klub sportorvosa az alábbi diasztolés értékeket jegyezte fel: 79., 64.6, 86.8, 73.7, 74.9, 6.3. a) A sportorvos ezek alapjá úgy godolta, hogy az atléták átlagos diasztolés véryoása alacsoyabb, it Feltételezve, hogy az atléták diasztolés véryoása orális eloszlást követ, szórása pedig egegyezik a teljes populációra kapott értékkel (.8 higayilliéter), dötsö 95%-os szite arról, hogy igaza va-e a doktorak. Az Alsóbezgeyei Sakk Klub verseyzői szité eglátogatták a fet elített doktort, aki az ő esetükbe is feljegyezte hat véletleszerűe kiválasztott sportoló diasztolés véryoás értékét, aelyek az alábbiak: 84.6, 93., 04.6, 06.7, 76.3, 78.. b.) Hipotéziseit potosa egfogalazva dötsö 95%-os szite arról, hogy a sakkozók diasztolés véryoása agasabb-e, it az atlétáké! A sakkozók diasztolés véryoásáról szité feltehetjük, hogy orális eloszlást követ, szórása pedig egegyezik a teljes épesség körébe ért értékkel. Megoldás a) rész A feladat így fogalazható eg: H 0 : µ x = 84.8; H : µ x < α = egyoldali ellehipotézis Ekkor = 6, az átlag x = , σ x =.8. A próbastatisztika: U = x µ x,0 σ x = =.465. A kritikus tartoáy U U(0.05) =.645. A kapott érték,.465 kisebb eél, ezért elvetjük a H 0 hipotézist. Megoldás b) rész A feladat így fogalazható eg: H 0 : µ x = µ y ; H : µ x < µ y. α = egyoldali ellehipotézis Ebbe az esetbe = = 6, x = , ȳ = 90.6, σ x = σ y =.8. A próbastatisztika: U = x ȳ 3 =.306. σ x + σ y = A kritikus tartoáy U U(0.05) =.645. eél, ezért elvetjük a H 0 hipotézist. A kapott érték,.306 kisebb Az előbbi feladatsor.5 példája az egyitás t-statisztikára utat példát. 5

6 3.) Egy üze gyártósorá az egyik szerelési feladatra egadott szitidő 9 perc. Az e poto dolgozó alkalazottak ár több kérvéybe kérték a szitidő feleelését, ivel véleéyük szerit az e elegedő a feladat elvégzésére. Az üze vezetősége egy elleőrt küldött ki, aki véletleszerűe kiválasztott alkaloal egérte a feladat elvégzéséhez szükséges időt. Az eredéyek az alábbiak: 9.4, 8.8, 9.3, 9., 9.4, 8.9, 9.3, 9., 9.6, 9.3, 9.3, 9.. Hipotéziseit és az adatokra voatkozó feltételeit potosa egfogalazva dötsö 99%-os szite, hogy igazuk va-e a ukásokak! Megoldás: A feladat így fogalazható eg: H 0 : µ = 9; H : µ > 9. α = 0.0. egyoldali ellehipotézis Feltételezzük, hogy a feladat elvégzéséhez szükséges idő orális eloszlású. Ekkor a ita eleszáa =, az átlag x = 9.50, a tapasztalati szóráségyzet s = , s = 0., A próbastatisztika: t = x µ s = Ha igaz a H 0 ull-hipotézis, akkor a próbastatisztika eloszlása t-statisztika ν = szabadságfokkal, aelyek értéke t (0.99) =.78. A ért érték eél agyobb, ezért elvetjük a ull-hipotézist. 4.) Legye ξ és η két függetle, a [, ] itervalluba egyeletes eloszlású valószíűségi változó, azaz legye ξ és η sűrűségfüggvéye f(x) =, ha x, és f(x) = 0 egyébkét. Száoljuk ki ξ + η sűrűségfüggvéyét. Megoldás: A ξ+η valószíűségi változó sűrűségfüggvéye a g(x) = f(y)f(x y) dy függvéy, ahol f(x) a [, ] itervalluba egyeletes eloszlás sűrűségfüggvéye. Ezért f(y)f(x y) =, ha y, és x y, azaz +x y +x, és ulla egyébkét. Ez azt jeleti, hogy a ξ + η összeg g(x) sűrűségfüggvéye az x potba egegyezik a [, [ ] + x, + x] itervallu hosszával. Ha x >, akkor a feti etszet üres, ezért ebbe az esetbe g(x) = 0. Ha 0 x, akkor ez a etszet a [ + x, ] itervallu, és eek hossza x, azaz ebbe az esetbe g(x) = x. Ha x 0, akkor ez a etszet a [, + x] itervallu, aelyek hossza + x = x, azaz g(x) = + x = x. Ez azt jeleti, hogy g(x) = x, ha x, és g(x) = 0, ha x >. 5.) Legye ξ stadard orális eloszlású valószíűségi változó. Száoljuk ki a ξ valószíűségi változó egyedik oetuát. Legye ξ egy várható értékű és kettő szóráségyzetű orális eloszlású valószíűségi változó. Száoljuk ki ξ sűrűségfüggvéyét és egyedik oetuát. 6

7 Megoldás: Eξ 4 = = x 4 e x / dx = π [ x 3 π e x / ] + = 3 x e x / dx = 3. π x 3 d ( ) e x / dx dx π 3x π e x / dx A ξ = ξ valószíűségi változó stadard orális eloszlású, és ξ = ( ξ + ), ahol ξ stadard orális eloszlású, ha ξ orális eloszlású várható értékű és szóráségyzetű valószíűségi ( változó. ) Ezért, it azt az előző órá egtárgyaltuk ξ sűrűségfüggvéye x ϕ = π e (x ) /4. Ezért E ξ 4 = x 4 π e (x ) /4 dx, ahoa u = x helyettesítéssel E ξ 4 = ( u + ) 4 e u /4 du = 4 π = = 5 u 3 π e u /4 du + u e u /4 du + π u 4 π e u /4 du u π e u /4 du π e u /4 du Valójába az E ξ 4 egyedik oetuot egyszerűbbe is kiszáolhattuk vola. E ξ 4 = E( ξ +) 4 = 4E ξ 4 +8 E ξ 3 +E ξ +4 ξ + = = 5. 7

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

6. feladatsor. Statisztika december 6. és 8.

6. feladatsor. Statisztika december 6. és 8. 6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószí ségszámítás és statisztika oktatási segédayag Kupá Pál Tartalomjegyzék fejezet Valószí ségszámítási alapfogalmak 5 Eseméyek 5 M veletek eseméyekkel 5 2 A valószí ség fogalma 7 3 Valószí ségi változók

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest Lektorálta: Zukál Edre Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

Egyszerő kémiai számítások

Egyszerő kémiai számítások Egyszerő kéiai száítások z egyes fizikai, illetve kéiai eyiségek közötti összefüggéseket éréssel állapítjuk eg. hhoz, hogy egy eyiséget éri tudjuk, a eyiségek valaely rögzített értékét (értékegység) kell

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

A kurzus teljesítésének feltételei. Az I404 kódú kurzus teljesítéséhez meg kell oldani egy otthoni feladatot, határidő április 30.

A kurzus teljesítésének feltételei. Az I404 kódú kurzus teljesítéséhez meg kell oldani egy otthoni feladatot, határidő április 30. Évközi teljesítés A kurzus teljesítéséek feltételei Két gyakorlato egírt ZH, az elérhető 00 potból 50 potot kell eléri. Aki e teljesíti a feltételt a vizsgaidőszak első hetébe a vizsgára egedésért írhat

Részletesebben

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék æ MATEMATIKAI STATISZTIKA Dr. Bolla Mariaa, Matematika Itézet, Sztochasztika Taszék Leíró statisztika Ω, A, P) statisztikai mező, ahol a P mértékcsalád olya P eloszlásokból áll, melyekkel Ω, A, P) valószíűségi

Részletesebben

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 8. Valószíűségszámítás ESEMÉNYEK 174 Eseméyek formális leírása, műveletek 175 Feladatok 176 A VALÓSZÍNŰSÉG FOGALMA 177 A valószíűség tulajdoságai 178 Mitapéldák 179 Feladatok 181 VALÓSZÍNŰSÉGI VÁLTOZÓK

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

1. gyakorlat - Végtelen sorok

1. gyakorlat - Végtelen sorok . gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t.

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t. Ászpóke csapat Kalló Beát, Nagy Baló Adás Nagy Jáos, éges Máto Fazekas tábo 008. Igaz-e, hogy ha az f, g: Q Q függvéyek szigoúa ooto őek és étékkészletük a teljes Q, akko az f g függvéy étékkészlete is

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

FAIPARI ALAPISMERETEK

FAIPARI ALAPISMERETEK Faipari alapiseretek középszit 1211 ÉRETTSÉGI VIZSGA 213. ájus 23. FAIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIMA Fotos tudivalók

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

m,p) binomiális eloszlás.

m,p) binomiális eloszlás. A Valószíűségszámítás I. előadássorozat hatodi témája. Néháy fotos diszrét eloszlás. Ismertetem éháy fotos diszrét eloszlás defiicióját, és tárgyalom eze legfotosabb tulajdoságait. Az eloszláso bevezetés

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Analízis feladatgy jtemény II.

Analízis feladatgy jtemény II. Oktatási segédayag a Programtervez matematikus szak Aalízis I. tatárgyához (003004. taév szi félév) Aalízis feladatgy jteméy II. Összeállította Szili László 003 Tartalomjegyzék I. Feladatok 3. Valós sorozatok.......................................

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

VII.Valószínűségszámítási, statisztikai, gráfelméleti alapfogalmak

VII.Valószínűségszámítási, statisztikai, gráfelméleti alapfogalmak VII.Valószíűségszámítási, statisztikai, gráfelméleti alapfogalmak VII..A valószíűségszámítás elemei A valószíűségszámítás a véletle tömegjeleségeket taulmáyozó, kb. 300 éves tudomáy. Véletle jeleség: em

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek? Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

FONTOSABB MATEMATIKAI JELEK, JELÖLÉSEK

FONTOSABB MATEMATIKAI JELEK, JELÖLÉSEK FONTOSABB MATEMATIKAI JELEK, JELÖLÉSEK. táblázat Szimbólum Jeletése, eve Olvasása Példa N N + Z Q Q * R C 0, { } +, % " $ Œ Ã, Õ» «\ +,, * :,, / = π := < > ª @ ~ Természetes számok halmaza Pozitív egész

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

STATISZTIKA II. kötet

STATISZTIKA II. kötet Szeged Tudomáyegyetem Gazdaságtudomáy Kar Petres Tbor Tóth László STATISZTIKA II. kötet Szerzők: Dr. Petres Tbor, PhD egyetem doces Statsztka és Demográfa Taszék Tóth László PhD-hallgató Gazdaságtudomáy

Részletesebben

Random Club 2010 tavasz Advanced probabilistic calculus for engineers

Random Club 2010 tavasz Advanced probabilistic calculus for engineers Exercitatio artem parat (Tacitus) Radom Club 200 tavasz Advaced probabilistic calculus for egieers Mide jeleséget okok redszere hoz létre, amelyek midegyikét legtöbbször em tudjuk figyelembe vei, így a

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben