ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

Save this PDF as:
Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,"

Átírás

1 A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés helyességét. Eek érdekébe éréseket végzük, és ezek alapjá kíváuk dötei. Ez forálisa azt jeleti, hogy elleőrizi akarjuk, X,..., X függetle egyfora eloszlású valószíűségi változók egy sorozata (ait itáak is evezük), µ várható értékű valószíűségi változókból áll-e. Feltételezzük, hogy ezek a valószíűségi változók orális eloszlásúak. (E feltételezés ögött a űszaki életbe hibatörvéyek evezett jeleség va.) b) Két külöböző véletle eyiség va, és ezek µ és µ várható értékét akarjuk összehasolítai. Va aikor arra vagyuk kivácsiak, hogy egyelőek-e ezek a várható értékek, va aikor arra, hogy igaz-e, hogy µ µ. A kérdés eldötése érdekébe függetle éréseket végzük. Bizoyos X,..., X µ várható értékű, és Y,..., Y µ várható értékű függetle éréseket végzük, és ezek alapjá kíváuk dötést hozi. Most is feltesszük, hogy a ért értékek orális eloszlásúak. Mid a két feladat vizsgálatába egkülöböztetük két külööző esetet. Az első (egyszerűbb) eset az, aikor iserjük a egfigyelt véletle érések igadozását érő szóráségyzetet, a ásodik (boyolultabb) eset az, aikor ezt e iserjük. Az első esetbe a cetrális határeloszlástétel segítségével tudjuk egadi az eljárást. Akkor, aikor iserjük a egfigyelt valószíűségi változó szóráségyzetét, az a) kérdésre adott eljárást egyitás U-próbáak, a b) kérdésre adott eljárást kétitás U-próbáak evezzük. (Va, ahol ezeket az eljárásokat Z-próbáak hívják.) Egyitás U-próba. Legye adva függetle orális eloszlású µ várható értékű és (isert) σ szóráségyzetű valószíűségi változók X,..., X sorozata. Készítsük el e valószíűségi változók X = X + +X átlagát és a U(X,..., X ) = X µ σ próbafüggvéyt. Az U(X,..., X ) próbafüggvéy a feti tulajdoságok teljesülése eseté stadard orális eloszlású. Eze összefüggés alapjá tuduk előírt ε elsőfajú hibával redelkező jó dötést hozi arról, hogy elfogadjuk-e az EX = µ vagy EX µ feltevést. Kétitás U-próba. Legye adva függetle orális eloszlású valószíűségi változók X,..., X sorozata µ várható értékkel és (isert) σ szóráségyzettel, illetve függetle orális eloszlású valószíűségi változók Y,..., Y sorozata µ várható értékkel és (isert) σ szóráségyzettel. Tegyük fel azt is, hogy az X,..., X és Y,..., Y valószíűségi változók sorozata függetle egyástól. Vezessük be az X = X + +X és Ȳ = Y + +Y átlagokat valait az U(X,..., X, Y,..., Y ) = X Ȳ σ + σ

2 próbafüggvéyt. Az U(X,..., X, Y,..., Y ) próbafüggvéy a feti tulajdoságok teljesülése eseté stadard orális eloszlású. Eze összefüggés alapjá tuduk előírt ε elsőfajú hibával redelkező jó dötést hozi arról, hogy elfogadjuk-e a µ = µ vagy µ µ feltevést. Ha e iserjük a szóráségyzetet, akkor érdees azt jól egbecsüli, és a(z iseretle) szóráségyzet helyett aak becsült értékével száoli. Eze alapul az egy és kétitás U-statisztika eljárása. Eek kidolgozása érdekébe oldjuk eg először a következő feladatot..) Legye adva függetle F (x) eloszlású valószíűségi változók ξ,..., ξ sorozata. Legye ξ = ξ k. Mutassuk eg, hogy az S = (ξ j ξ) kifejezés a k= szóráségyzet torzítatla becslése, azaz ES = σ. Továbbá Var S = ( E(ξ Eξ ) 4 3 ) (Var ξ ). Megoldás: Írjuk át az S kifejezést száukra alkalasabb alakba. S = = ξj Továbbá, E (ξ j ξ) = ξj ξ = Eξ, E ( (ξj + ξ ξξ j ) = ) ξ j = ξj Eξ j + ( ) j<k ξ j Eξ j ξ k = Eξ + ( )Eξ ξ = Eξ + ( )(Eξ ). Ie ES = Eξ Eξ (Eξ ) = Eξ (Eξ ) = Var ξ. A Var S szóráségyzetet száoljuk ki először abba a speciális esetbe, aikor Eξ = 0. Ekkor Var S = Var ( ) ξ j ξ i ξ j ( ) i<j = Var ξ j + Var ( ) ξ iξ j, i<j ert a ξ j és ( ) ξ iξ j valószíűségi változók korrelálatlaok. A i<j ( ) további korrelálatlaságok iatt Var ξ j = Var ξ = (Eξ4 (Eξ) ), és.

3 Var ( i<j ( ) ξ iξ j ) = ( ) (Eξ ), ahoa Var S = ( Eξ 4 3 ) (Eξ ). Ie következik a feladat állítása abba a speciális esetbe, ha Eξ = 0. Az általáos eset visszavezethető erre a speciális esetre a ξ j = ξ j Eξ j, ˆξ = ξ j változók bevezetésével az ( ξ j ˆξ) azoosság felhaszálásával. (ξ j ξ) = Abba az esetbe, ha e iserjük a egfigyelt véletle eyiségek szóráségyzetét, a szóráségyzet helyett aak becslését, az úgyevezett tapasztalati szóráségyzetet haszáljuk. Isertete a tapasztalati szóráségyzet defiicióját, illetve azt a tételt, aely a vizsgált kérdések egoldására javasolt ódszerek hátterébe va akkor, ha a a szóráségyzetet e iserjük. Ezeket a ódszereket egyitás és kétitás t-próbáak hívják. Tapasztalati szóráségyzet defiiciója. Legye X,..., X függetle egyfora eloszlású valószíűségi változók sorozata. Az S = (X j X), ahol X = X k (A) képlettel egadott kifejezést e valószíűségi változók tapasztalati szóráségyzetéek evezik. Az előző feladat célja aak egagyarázása volt, hogy iért érdees a tapasztalati szóráségyzet fet bevezetett alakját haszáli. Ez azt utatja, hogy a tapasztalati szóráségyzet a valódi szóráségyzet olya torzítatla becslése, aelyek a szóráségyzete agy ita esetébe kicsi, agyságredű. Függetle stadard orális valószíűségi változók esetébe további tartalas eredéyeket lehet bizoyítai a tapasztalati szóráségyzet viselkedését. Ezt odja ki a következő tétel, aely a t- statisztikák hátterébe va. Tétel. Legye X,..., X függetle stadard orális eloszlású valószíűségi változók sorozata. Ekkor az általuk az (A) képletbe defiiált S valószíűségi változó és az X = X j valószíűségi változók egyástól függetleek. Továbbá az ( )S valószíűségi változó eloszlása az szabadságfokú χ-égyzet, az változó eloszlása a stadard orális eloszlás. X valószíűségi A későbbi eredéyek egfogalazása érdekébe érdees bevezeti a Studet eloszlás defiicióját. 3

4 Studet eloszlás defiiciója. Legye X és Y két függetle valószíűségi változó, aelyek közül X stadard orális eloszlású, Y pedig szabadságfokú χ-égyzet eloszlású. Ekkor az X háyados eloszlása az szabadságfokú Studet eloszlás. Y Megfogalazo az egy és kétitás t-próbák alapjául szolgáló eredéyeket. Egyitás t-próba. Legye adva függetle orális eloszlású µ várható értékű és (iseretle) σ szóráségyzetű valószíűségi változók X,..., X sorozata. Készítsük el e valószíűségi változók X = X + +X átlagát és a t (X,..., X ) = X µ S próbafüggvéyt, ahol az S kifejezést az (A) képletbe defiiáltuk. A t (X,..., X ) próbafüggvéy eloszlása a feti tulajdoságok teljesülése eseté az szabadságfokú Studet eloszlás. Eze összefüggés alapjá tuduk előírt ε elsőfajú hibával redelkező jó dötést hozi arról, hogy elfogadjuk-e az EX = µ vagy EX µ feltevést. Kétitás t-próba. Legye adva függetle orális eloszlású valószíűségi változók X,..., X sorozata µ várható értékkel és (iseretle) σ szóráségyzettel, illetve függetle orális eloszlású valószíűségi változók Y,..., Y sorozata µ várható értékkel és (iseretle) σ szóráségyzettel. (Feltettük, hogy a két sorozat iseretle szóráségyzete egegyezik.) Tegyük fel azt is, hogy az X,..., X és Y,..., Y valószíűségi változók sorozata függetle egyástól. Vezessük be az X = X + +X és Ȳ = Y + +Y átlagokat valait az t + (X,..., X, Y,..., Y ) = X Ȳ ( + ) ( )S + ( )S + próbafüggvéyt, ahol az S valószíűségi változót az (A) képletbe defiiáltuk, és az S valószíűségi változót szité hasolóa defiiáljuk az (A) forula segítségével azzal a külöbséggel, hogy az Y,..., Y itát haszáljuk az X,..., X ita helyett. A t + (X,..., X, Y,..., Y ) próbafüggvéy eloszlása a feti tulajdoságok teljesülése eseté az úgyevezett szabadságfokú Studet eloszlás. Eze összefüggés alapjá tuduk előírt ε elsőfajú hibával redelkező jó dötést hozi arról, hogy elfogadjuke az µ = µ vagy µ µ feltevést. A következő, a MobiDIÁK köyvtár Feladatok a hipotézisvizsgálat téaköréből szárazó. példa az egy és kétitás U-próbára utat példát..) Egy kiterjedt épegészségügyi vizsgálat sorá egállapították, hogy az egészséges felőtt populáció eseté a diasztolés (alsó) véryoás értékek átlaga 84.8 higayilliéter, szórása pedig.8 higayilliéter. Az Alsóbezgeyei Atlétikai Klub hat 4

5 véletleszerűe kiválasztott verseyzőjéél a klub sportorvosa az alábbi diasztolés értékeket jegyezte fel: 79., 64.6, 86.8, 73.7, 74.9, 6.3. a) A sportorvos ezek alapjá úgy godolta, hogy az atléták átlagos diasztolés véryoása alacsoyabb, it Feltételezve, hogy az atléták diasztolés véryoása orális eloszlást követ, szórása pedig egegyezik a teljes populációra kapott értékkel (.8 higayilliéter), dötsö 95%-os szite arról, hogy igaza va-e a doktorak. Az Alsóbezgeyei Sakk Klub verseyzői szité eglátogatták a fet elített doktort, aki az ő esetükbe is feljegyezte hat véletleszerűe kiválasztott sportoló diasztolés véryoás értékét, aelyek az alábbiak: 84.6, 93., 04.6, 06.7, 76.3, 78.. b.) Hipotéziseit potosa egfogalazva dötsö 95%-os szite arról, hogy a sakkozók diasztolés véryoása agasabb-e, it az atlétáké! A sakkozók diasztolés véryoásáról szité feltehetjük, hogy orális eloszlást követ, szórása pedig egegyezik a teljes épesség körébe ért értékkel. Megoldás a) rész A feladat így fogalazható eg: H 0 : µ x = 84.8; H : µ x < α = egyoldali ellehipotézis Ekkor = 6, az átlag x = , σ x =.8. A próbastatisztika: U = x µ x,0 σ x = =.465. A kritikus tartoáy U U(0.05) =.645. A kapott érték,.465 kisebb eél, ezért elvetjük a H 0 hipotézist. Megoldás b) rész A feladat így fogalazható eg: H 0 : µ x = µ y ; H : µ x < µ y. α = egyoldali ellehipotézis Ebbe az esetbe = = 6, x = , ȳ = 90.6, σ x = σ y =.8. A próbastatisztika: U = x ȳ 3 =.306. σ x + σ y = A kritikus tartoáy U U(0.05) =.645. eél, ezért elvetjük a H 0 hipotézist. A kapott érték,.306 kisebb Az előbbi feladatsor.5 példája az egyitás t-statisztikára utat példát. 5

6 3.) Egy üze gyártósorá az egyik szerelési feladatra egadott szitidő 9 perc. Az e poto dolgozó alkalazottak ár több kérvéybe kérték a szitidő feleelését, ivel véleéyük szerit az e elegedő a feladat elvégzésére. Az üze vezetősége egy elleőrt küldött ki, aki véletleszerűe kiválasztott alkaloal egérte a feladat elvégzéséhez szükséges időt. Az eredéyek az alábbiak: 9.4, 8.8, 9.3, 9., 9.4, 8.9, 9.3, 9., 9.6, 9.3, 9.3, 9.. Hipotéziseit és az adatokra voatkozó feltételeit potosa egfogalazva dötsö 99%-os szite, hogy igazuk va-e a ukásokak! Megoldás: A feladat így fogalazható eg: H 0 : µ = 9; H : µ > 9. α = 0.0. egyoldali ellehipotézis Feltételezzük, hogy a feladat elvégzéséhez szükséges idő orális eloszlású. Ekkor a ita eleszáa =, az átlag x = 9.50, a tapasztalati szóráségyzet s = , s = 0., A próbastatisztika: t = x µ s = Ha igaz a H 0 ull-hipotézis, akkor a próbastatisztika eloszlása t-statisztika ν = szabadságfokkal, aelyek értéke t (0.99) =.78. A ért érték eél agyobb, ezért elvetjük a ull-hipotézist. 4.) Legye ξ és η két függetle, a [, ] itervalluba egyeletes eloszlású valószíűségi változó, azaz legye ξ és η sűrűségfüggvéye f(x) =, ha x, és f(x) = 0 egyébkét. Száoljuk ki ξ + η sűrűségfüggvéyét. Megoldás: A ξ+η valószíűségi változó sűrűségfüggvéye a g(x) = f(y)f(x y) dy függvéy, ahol f(x) a [, ] itervalluba egyeletes eloszlás sűrűségfüggvéye. Ezért f(y)f(x y) =, ha y, és x y, azaz +x y +x, és ulla egyébkét. Ez azt jeleti, hogy a ξ + η összeg g(x) sűrűségfüggvéye az x potba egegyezik a [, [ ] + x, + x] itervallu hosszával. Ha x >, akkor a feti etszet üres, ezért ebbe az esetbe g(x) = 0. Ha 0 x, akkor ez a etszet a [ + x, ] itervallu, és eek hossza x, azaz ebbe az esetbe g(x) = x. Ha x 0, akkor ez a etszet a [, + x] itervallu, aelyek hossza + x = x, azaz g(x) = + x = x. Ez azt jeleti, hogy g(x) = x, ha x, és g(x) = 0, ha x >. 5.) Legye ξ stadard orális eloszlású valószíűségi változó. Száoljuk ki a ξ valószíűségi változó egyedik oetuát. Legye ξ egy várható értékű és kettő szóráségyzetű orális eloszlású valószíűségi változó. Száoljuk ki ξ sűrűségfüggvéyét és egyedik oetuát. 6

7 Megoldás: Eξ 4 = = x 4 e x / dx = π [ x 3 π e x / ] + = 3 x e x / dx = 3. π x 3 d ( ) e x / dx dx π 3x π e x / dx A ξ = ξ valószíűségi változó stadard orális eloszlású, és ξ = ( ξ + ), ahol ξ stadard orális eloszlású, ha ξ orális eloszlású várható értékű és szóráségyzetű valószíűségi ( változó. ) Ezért, it azt az előző órá egtárgyaltuk ξ sűrűségfüggvéye x ϕ = π e (x ) /4. Ezért E ξ 4 = x 4 π e (x ) /4 dx, ahoa u = x helyettesítéssel E ξ 4 = ( u + ) 4 e u /4 du = 4 π = = 5 u 3 π e u /4 du + u e u /4 du + π u 4 π e u /4 du u π e u /4 du π e u /4 du Valójába az E ξ 4 egyedik oetuot egyszerűbbe is kiszáolhattuk vola. E ξ 4 = E( ξ +) 4 = 4E ξ 4 +8 E ξ 3 +E ξ +4 ξ + = = 5. 7

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

6. feladatsor. Statisztika december 6. és 8.

6. feladatsor. Statisztika december 6. és 8. 6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószí ségszámítás és statisztika oktatási segédayag Kupá Pál Tartalomjegyzék fejezet Valószí ségszámítási alapfogalmak 5 Eseméyek 5 M veletek eseméyekkel 5 2 A valószí ség fogalma 7 3 Valószí ségi változók

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest Lektorálta: Zukál Edre Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

2. LOGIKAI FÜGGVÉNYEK MEGADÁSI MÓDSZEREI. A tananyag célja: a többváltozós logikai függvények megadási módszereinek gyakorlása.

2. LOGIKAI FÜGGVÉNYEK MEGADÁSI MÓDSZEREI. A tananyag célja: a többváltozós logikai függvények megadási módszereinek gyakorlása. . LOGIKI ÜGGVÉNYEK EGÁSI ÓSZEREI taayag célja: a többváltozós logikai függvéyek egadási ódszereiek gyakorlása. Eléleti iseretayag: r. jtoyi Istvá: igitális redszerek I.... pot. Eléleti áttekités.. i jellezi

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban? BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is

Részletesebben

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia

Részletesebben

Barczy Mátyás és Pap Gyula

Barczy Mátyás és Pap Gyula Barczy Mátyás és Pap Gyula mobidiák köyvtár Barczy Mátyás és Pap Gyula mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Barczy Mátyás és Pap Gyula Debrecei Egyetem mobidiák köyvtár Debrecei Egyetem Szerzők

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Statisztika (jegyzet)

Statisztika (jegyzet) Statisztika (jegyzet) Csiszár Vill 009. május 6.. Statisztikai mez A statisztika egyik ága a leíró statisztika. Ekkor a meggyelt adatokat áttekithet formába ábrázoljuk, pl. hisztogrammal (oszlopdiagrammal),

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Valószínűségszámítás alapjai szemléletesen

Valószínűségszámítás alapjai szemléletesen ### walszam07-jav-80.doc, ### 08.0.3., :00' http://math.ui-pao.hu/~szalkai/walszam07.pdf Valószíűségszámítás alapjai szemléletese /Kézirat, 08-0-3. / dr.szalkai Istvá Pao Egyetem, Veszprém Matematika Taszék

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

A kurzus teljesítésének feltételei. Az I404 kódú kurzus teljesítéséhez meg kell oldani egy otthoni feladatot, határidő április 30.

A kurzus teljesítésének feltételei. Az I404 kódú kurzus teljesítéséhez meg kell oldani egy otthoni feladatot, határidő április 30. Évközi teljesítés A kurzus teljesítéséek feltételei Két gyakorlato egírt ZH, az elérhető 00 potból 50 potot kell eléri. Aki e teljesíti a feltételt a vizsgaidőszak első hetébe a vizsgára egedésért írhat

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Egyszerő kémiai számítások

Egyszerő kémiai számítások Egyszerő kéiai száítások z egyes fizikai, illetve kéiai eyiségek közötti összefüggéseket éréssel állapítjuk eg. hhoz, hogy egy eyiséget éri tudjuk, a eyiségek valaely rögzített értékét (értékegység) kell

Részletesebben

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden Kétváltozós függvéek Defiíció: f: R R vag z f(,) Szeléltetés:,,z koordiátaredszerbe felülettel Pl z + forgási paraboloid z R ( + ) félgöb z + + forgási iperboloid (két köpeű) z + forgási iperboloid (eg

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter Debrecei Egyetem Természettudomáyi és Techológiai Kar Kalkulus példatár Gselma Eszter Debrece, 08 Tartalomjegyzék. Valós számsorozatok Elméleti áttekités........................................................

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

A brexit-szavazás és a nagy számok törvénye

A brexit-szavazás és a nagy számok törvénye Mûhely Medvegyev Péter kadidátus, a Corvius Egyetem egyetemi taára E-mail: peter.medvegyev@uicorvius.hu A brexit-szavazás és a agy számok törvéye A 016. év, de vélhetőe az egész évtized legfotosabb politikai

Részletesebben

Normális eloszlás paramétereire vonatkozó próbák

Normális eloszlás paramétereire vonatkozó próbák Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum

Részletesebben

Nemparaméteres próbák

Nemparaméteres próbák Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

Méréstani összefoglaló

Méréstani összefoglaló PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Méréstai összefoglaló (köryezettudomáyi szakos hallgatók laboratóriumi mérési gyakorlataihoz) Összeállította: Dr. Német Béla Pécs 2008 1 Bevezetés

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Leíró és matematikai statisztika gyakorlat 2018/2019 II. félév

Leíró és matematikai statisztika gyakorlat 2018/2019 II. félév Leíró és matematikai statisztika gyakorlat 08/09 II. félév Táblázatok Viszoyszámok: V = A, ahol A: a viszoyítás tárgya amit viszoyítuk; B B: a viszoyítás alapja amihez viszoyítuk Megoszlási: a sokaság

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1

A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1 A FUNDAMENÁLIS EGYENLE KÉ REPREZENÁCIÓBAN A differeciális fudametális egyelet A fudametális egyelet a belső eergiára: UU (S V K ) A függvéy teljes differeciálja a differeciális fudametális egyelet: U S

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 8. Valószíűségszámítás ESEMÉNYEK 174 Eseméyek formális leírása, műveletek 175 Feladatok 176 A VALÓSZÍNŰSÉG FOGALMA 177 A valószíűség tulajdoságai 178 Mitapéldák 179 Feladatok 181 VALÓSZÍNŰSÉGI VÁLTOZÓK

Részletesebben

Matematikai statisztika gyakorlat 2018/2019 II. félév

Matematikai statisztika gyakorlat 2018/2019 II. félév Matematikai statisztika gyakorlat 018/019 II. félév 1. Táblázatok Viszoyszámok: V = A, ahol A: a viszoyítás tárgya (amit viszoyítuk); B B: a viszoyítás alapja (amihez viszoyítuk) Megoszlási: a sokaság

Részletesebben

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

1. gyakorlat - Végtelen sorok

1. gyakorlat - Végtelen sorok . gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )

Részletesebben

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék æ MATEMATIKAI STATISZTIKA Dr. Bolla Mariaa, Matematika Itézet, Sztochasztika Taszék Leíró statisztika Ω, A, P) statisztikai mező, ahol a P mértékcsalád olya P eloszlásokból áll, melyekkel Ω, A, P) valószíűségi

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t.

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t. Ászpóke csapat Kalló Beát, Nagy Baló Adás Nagy Jáos, éges Máto Fazekas tábo 008. Igaz-e, hogy ha az f, g: Q Q függvéyek szigoúa ooto őek és étékkészletük a teljes Q, akko az f g függvéy étékkészlete is

Részletesebben

Andai Attila: november 13.

Andai Attila: november 13. Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.

Részletesebben