Reakciómechanizmusok leírása. Paraméterek. Reakciókinetikai bizonytalanságanalízis. Bizonytalanságanalízis

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Reakciómechanizmusok leírása. Paraméterek. Reakciókinetikai bizonytalanságanalízis. Bizonytalanságanalízis"

Átírás

1 Megbízható kémiai modellek kifejlesztése sok mérési adat egyidejő feldolgozása alajá uráyi amás ELE Kémiai Itézet Reakciókietikai Laboratórium Eddig dolgoztak eze a témá: (témavezetık: uráyi amás, Zsély Istvá Gyula, Zemléi Adrás) Varga László, 5. éves alkalmazott matematikus hallgató Arrheius-araméterek bizoytalasága DK dolgozat, Kémiai ODK, országos III. helyezett, 9 Varga László, 5. éves alkalmazott matematikus hallgató Arrheius-araméterek bizoytalasága szakdolgozat, 9 Nagy ibor Reakciókietikai modellek bizoytalaságaalízise és redukciója PhD értekezés, 9. szetember 4. alkalmazott matematika roblémamegoldó szemiárium Szabó Botod, 5. éves alkalmazott matematikus hallgató Arrheius-araméterek becslése közvetett és közvetle mérések alajá DK dolgozat, ELE Kémia házi DK, 9 Reakciómechaizmusok leírása Gyakra agy reakciómechaizmusokat haszálak : Példa: H, CH 4, C H 6 égése Ayagfajták száma: 5 Reakciók száma: 3 5 Kémiai folyamatok vagy kísérletek szimulációja: Közöséges vagy arciális differeciálegyeletek A modellek araméterei ayagfajtához kacsolódak (l. hıkaacitások, diffúziós együtthatók) reakcióléésekhez tartozak (mide reakcióhoz A,, E Arrheius-araméterek) adott fizikai köryezethez tartozak (l. a tartozkodási idı) Paraméterek Mide aramétert rögzítettek tekitük egyes kiválasztott araméterek kivételével Céluk egyes sebességi együtthatók meghatározása. Számításuk a kiterjesztett Arrheius-egyelet segítségével törtéik: R uiverzális gázálladó (8,34 J K - mol - ) hımérséklet (K) A,, E Arrheius-araméterek Bizoytalaságaalízis modell-araméterek bizoytalaok bizoytalaságaalízis modell-eredméyek is bizoytalaok Bizoytalaságok megadása élkül a modellek eredméye semmitmodó Egy modell elfogadható, ha a mérési eredméyek bizoytalasági tartomáya átfed a szimulációs eredméyek bizoytalasági tartomáyával. Reakciókietikai bizoytalaságaalízis A reakciókietikai adatbázisok tartalmazzák az Arrheiusaramétereket és a sebességi együtthatók bizoytalaságát. A bizoytalaságaalízis-számítások csak az A-aramétert tekitették bizoytalaak. Az Arrheius-egyelet haszálata jelet-e megkötést a k bizoytalaságáak hımérsékletfüggésére? A bizoytalaságaalízis a modell-araméterek bizoytalaságáak a hatását vizsgálja a modell-eredméyek bizoytalaságára. 5 6

2 Kétaraméteres Arrheius-egyelet: k : sebességi együttható R: gázálladó (8,34 J K - mol - ) : hımérséklet (K) A, E : Arrheius-araméterek A= k e E / R k = Ae Legye k és k ismert két külöbözı, és hımérséklete. A és E értéke így számítató: A= k e E / R E R Számítógées adatbázisok tartalmazzák mide reakcióhoz A, (,) E értékét (de ezek bizoytalaságát NEM!!!) k bizoytalaságát kifejezı f számot k k max f = log = log k mi k Ahol k a sebességi együttható ajálott értéke, k mi és k max a lehetséges legkisebb és legagyobb értéke l k szóráségyzetéek számítása f bizoytalasági araméterbıl: l (l ) 3 σ k = f E / R= (l k l k) /(/ / ) 7 k sőrőségfüggvéyéek számítása (hımérsékletfüggı): Feltesszük, hogy k csokolt logormális eloszlású, azaz k mi és k max értékéél le va vágva a sőrőségfüggvéy 8 és hımérsékleteke k( ) és k( ) geerálása Kezdeti algoritmus:. m darab ( k( ), k( ) ) ár elıállítása. m darab (A, E) ár kiszámítása (m= a számításaikba) R H+H O =HO +H reakció: A=,69 s - cm 3 mol -, E=574 J mol - f=,5 a teljes =3 K K hımérséklettartomáyba R H+H O =HO +H reakció: A=,69 s - cm 3 mol -, E=574 J mol - f=,5 a teljes =3 K K hımérséklettartomáyba Álladó f() csak úgy lehetséges, ha csak A bizoytala, ami fizikailag em reális: Probléma: em teljesül, hogy f=,5 a teljes tartomáyo! 9 Ha f() mooto övekszik (vagy mooto csökke) a megadott hımérsékletitervallumba, akkor elıállítható olya l A E/R araméterkészlet, amelyél k adott szórású a hımérséklet végotoko. R O+HO =OH+O reakció: A=.63x 3 s - cm 3 mol -, E= 3,4 J mol - = K-e f=,, övekszik f=,5-re K-ig. f() függvéy: l A E/R hisztogram: Sebességi együttható hımérsékletfüggése Nemlieáris és liearizált alakok kiterjesztett Arrheius-egyelet k( ) = A ex( E / R) ( θ) = + lθ eredeti Arrheius-egyelet k = Aex E / R ( ) ( ) hatváy-hımérsékletfüggés: k ( ) = A hımérsékletfüggetle: k ( ) = A l{ ( )} l{ } l{ } { } { } k = A + E R θ θ θ ( θ) = ( θ) = + lθ ( θ) = A sebességi együttható logaritmusa lieáris az (,, ) származtatott Arrheius-araméterekbe.

3 A sebességi együttható bizoytalaságáak megadásai k bizoytalaságát adott hımérséklete az f számmal jellemzik: Légkörkémiai adatbázisok ( =98K) IUPAC JPL (NASA) Égéstudomáyi adatbázisok k logaritmusáak szórása k() bizoytalasága aráyos (θ ) szórásával: mi max ( k k ) ( k k ) f = log = log g f( ) = d+ ( ) l f( ) = l f + g f f( ) = f σ θ = l ha (, ) ha = 3 ( θ) = ( ( θ) ( θ) ) f () ~σ ( θ) { k( ) } 3 A sebességi együttható ( θ) = + lθ bizoytalaságáak kacsolata az Arrheius-araméterek bizoytalaságával A liearizált Arrheius-egyelet komaktabb alakba: :=[ ] θ : = [ lθ θ ] Az Arrheius-araméterek kovariacia-mátrixa és aak kacsolata a sebességi együttható bizoytalaságával: σ r σσ rσσ = ( )( ) = Σ r σσ σ rσ σ rσσ rσ σ σ f ( ) ~ ( θ) = θ Σ θ σ k bizoytalaságáak hımérsékletfüggése aráyos egy kvadratikus alak gyökével, amelyek mátrixa az Arrheius-araméterek kovariacia-mátrixa. ( θ) = θ 4 sebességi együttható bizoytalaságáak hımérsékletfüggése Kiterjesztett Arrheius-egyelet a szórás hımérsékletfüggése: σ ( θ) σ + σ l θ+ σ θ + r σ σ lθ r σ σ θ r σ σ θ lθ = Eredeti Arrheius-egyelet a szórás hımérsékletfüggése: Hatváy-hımérsékletfüggés a szórás hımérsékletfüggése: Hımérsékletfüggetle k a szórás hımérsékletfüggése: Az Arrheius-araméterek évleges értékei és a kovariacia-mátrixuk hımérsékletfüggetleek a sebességi együttható kifejezéséek érvéyességi tartomáyá. σ ( θ) = σ + σ θ r σ σ θ f ( ) ~ ( θ) = θ Σ θ σ σ ( θ) = σ + σ l θ+ r σ σ lθ 5 σ ( θ) = σ Arrheius-araméterek együttes, ormális valószíőségi sőrőségfüggvéyéek megállaítása Az adatbázisba megadott bizoytalaságok értékekre a levezetett egyeletet illesztjük. kiterjesztett Arrheius-egyelet eseté: σ( θ) = σ+ σ l θ+ σθ + r σσ lθ rσσθ rσ σ lθ θ ( ) eredeti Arrheius-egyelet eseté: σ θ = σ+ σθ rσσθ Az illesztés eredméyekét az Arrheius-araméterek kovariacia-mátrixát kajuk. Az adatbázisokba megadott bizoytalasági adatok alajá az Arrheius-araméterek együttes ormális eloszlása meghatározható. 6 O + N O NO + NO reakció sebességi együtthatója bizoytalaságáak hımérsékletfüggése (K-4K) O + N O NO + NO sebességi együtthatója valószíőségeloszlásáak változása a hımérséklet függvéyébe ( K 4 K) k( ) = Aex( E / R) ( θ) = = 3,34 = 393 σ =,355 σ = 588 r =,

4 O + N O NO + NO sebességi együtthatója valószíőségeloszlásáak változása a hımérséklet függvéyébe ( K 333 K) O + N O NO + NO Az Arrheius-araméterek együttes ormális valószíőségi sőrőségfüggvéye 9 Mérések csoortosítása A hagyomáyos módszer Közvetle mérés: k sebességi együttható meghatározása Közvetett mérés: a teljes reakciómechaizmus elleırzésére alkalmas kísérletek (l.: gyulladási idı, lágsebesség mérések) Egyes araméterek közvetle mérése agy hibával (l. k mérése 3%-os hibával) Változtatás élkül alkalmazták a aramétereket Reaktorokba mért adatokat (l. gyulladási idı, kocetráció idı görbék) csak elleırzésre vették figyelembe Az új módszer tulajdoságai A módszer alkalmazása a közvetle és közvetett mérések figyelembe vétele egyszerre a mérések otosságáak figyelembe vétele súlyozással otimális érték keresése a kiválasztott (fotos) reakciók mide Arrheius-araméterére eloszlás illesztése a feti araméterekre H égéséek reakciómechaizmusa (Curra, 4) Két fotos reakció: i. H+O O+OH ii. H+O +M HO +M (i) reakcióra A,, E Arrheius-araméterek (ii) reakcióra A,,, E Arrheius-araméterek (alacsoy yomású hatérérték), m harmadik test araméter Sebességi együtthatók mérésére J. V. Michael és mukatársai mérési adatait haszáltuk Gyulladási idı mérésére Peterse és mukatársai valamit Slack és mukatársai mérési eredméyeit haszáltuk 4

5 Közvetett mérések Közvetle mérések Elért eredméyek Olya algoritmust dolgoztuk ki és rogramoztuk be reakciómechaizmusok kiválasztott aramétereiek meghatározására, amely: a közvetett és közvetle kísérleteket egyarát figyelembe veszi (ilye korábba em volt!) kiválasztott reakciók A,, E Arrheius-aramétereit egyszerre illeszti (korábba csak A-t illesztették!) ormális eloszlás illesztése (eddig ilyet még em számítottak) Köszööm a figyelmet! 5

Paraméterek. Reakciómechanizmusok leírása. Megbízható kémiai modellek kifejlesztése sok mérési adat egyidejő feldolgozása alapján

Paraméterek. Reakciómechanizmusok leírása. Megbízható kémiai modellek kifejlesztése sok mérési adat egyidejő feldolgozása alapján Megbízható kémiai modellek kiejlesztése sok mérési adat egyidejő eldolgozása alajá uráyi amás www.turayi.eu ELE Kémiai Itézet Reakciókietikai Laboratórium Eddig dolgoztak eze a témá: (témavezetık: uráyi

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Bootstrap (Efron, 1979)

Bootstrap (Efron, 1979) Bootstrap (Efro, 979) 4. elıadás 204. március 3. Bootstrap módszerek, többdimeziós extrém-érték eloszlások illeszkedésvizsgálata Újramitavételezési eljárás, a becsléseik szórásáak vizsgálatára, modell-illeszkedés

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

Reakciókinetikai modellek bizonytalanságanalízise és redukciója

Reakciókinetikai modellek bizonytalanságanalízise és redukciója Reakciókietikai modellek bizoytalaságaalízise és redukciója doktori (Ph.D.) értekezés Nagy Tibor okleveles vegyész Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Kémia Doktori Iskola Iskolavezet: Izelt

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset:

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset: Tartalom A bootstrap módszer Zempléi Adrás TTK, Valószíőségelméleti és Statisztika Taszék 2010. október 21 Bevezetés A függetle, azoos eloszlású eset: emparaméteres paraméteres eset Alkalmazások a rétegzett

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Méréstani összefoglaló

Méréstani összefoglaló PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Méréstai összefoglaló (köryezettudomáyi szakos hallgatók laboratóriumi mérési gyakorlataihoz) Összeállította: Dr. Német Béla Pécs 2008 1 Bevezetés

Részletesebben

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Piacmeghatározás. Hipotetikus monopolista teszt. Hipotetikus monopolista teszt alkalmazása. Hipotetikus monopolista teszt alkalmazása

Piacmeghatározás. Hipotetikus monopolista teszt. Hipotetikus monopolista teszt alkalmazása. Hipotetikus monopolista teszt alkalmazása Moder iacelmélet Moder iacelmélet A iaci erő mérése ELTE TáTK Közgazdaságtudomáyi Taszék Selei Adrie ELTE TáTK Közgazdaságtudomáyi Taszék Készítette: Hidi Jáos A taayag a Gazdasági Verseyhivatal Verseykultúra

Részletesebben

Átfolyó-rendszerű gázvízmelegítő teljesítményének és hatásfokának meghatározása Gazdaságossági számításokhoz

Átfolyó-rendszerű gázvízmelegítő teljesítményének és hatásfokának meghatározása Gazdaságossági számításokhoz Átfolyó-redszerű gázvízmelegítő teljesítméyéek és hatásfokáak meghatározása Gazdaságossági számításokhoz Szuyog Istvá 005 Készült az OTKA T-0464 kutatási projekt keretébe A Gázipari oktatási laboratórium

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

FOLYADÉKSZÁLLÍTÓ RENDSZER LINEÁRIS PARAMÉTER-ÉRZÉKENYSÉG ELEMZÉSE 2 1. BEVEZETÉS

FOLYADÉKSZÁLLÍTÓ RENDSZER LINEÁRIS PARAMÉTER-ÉRZÉKENYSÉG ELEMZÉSE 2 1. BEVEZETÉS Pokorádi László Szoloki Tudomáyos Közleméyek XVII. Szolok, 3 FOLYADÉKSZÁLLÍTÓ RENDSZER LINEÁRIS PARAMÉTER-ÉRZÉKENYSÉG ELEMZÉSE Techikai redszerek matematikai modellvizsgálata sorá figyelembe kell veük,

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

3.4. gyakorlat. Matematika B1X február 1819.

3.4. gyakorlat. Matematika B1X február 1819. 3.4. gyakorlat Matematika B1X 2003. február 1819. 1. A harmadik el adás (II. 17.) 1.1. Számosság Egyel számosságú halmazok. Véges, megszámlálhatóa végtele és kotiuum számosságú halmazok. Hatváyhalmaz számossága

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

Gázturbina égő szimulációja CFD segítségével

Gázturbina égő szimulációja CFD segítségével TEHETSÉGES HALLGATÓK AZ ENERGETIKÁBAN AZ ESZK ELŐADÁS-ESTJE Gázturbina égő szimulációja CFD segítségével Kurucz Boglárka Gépészmérnök MSc. hallgató kurucz.boglarka@eszk.org 2015. ÁPRILIS 23. Tartalom Bevezetés

Részletesebben

Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi

Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi Statisztika Földtudomáy szak, geológus szakiráy, 015/016. taév tavaszi félév Backhausz Áges (ELTE TTK Valószíűségelméleti és Statisztika Taszék)1 Tartalomjegyzék 1. Bevezetés 3 1.1. Példa: az adatok elemzése....................

Részletesebben

Tudjuk, hogy az optimumot az ún. regressziós görbe szolgáltatja, melynek egyenlete:

Tudjuk, hogy az optimumot az ún. regressziós görbe szolgáltatja, melynek egyenlete: æ REGRESSZIÓANALÍZIS Az alapprobléma a következő: Az X, Y v.v. együttes eloszlásáak ismeretébe közelítei szereték Y-t X mérhető t fv.-ével legkisebb égyzetes értelembe: E(Y t(x)) 2 mi. t be. Tudjuk, hogy

Részletesebben

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.: 6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

(2) Határozzuk meg a következő területi integrálokat a megadott halmazokon: x sin y dx dy, ahol T : 0 x 1, 2 y 3.

(2) Határozzuk meg a következő területi integrálokat a megadott halmazokon: x sin y dx dy, ahol T : 0 x 1, 2 y 3. . feladatsor () Határozzuk meg a következő területi itegrálokat a megadott téglalapoko: ( (x + y) dx dy, ahol T : x, y 3. ( T T x si y dx dy, ahol T : x, 2 y 3. (2) Határozzuk meg a következő területi

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet):

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet): . Egy átrium-hidroxidot és átrium-acetátot tartalmazó mita 50,00 cm 3 -es részletée megmérjük a ph-t, ami,65-ek adódott. 8,65 cm 3 0, mol/dm 3 kocetrációjú sósavat adva a mitához, a mért ph 5,065. Meyi

Részletesebben

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe

Részletesebben

1. gyakorlat - Végtelen sorok

1. gyakorlat - Végtelen sorok . gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Differenciaegyenletek aszimptotikus viselkedésének

Differenciaegyenletek aszimptotikus viselkedésének Differeciaegyeletek aszimptotikus viselkedéséek vizsgálata Mathematica segítségével Botos Zsófia Újvidéki Egyetem TTK Újvidék Szerbia E-mail: botoszsofi@yahoo.com 1. Bevezető Tekitsük az késleltetett diszkrét

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 Budaesti Műszaki és Gazdaságtudomáyi Egyetem Elektroikus Eszközök Taszéke MIKROELEKTRONIKA, VIEEA306 Félvezető fizikai alaok htt://www.eet.bme.hu/~oe/miel/hu/03-felvez-fiz.tx htt://www.eet.bme.hu Budaesti

Részletesebben

Oktatási Hivatal KÉMIA I. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató I.

Oktatási Hivatal KÉMIA I. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató I. ktatási Hivatal I. FELADATSR A 015/016. taévi rszágos Középiskolai Taulmáyi Versey második forduló KÉMIA I. Javítási-értékelési útmutató 1., Mg pot. Fr 1 pot 1 eltérés: 1 pot; mi. 0 pot 3. a) pl. 1 1 H

Részletesebben

6. feladatsor. Statisztika december 6. és 8.

6. feladatsor. Statisztika december 6. és 8. 6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK Kitűzött feladatok Ijektivitás és egyéb tulajdoságok 69 1. KITŰZÖTT FELADATOK Határozd meg az összes szigorúa mooto f:z Z függvéyt, amely teljesíti az f ( xy) = f ( y), x, y Z összefüggést és létezik k

Részletesebben

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során Elektrokémiai fémleválasztás Felületi érdesség: defiíciók, mérési módszerek és érdesség-változás a fémleválasztás sorá Péter László Elektrokémiai fémleválasztás Felületi érdesség fogalomköre és az érdesség

Részletesebben

6. Minısítéses ellenırzı kártyák

6. Minısítéses ellenırzı kártyák 6. Miısítéses elleırzı kártyák Sokszor elıfordul, hogy a termék-egyedek miıségét em tudjuk mérhetı meyiségekkel jellemezi, csak megfelelı/em megfelelı kategóriákba sorolhatjuk ıket, és a hibás darabokat,

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke: A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,

Részletesebben

A kommutáció elve. Gyűrűs tekercselésű forgórész. Gyűrűs tekercselésű kommutátoros forgórész

A kommutáció elve. Gyűrűs tekercselésű forgórész. Gyűrűs tekercselésű kommutátoros forgórész Egyeáramú gépek 008 É É É + Φp + Φp + Φp - - - D D D A kommutáció elve Gyűrűs tekercselésű forgórész Gyűrűs tekercselésű kommutátoros forgórész 1 Egyeáramú gép forgórésze a) b) A feszültség időbeli változása

Részletesebben

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Készítette: Zsélyné Ujvári Mária, Szalma József; 2012 Előadó: Zsély István Gyula, Javított valtozat 2016 Laborelőkészítő előadás,

Részletesebben

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév Sersámgépe 5. előadás. Márcis. Sersámg mgépe 5. előad adás Misolc - Egyetemváros /.félév Sersámgépe 5. előadás. Márcis. A sabályohatósági tartomáy övelésée módserei Előetes megfotoláso: S mi mi M S φ,

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

Valószín ségszámítás 2 gyakorlat Alkalmazott matematikus szakirány

Valószín ségszámítás 2 gyakorlat Alkalmazott matematikus szakirány Valószí ségszámítás gyakorlat Alkalmazott matematikus szakiráy Játékszabályok Az óráko részt kell vei, maximum 3-szor lehet hiáyozi. Aki többször hiáyzik, em ka gyakjegyet. 00 + x otot lehet szerezi a

Részletesebben

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú ..4. Óbuda Egyetem ák Doát Gépész és ztoságtechka Mérök Kar yagtudomáy és Gyártástechológa Itézet Termelés olyamatok II. Költségbecslés Dr. Mkó alázs mko.balazs@bgk.u-obuda.hu z dı- és költségbecslés eladata

Részletesebben

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7 Bodó Beáta 1 Sorozatok 1. Írja fel az a = 1 +4 sorozat 10. és ( + 1)-edik elemét! [a 10 = 4 14, a +1 = 4 +. Írja fel az a = +4 1 sorozat ( + 1)-edik és ( )-edik tagját! [a +1 = +7 +4, a = 11. Vizsgálja

Részletesebben

6 A teljesítményelektronikai kapcsolások modellezése

6 A teljesítményelektronikai kapcsolások modellezése 6 A teljesítméyelektroikai kapcsolások modellezése A teljesítméyelektroikai beredezések vagy már ömagukba egy bizoyos szabályzott redszert alkotak, vagy egy agyobb szabályozott redszer részét képezik.

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

IX. Alkalmazott Informatikai Konferencia Kaposvári Egyetem február 25.

IX. Alkalmazott Informatikai Konferencia Kaposvári Egyetem február 25. Kaposvári Egyetem 2011. február 25. Egedy Attila, Varga Tamás, Chován Tibor Pannon Egyetem, Mérnöki Kar, Folyamatmérnöki Intézeti Tanszék Veszprém, 8200 Egyetem utca 10. Bevezetés Cellás modellezés Kvalitatív

Részletesebben