Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges."

Átírás

1 ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli megváltoztatása em lehetséges. reszer állaotáak mukavégzés élküli megváltoztatása? H MNK Mukavégzés aiabatikus fallal körülvett teste a test állaota csak mukavégzés által változhat! (Ezek a testek legyeek olyaok mit amit már efiiáltuk ) Mi változhat? Sok mie (állaotjelzk) s természetese a eergia is. Joule kísérletei (84-848) alauló megfigyelés: (James Prescott Joule brit fizikus ) iabatikus fallal körülvett reszerbe azoos kiiulási állaotból () a testek ugyaayi muka végzése által (bármilye fajtájú muka is legye az) jutak el ugyaabba a végállaotba (). zaz a befektetett muka meyisége csak az állaotoktól ( és ) függ. befektetett muka által létrehozott eergiakülöbség jellemz a két állaotra! Más megfogalmazásba: Egy aiabatikus termoiamikai reszere végzett muka egyel a reszer eergiájáak megváltozásával. reszer eergiája csak a reszer termoiamikai állaotától függ (amit az állaotjelzk írak le egyértelme). II/

2 H Cseréljük ki a reszert körülvev aiabatikus falat em-aiabatikusra! Megfigyelés: a reszer állaota mukavégzés élkül is megváltoztatható! reszer állaotából állaotába törté mukavégzés élküli megváltoztatását ( s vele a eergia megváltoztatását) egy mukavégzés élküli eergiaátviteli mó a h biztosítja! MNK ÉS H muka: eergiaátviteli mó a reszer és köryezete között. Általáos iffereciális alakja (lassú súrlóás élküli folyamatokra): w yx ahol w a muka y az általáosított er x az általáosított elmozulás. Mértékegysége: J Koveció: a reszere végrehajtott muka ozitív. Ez a reszer eergiáját öveli. reszer által a köryezete végrehajtott muka eljele egatív. Mikroszkóikus ké: reezett eergiacsere? Két robléma is va. Nem feltétleül reezett. Reezett ha mi iráyítjuk! De a reszer maga is tu mukát végezi (vagy a köryezet a reszere) s ilyekor kéréses reezett eergiacserérl beszéli (l. gázkézéssel járó reakciók ). Eergiacsere? Ige eergia megmaraás elve miatt! Nem abba az értelembe ahogy a hél látjuk maj! II/

3 Pélák: muka: w küls ha <0 a testet összeyomjuk w>0 stb. küls : küls yomás reszere a küls yomás végez mukát vagy a reszer mukát végez a küls yomással szembe. Péla: gáz kiterjeése egy ugattyú elleébe ÁR tkis.7. II/

4 felület megöveléséhez szükséges muka: w felületi γ ( felületi feszültség elleébe (vagy által) felület változás) ÁR tkis: 6.9 elektromos muka: w elektromos φq (q töltés traszfere φ elektromos oteciálú helyre késbb galvácellá vagy egy galvácella által végzett muka) kémiai reakció mukája: w Χ () kémiai ermoiamikai tárgyalás szemotjából haszos felosztás: Muka muka egyéb muka Egyelre a mukát vizsgáljuk! II/4

5 h: eergiaátviteli mó a reszer és köryezete között. h a eergia megváltozásáak azo részével egyel amely a muka végzésébl származó része felül mara. Mértékegysége: J Koveció: a reszer által h formájába felvett eergia eljele ozitív. Ez a reszer eergiáját öveli. reszer által a köryezetek leaott h eljele egatív. Mikroszkóikus ké: a köryezet és a reszer eltér átlagsebességgel (eergiával) reelkez molekuláiak ütközései sorá átaott eergia. Szemléltet folyamat: Egy D-i reszer (X) állaota -ról -re változik úgy hogy közbe mukavégzés törtéik és ht is felvesz. ht egy htartályból veszi fel mely állaó hmérséklet és em végez mukát. teljes reszer (X htartály) eergiájáak változása: ovábbá: w X ( - ) ( - ) ui. a ht egyik rész leaja a másik felveszi. Összességébe: ( - )q tartály - q X ( - ) w X q X Muka és h: a tótulajoos aalógiája (Calle) II/5

6 ELS ENERGI MEGÁLOZÁS ERMODINMIK I. FÉELE wq ahol jelzi hogy em a w vagy a q függvéy ifiitezimális változásáról (iffereciáljáról) va szó haem egy folyamathoz tartozó kicsiy w vagy q hozzájárulásokról amiek összege miazoáltal egy állaotfüggvéy ifiitezimális kis megváltozását aja. D I. ftétele véges változásokra: wq ehát a eergia megváltozásáról va szó az I. ftételbe. éges változások és az ifiitezimális forma kacsolata: II/6 eergia állaotfüggvéy megváltozása függetle attól az úttól amelye a reszer állaotból állaotba jut. (Állaotfüggvéy: a termoiamikai reszer állaotára jellemz függvéy melyek értéke az állaotot egyértelme leíró állaotjelzktl függ. Megváltozása függetle attól az úttól amelye a reszer az egyik állaotából a másik állaotába jut.) C változásra: C ( ) ( C ) ( C ) változásra (körfolyamatra): 0 h és a muka NEM állaotfüggvéyek ifiitezimális kis hozzájárulásaik itegrálja függ az változás sorá bejárt úttól! h és a muka útfügg meyiségek útfüggvéyek. Értékük körfolyamatra általába em ulla! C

7 MEMIKI KÖZEEÉS: INEGRÁLÁS rostej-szemegyajev: Matematikai Zsebköyv Legye f(x) az [a b] itervallumo értelmezett korlátos függvéy a<b. Osszuk fel az [a b] itervallumot az x i (i0 ) osztóotokkal elemi itervallumokra: a<x 0 <x < <x <b. Jelöljük a felosztást Z-vel. z elemi itervallumok miegyikébe vegyük fel egy tetszleges i közbüls helyet (x i- < i <x i ). σ ( Z ) f ( )( x i i i xi ) számot a Z felosztáshoz tartozó itegrálközelít összegek evezzük. z f(x) függvéy Riema-itegrálható az [a b] itervallumo ha va olya I szám hogy tetszleges >0 számhoz megaható ()>0 úgy hogy mie olya Z felosztásra amelyre (Z)< ((Z)max(x i -x i- )) a i helyek választásától függetleül σ ( Z) I < ε teljesül. z I számot az f(x) [a b] itervallumo vett határozott itegráljáak evezzük. b a I f ( x) x Itt x az itegrációs változó a és b az itegrálás alsó illetve fels határa. Geometriai iterretáció: Ha az [a b] itervallumo f(x)0 akkor az b I f x) x a ( az x-tegely az f(x)gráfja valamit az xa és az xb egyeesek által határolt tartomáy területe. határozott itegrál tulajoságairól maj legközelebb! II/7

8 muka w küls Útfügg meyiség: w küls Szemléltetése - iagramo. muka a bejárt állaotok által megaott görbe alatti terület agyságával aráyos. ÁR: RM.. folyamat külöböz muka. együk észre a körfolyamat esetét is! h is útfügg! Hogya viszoyul a küls yomás a yomáshoz? Fotos eset az amikor csak ifiitezimálisa kis mértékbe tér el attól! Következméy: a reszer egyesúlyi állaotok sorozatá keresztül hala végteleül lassa az egyik állaotból a másik állaotba. Ez az iealizált folyamat a reverzibilis folyamat. reverzibilitás kérése felmerül maj a II. ftétellel kacsolatba is. II/8

9 Reverzibilis muka irreverzibilis muka összehasolítása tágulásra összeyomásra: ÁR: RM.. a) és b) > küls tágulás c) és ) < küls összeyomás reszer által végzett reverzibilis muka maximális a reszere végzett reverzibilis muka miimális! II/9

10 érfogati muka és a h külöböz esetekbe Megjegyzés: muka éháy általáos esetbe egyszere éháy esetbe azoba csak moellekre számítható. h számításához mieze felül szükséges az I. ftétel és a eergia megváltozásáak ismerete is! eergia otos alakját csak ieális gázra ismerjük így a ht is csak erre a moellre tujuk számítai a következ élákba. Szaba kiterjeés küls 0 vákuummal szembei kiterjeés w0 (irreverzibilis folyamat) Izochor muka állaó 0 w0 Pélák: folyamatok reakciók állaó térfogato (reverzibilis vagy irreverzibilis folyamat) Ieális gázra ( mólra): R Ha tehát a folyamat sorá a yomás: Mivel w0 az ereméy: q Izobár muka (és ) állaó (reverzibilis vagy irreverzibilis folyamat) w küls küls küls ( ) Ieális gázra ( mólra): R Ha tehát a folyamat sorá változik a térfogat: Így: q w 5 II/0

11 Izoterm muka (és ) állaó Állaotegyelet kell kacsolatáak ismeretéhez.. moell: ieális gáz (reverzibilis folyamat) w küls R R l R l R l R gyaerre a moellre: Mivel állaó ezért 0. Így -wq. moell: va er Waals reális gáz (reverzibilis folyamat) w küls R b a - II/

12 Izoterm-izobár muka állaó Mi változhat akkor ami a térfogat változását okozza? Moell: ieális gáz (reverzibilis folyamat) w küls R R R ( ) Péla: gázkézés h: l. az izoterm esetet ieális gázra. Másik éla: kémiai reakció ieális gázok (reverzibilis folyamat)! w küls R R R ν R ν R ν r ahol r ν a reakció térfogatváltozása az ieális gáz moláris térfogata. II/

13 Még egyszer a mikroszkóikus kérl Muka: eergiacsere a reszer és köryezete között mely em az iiviuális molekulák közötti ütközésbl származik haem a reszer és köryezete határa tulajoságáak (méretéek elektromos tulajoságaiak) megváltozásából. Ha ez a megváltozás végteleül lassú és egyesúlyi állaotok sorozatá keresztül törtéik reverzibilis mukáról beszélük. Péla: ieális gáz molekuláiak átlagos sebessége megváltozik a gázt tartalmazó tartály faláak végteleül lassú elmozítására (l. összeyomás). z átlagos sebesség változásával változik a hmérséklet és így a eergia is! H: a reszer és köryezete között a molekuláris ütközések által közvetített eergiacsere. Ha ez a megváltozás végteleül lassú és egyesúlyi állaotok sorozatá keresztül törtéik reverzibilis hcserérl beszélük. Fotos termiológia: - ics hváltozás ics muka megváltozása (q w) ez ui. olyasmire utal ami ics! - a tehát h ifiitezimális h stb. - a eergiaváltozás () va ui. eergia függvéy mit állaotfüggvéy. Eergiatartalom (mit egy folyaék ) megit csak ics! - h és muka NEM a eergiával egyezik meg haem a eergia megváltozásával! Összefoglalva Új tíusú kérésfeltevéshez érkeztük! Eig: hogya jellemezhetjük egy reszer termoiamikai állaotát? álasz: állaotjelzk állaotegyeletek. Most: Mi törtéik akkor ha egy már jellemzett reszere változtatásokat hajtuk végre (mukavégzés hközlés)? Hogya jellemezhetjük a reszert a folyamatok utá? válaszhoz új fogalmak szükségesek: muka h eergia valamit a köztük lev kacsolat a D I. ftétele! zért bár a kérésfeltevés változik mie változást legegyszerbb az egyesúly fell megközelíteük (reverzibilis folyamatok). II/

14 II/4 ELS ENERGI extezív meyiség itezív meyiség: moláris eergia Emlékszük még? I f(i I ) Emlékszük még? D-i reszerek jellemzése állaotjelzkkel kell még valami az új tíusú kérésekhez: állaotfüggvéyek l. eergia állaotfüggvéy (oteciálfüggvéy) egyszer D-i reszerekre: ( ) vagy ( ) vagy ( ) melyik függvéykacsolatot választjuk? amelyik valamilye szemotból kéyelmes a eergia teljes iffereciálja az els függvéyre: Ez a forma kevezek éz ki e lesz még más haszálható alak is! a teljes iffereciál egyszersöik bizoyos változók állaó értéke tartásával. Ha élául az ayagmeyiség és a hmérséklet is állaó (0 0) akkor:

15 II/5 állaotfüggvéy (oteciálfüggvéy) boyolultabb D-i reszerekre: ( q ) q q q q q q q q Milye változásokat (folyamatokat) vizsgáluk maj: - mechaikai folyamatok (térfogat felület változtatása) - termális folyamatok - ayagmeyiség változtatása (l. fázisátmeet: olvaás árolgás ) - elektromos töltés meyiségéek változtatása - kémiai reakció ( függ -tl is)

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Átfolyó-rendszerű gázvízmelegítő teljesítményének és hatásfokának meghatározása Gazdaságossági számításokhoz

Átfolyó-rendszerű gázvízmelegítő teljesítményének és hatásfokának meghatározása Gazdaságossági számításokhoz Átfolyó-redszerű gázvízmelegítő teljesítméyéek és hatásfokáak meghatározása Gazdaságossági számításokhoz Szuyog Istvá 005 Készült az OTKA T-0464 kutatási projekt keretébe A Gázipari oktatási laboratórium

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Gáztörvények tesztek

Gáztörvények tesztek Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

2.6. Az ideális gáz fundamentális egyenlete

2.6. Az ideális gáz fundamentális egyenlete Fejezetek a fzka kéából.6. Az deáls gáz fudaetáls egyelete A legegyszerűbb terodaka redszer az u. deáls gáz. Erre jellező, hogy a részecskék között az egyetle kölcsöhatás a rugalas ütközés, és a részecskék

Részletesebben

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet):

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet): . Egy átrium-hidroxidot és átrium-acetátot tartalmazó mita 50,00 cm 3 -es részletée megmérjük a ph-t, ami,65-ek adódott. 8,65 cm 3 0, mol/dm 3 kocetrációjú sósavat adva a mitához, a mért ph 5,065. Meyi

Részletesebben

3.3 Fogaskerékhajtások

3.3 Fogaskerékhajtások PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

A kommutáció elve. Gyűrűs tekercselésű forgórész. Gyűrűs tekercselésű kommutátoros forgórész

A kommutáció elve. Gyűrűs tekercselésű forgórész. Gyűrűs tekercselésű kommutátoros forgórész Egyeáramú gépek 008 É É É + Φp + Φp + Φp - - - D D D A kommutáció elve Gyűrűs tekercselésű forgórész Gyűrűs tekercselésű kommutátoros forgórész 1 Egyeáramú gép forgórésze a) b) A feszültség időbeli változása

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

A központos furnérhámozás néhány alapösszefüggése

A központos furnérhámozás néhány alapösszefüggése A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

A Kvantum Fizikától a Lélekig

A Kvantum Fizikától a Lélekig Kiss Zoltá J: A Kvatum Fizikától a Lélekig Az Ortega y Gasset Társaság 013.01.31-i redezvéyéek előadás vázlata A Kvatum Fizikától a Lélekig Hiv. 1. A Kvatum Tér körülvesz beüket Ez az a tér amibe élük.

Részletesebben

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/ 5 öveli a traszformátorok öveli a traszformátorok A techológia előyei A költségek csökketéseek folyamatos kéyszere és a zavartala eergiaellátás ehézségei szükségessé teszik a traszformátorok tervezett

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Ideális gáz és reális gázok

Ideális gáz és reális gázok Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:

Részletesebben

2.10. Az elegyek termodinamikája

2.10. Az elegyek termodinamikája Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció Fizika. tatárgy 4. előadásáak vázlata MÁGNESES NDKÓ, VÁLÓÁAM, VÁLÓÁAMÚ HÁLÓAOK. Mágeses idukció: Mozgási idukció B v - Vezetőt elmozdítuk mágeses térbe B-re merőlegese, akkor a vezetőbe áram keletkezik,

Részletesebben

(L) Lamellás szivattyú mérése

(L) Lamellás szivattyú mérése (L) Lamellás szivattyú mérése A mérésre való felkészülés sorá a Hidraulikus tápegység mérésleírás Hidrosztatikus hajtásokról c részét is kérjük elsajátítai 1 A mérés célja, a beredezés ismertetése 11 A

Részletesebben

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

RUGÓTERHELÉSŰ BIZTONSÁGI SZELEP MŰKÖDÉSÉNEK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA

RUGÓTERHELÉSŰ BIZTONSÁGI SZELEP MŰKÖDÉSÉNEK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR RUGÓTERHELÉSŰ BIZTONSÁGI SZELEP MŰKÖDÉSÉNEK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA PhD ÉRTEKEZÉS KÉSZÍTETTE: SIMÉNFALVI ZOLTÁN OKLEVELES GÉPÉSZMÉRNÖK GÉPÉSZMÉRNÖKI TUDOMÁNYOK

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

ú Ó ű Ó Ó ű ű ű ű ű ű ú ú Í ú Ö ú Á Ö ú ú ú Í ű ű ű ű ú ű ú Í ű Ú Ö ű ú Í Í ú ű ú ű ú ú ú ú ű Í ú Í ű ú ű Í ű ú ú Ú ű Á Ü ű ú ú ű ű ú Í ú ú É Í Í ú ú ú Í ú Ó ú ű ű Í Í ű ű Á Í ú ú Í Ö ű Ú ű Ó ú ú ú Ö ú

Részletesebben

Á Ő É É ó ó ó ó ó ú ó ű ó ú Í Í ó Ö Á ó ó ó ó Í ó ó ó ó Í ű ó ű ű ó É ó ű ó ó ű ó ű ó ó ú ü ü ó ó ó ó ü ú ó ú ó ú ú ó ú ó ó Ú ó ó ú ú ű ó ú Á ü ú Í Ú ű Ú Ö Í Á Á É Á Á Á É Ó ó ó ó ú ó ó ű ó ü ó ó ó ó ó

Részletesebben

ö Ö ö ó í ó ó í ö Ö í ö í ü ó ö Ö ö ö Á ö ö ö ö Ö ö ö ö ö ó ó ó ö ö ö ü ü ö ö ü í í í í ú ö ö ö ö í ö ö ó í ö ó ö ú ö ü ü ü ö ö í üí ö ö ü ó ö úí ö ó ö ó í ö ó í ö í í í ü ö ó ó ó ó ó ö ö í í ü ó ö ö í

Részletesebben

ö ü ö Ö ö ö Ö Á ö ö ö ö Ö ü í ö í í ú ú í ö ü ű ü ú í ü ű ö ö í í ü í ü í ü ü ű Á Á í Ú í ú ú í ö ü ö ö ö ö ü ö í ü í ö ü í í í í í í É ú ú É ü ü ű ú ú ö ü ö ü í í ü ö ü ú ú í ü ö ü ö ö ö ö ö ö ö Á ö Ö

Részletesebben

Í Í Í Á É É Í Ó Ó Í Á Á É Á Á Ö É Á Ö Á Á Á Í É É ű Í ű É É Ű Á Á Ó Á Á ű ű É Í Á Á Í Í É É É Á Ó Á Á Ó ű Í Á Á ű ű ű ű Á ű Í ű ű É Í Í Í ű ű ű ű Í ű ű ű ű ű ű Í É ű ű ű ű ű ű ű ű ű ű ű ű É Í ű Í Í Í Ü

Részletesebben

ű ű Í ű Í Á ű ű Á É Á Á Á Á É Á Á É Ó ű Á Ő Ó É É É Á Í Á É Á Á Á Í Á É Á Ó Í Í ű ű ű Í Í ű Í ű Í Í ű Í Í ű ű ű Í ű ű ű ű ű Í ű ű Í Í ű Á Á ű ű ű ű Í ű Í ű ű ű ű ű Í Í ű Í ű ű Í Í Í É ű Í ű ű ű Í ű Í ű

Részletesebben

ü ű ü ű Í ű ü ü ü ü ü ü ü ű ü ű ű ű ü ű ü ű ü ű ü ü ü ü ű ü Í ü Ü Á É Í Á Á Á É Á Á Á Á Á Á Á Ö Á Í ű Á É Á É É É Ú ű É É Ú Á Í Á Ő Á É Ú Á Á Á Á Á Ú Á Á ű É Ó Á É É Ú Ő Á ü ű ű ü ű ű ű ű ű ű ü ü Ú ű Í

Részletesebben

Ö ü Ö ü ü ü í í ü í ü ü ü Á í ü ü í ü í ü ü ű í Ö ü í í í ü ü ű í ú í ü ü í í Á Á ű ü í í í í í ű í í í í ú í ü í í í ü ű í ű ú í ü ü í ű í Á ü í ü ü í Á Ö ü ü ű ü í ü ú ü Á ú ű ü ü ü ű Á Ö ü ű Ö í í ü

Részletesebben

Á Á Á Ó É ö ó ő ó ő ő ő ó ó ó ú ő ö ü ő ó ó ó ó ó ő ó ü ö ö ó ü ő ó ű ó ö ó ó ó ö ő ö ó ó ü ő ö ő ő ü ő ő ő ő ő ó ű ú ó ő ő ö ő ő ü ő ő ő ú ö ö ü Ü ú ö Í ó Ú ó ö ó ő ó ő ű ó ú ú ő ü ő ő ú ö ő ö ú ó ö ó

Részletesebben

Á Á Í Á Ú Á ő í í ö í í í ö ö ő ü ö í ö ü ö üí ő üí í ő ő ú ö í ö ú í í ő í í ö ú ű ö ú í í ú Í ö ú í í ő í Í ő í ö ú ű í Á Á Í Á ö ö í í í í í Ő É Ú Ú Í É Á ü ő ö ő í ö ö Á ö Í É ö ö É Ö É í ő Ö Ö Í Á

Részletesebben

ö Ö ü ö ü ö Ö ü ú ü ö ö ö ü ü ü ó ó ó í ö í ö ü ö ö ö í ö ü ö ö ö ü í ó ö ó ö ö í í í ü í ó ü ö í ó ö ö ü ü ú ó ö ö ó ö í ü ű ö ó ú í ö ű ö ű í ö ú ó ó í ó í ö Ó í ú Í ö ü Ö ű ű Ö í ú ó ö í ú ű Ö ö ö ö

Részletesebben

íí ú Í í Ó í í ó ó í ó Ü í ü í Í í í í ü í í í í í í í í í í ó í ó í ű í ó ü ó ó ü ű Ü Ú Í Ö ó ó ű í í í í ó Ő ó í í ó í ó í í í ü ü ó í ü ü ó í ü Ó í ó ó ó ú ó ü í ó ó í í í í í í í ó ü ü üí Ü Ü í Í ü

Részletesebben

Á Ö Ú Á É É Ő ú ü ú ú ű Ü Ö ü ÚÍ ü ü ú Ü Ü ú ú ú Ó ú ú ú ű ú ú ű É ú ü ü ü ü Ü ü ü Ü ű ű ű ű ú Á Á Á Á Á ú ű ü ű Ü ű ú ű ü ű ü ű Ö ú Ü ű ú Ü É ű ü Ü ü ú Ü ú ú ú ü Ü Ü ü ü ú Í ü ü ú ü Á ü Ü ű ű ű ü ű É

Részletesebben

Ü ü ü ű ü ű Í ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ű Í ü ü ü ü ü Í É Á Á Í É Á Á Á Á Á Á Á Á Ó ű Á ű É É Á Á Á Á Á ű ü Á Á Ó Ó ü ü ű ü ű ü ü ü Í ű Í ü Í Í ü ü Í ü ü ü ü ü ű ü ü ü ü Í Ó É Ü Í Á ü ű Í ü Í Á Á

Részletesebben

Ö É Á Ú É É É É Í Ü Ü Ő É ö É ö á ö í ü ü á á á á í á í á ö á á á á á á á í á á ö á á ö á á á á Á ö á á á ö í á ö á ü ö á ö í ü ü á Ő í á ö í í Ü á ü ö ö ü á á á Í á í á á ü ö íí á á í á á á á á í ü ö

Részletesebben

Ö í Ö Ü Ü í í ü ü í í í Ó Í í í í Ó í í íí Ó íí ü ü í í Á íí í ü Ü Ó Ü í í í ü í ü í í í í ü ü í ü í í ü ü ü í í í í ü í í í í í Ö í í ü í í ü ü ü Ó Ó ü í í í í ü ü ü Ö ü ü Ö í í í í í Ö ü í í í ü í í

Részletesebben

ú Ó Ö Ó ű Í Ó ú Í Ü Í Í Í Í ú Í Í Ú É Í Í Ü É Ü Ö Ü ú Í Í Í Í Í É Í Í Í Ó Í Í ú Í ú Í Í ú Ü Í Ü Í Í Í Í Ü Í Í ú Í Í Í ű Ú Í Í Í ú Í ú ú ú ú ú É Í Í Í Í ú Í Í Í Í Í Ü Í Ü ÜÍ ú ú Ú ú ú Í ű Í ú Í Ú Í ű Í

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

A szerkezeti mechanikától a biomechanikáig

A szerkezeti mechanikától a biomechanikáig Kurutzé Kovács Márta az MTA levelező tagja A szerkezeti mechaikától a biomechaikáig Elhagzott 24. október 14-é Az előaás címéek választásakor a röviségre töreketem. Azoba miél röviebb a cím, aál szélesebb

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

AZ ÉPÜLETGÉPÉSZETI RENDSZEREK ENERGIA-HATÉKONYSÁGÁNAK KÉRDÉSEI

AZ ÉPÜLETGÉPÉSZETI RENDSZEREK ENERGIA-HATÉKONYSÁGÁNAK KÉRDÉSEI AZ ÉÜLETGÉÉSZETI RENDSZEREK ENERGIA-HATÉKONYSÁGÁNAK KÉRDÉSEI Szivattyúzás - rövide örös Szilárd Cetrifugál szivattyú Nyomó oldal Járókerék Járókerék lapát Járókerék él Járókerék csavar a szállított közeg

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

A logaritmus függvény bevezetése és alkalmazásai

A logaritmus függvény bevezetése és alkalmazásai Eötvös Loád Tudomáyegyetem Temészettudomáyi Ka A logaitmus függvéy bevezetése és alkalmazásai Szakdolgozat Készítette: Témavezető: Lebaov Dóa Mezei Istvá Adjuktus Matematika Bs Alkalmazott Aalízis és Matematikai

Részletesebben

Fizika informatikusoknak I.

Fizika informatikusoknak I. Fizika iformatikusokak I. Hullámta, hagta és optika Ajálott irodalom. Budó Á.: Kísérleti fizika I. (Taköyvkiadó). Deméy A. Erostyák J. Szabó G. Trócsáyi Z.: Fizika I. (Nemzeti Taköyvkiadó) 3. Budó Ágosto

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

ÁTFOLYÓ-RENDSZERŰ GÁZVÍZMELEGÍTŐ TELJESÍTMÉNYÉNEK ÉS HATÁSFOKÁNAK MEGHATÁROZÁSA

ÁTFOLYÓ-RENDSZERŰ GÁZVÍZMELEGÍTŐ TELJESÍTMÉNYÉNEK ÉS HATÁSFOKÁNAK MEGHATÁROZÁSA MISKOLCI EGYETEM Gázméröki Taszék Web: www.gas.ui-miskolc.hu Szuyog Istvá PhD hallgató ÁTFOLYÓ-RENDSZERŰ GÁZVÍZMELEGÍTŐ TELJESÍTMÉNYÉNEK ÉS HATÁSFOKÁNAK MEGHATÁROZÁSA GAZDASÁGOSSÁGI SZÁMÍTÁSOKHOZ OTKA

Részletesebben

Használati-melegvíz készítő napkollektoros rendszer méretezése

Használati-melegvíz készítő napkollektoros rendszer méretezése Használati-elegvíz készítő nakollektoros rendszer éretezése Kiindulási adatok: A éretezendő létesítény jellege: Családi ház Melegvíz felhasználók száa: n 6 fő Szeélyenkénti elegvíz fogyasztás: 1 50 liter/fő.na

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

A HŐMÉRSÉKLETI SUGÁRZÁS

A HŐMÉRSÉKLETI SUGÁRZÁS A HŐMÉRSÉKLETI SUGÁRZÁS 1. Törtéeti összefoglaló A tizekilecedik század végé a fizikát lezárt tudomáyak tartották. A sikeres Newto-i mechaika és gravitációs elmélet alapjá a Napredszer bolygóiak mozgása

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

Integrált Intetnzív Matematika Érettségi

Integrált Intetnzív Matematika Érettségi tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f

Részletesebben

A JUST IN TIME KÖLTSÉGEK ELEMZÉSE

A JUST IN TIME KÖLTSÉGEK ELEMZÉSE DR. BENKŐ JÁNOS * A JUST IN TIME KÖLTSÉGEK ELEMZÉSE ÁTTEKINTÉS Az ayag- és készletgazdálkodás fotos feladata a termelés üteméek megfelelő ayagszükséglet folyamatos kielégítése. A termelési program és az

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

K=1, tiszta anyagokról van szó. Példa: víz, széndioxid. Jelöljük a komponenst A-val.

K=1, tiszta anyagokról van szó. Példa: víz, széndioxid. Jelöljük a komponenst A-val. EGYKOMPONENS RENDSZEREK FÁZISEGYENSÚLYA FÁZISOK STABILITÁSA: A FÁZISDIAGRAMOK K1, tiszta anyagokról van szó Példa: víz, széndioxid Jelöljük a komonenst A-val Legyen jelen egy ázis Hogyan változik az A

Részletesebben

Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele.

Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. BEVEZETÉS TÁRGY CÍME: FIZIKAI KÉMIA Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. Ebben az eladásban: a fizika alkalmazása a kémia tárgykörébe es fogalmak magyarázatára.

Részletesebben

PELTON TURBINA MÉRÉSE

PELTON TURBINA MÉRÉSE idrodiamikai Redszerek Taszék PELTON TURBINA MÉRÉSE 1. A mérés célja A mérés célja egy, a gyógyszer- és vegyiparba eergia visszayerés céljára haszálatos saválló jelleggörbéiek felvétele. A turbia jellemzői:

Részletesebben

m & w = száraz _ szilárd nedvesség m = nedvesség szilárd _ száraz SZÁRÍTÁS I. A nedves (szárítandó) anyag:

m & w = száraz _ szilárd nedvesség m = nedvesség szilárd _ száraz SZÁRÍTÁS I. A nedves (szárítandó) anyag: SZÁRÍTÁS Szárításo azt a űveletet értjük, ely sorá valailye edves ilárd ayag tartalát csökketjük, vagy eltávolítjuk elárologtatás vagy kigőzölögtetés által. Esetükbe a árítadó ayag ecsés (darabos), a legtöbbör

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Csapágyak üzem közbeni vizsgálata a csavarhúzótól a REBAM 1 -ig 2

Csapágyak üzem közbeni vizsgálata a csavarhúzótól a REBAM 1 -ig 2 ÜZEMFENNTARTÁSI TEVÉKENYSÉGEK 3.9 Csapágyak üzem közbei vizsgálata a csavarhúzótól a REBAM 1 -ig 2 Gergely Mihály okl. gépészmérök, Acceleratio Bt. Budapest Tóbis Zsolt doktoradusz, Miskolci Egyetem Gépelemek

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben