2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;"

Átírás

1 Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák: 1. egy iskolai osztály taulói, a változó: magasságuk cetiméterbe; 2. egy iskola taulói, a változók: magasságuk cm-be, súlyuk (tömegük) kilóba; 3. egy iskola taulói, a változó: taulmáyi átlaguk; 4. egy almaszállítmáy, a változó: az almák átmérője milliméterbe; 5. egy elemszállítmáy, a változó: élettartamuk adott terhelés mellett órába mérve; Ezekek a valószíűségi változókak va eloszlásuk, ami azoba számukra általába em ismert. Ha ismerék, meg tudák modai bármit, pl. meyi a várható értéke, meyi a szórása, meyi a valószíűsége, hogy a sokaság egy véletleszerűe kiválasztott eleme eseté a valószíűségi változó értéke egy adott itervallumba esik, vagy hogy tíz ilyeek az átlaga milye valószíűséggel kisebb vagy agyobb, mit egy adott szám, stb. A gyakorlatba leggyakrabba előforduló kérdések: 1. Meyi a tekitett valószíűségi változó várható értéke? 2. Meyi a tekitett valószíűségi változó szórása? 3. A valószíűségi változó tekithető-e egy adott eloszlásúak? 4. Igaz-e, hogy a várható értéke egy adott szám? 5. Igaz-e, hogy a szórása em agyobb, mit egy adott szám? 6. Ha két valószíűségi változót tekitük, va-e ezek között kapcsolat, és az milye? 7. stb. Az első két esetbe paraméterbecslésről beszélük, a következő háromba hipotézisvizsgálatról, a hatodikba regresszióaalízisről. Midegyik esetbe a vizsgálat első lépése, hogy mitát veszük. A mitavételél yilvá az a szempot, hogy a mita miél jobba tükrözze a sokaság jellemzőit. A külöböző mitavételi ötletekre most em térük ki, de fotos, hogy a mitavételi algoritmust úgy határozzuk meg, hogy a sokaság bármelyik eleme " ugyaolya valószíűséggel" kerülhesse a mitába. Jelölje a mita elemszámát. Jelölje X i az i-edik mitaelemre jellemző valószíűségi változót. Midig feltesszük, hogy ezek a változók függetleek és azoos eloszlásúak. Mit jelet ez? Tekitsük pl. az almaszállítmáyt az átmérővel. Pl. elhatározzuk, hogy 10 almát foguk mitaképpe megméri. Az 1

2 azoos eloszlás azt jeleti, hogy aak valószíűsége, hogy az elsőek választott alma átmérője kisebb, mit pl. 70 mm, ugyaayi, mit az, hogy a másodikak vagy hetedikek választott alma átmérője kisebb, mit 70 mm, és ez igaz bármelyik választásra, és bármilye értékre. Azt, hogy ez a valószíűség meyi, em tudjuk, de az biztos, hogy ugyaayi. A függetleség azt jeleti, hogy pl. bármit is mértük az első alma eseté, aak valószíűsége, hogy a második, vagy akármelyik másik átmérője egy adott érték alatt vagy felett va, em lesz sem kisebb, sem agyobb, mit ami a sokaságra eredetileg is jellemző volt. Ezek utá a mita értékeit bizoyos képletekbe helyettesítjük, így tulajdoképpe többváltozós függvéyek helyettesítési értékeit kapjuk. Ezeket a függvéyeket " statisztikákak" evezzük. Ezekből a " statisztikákból", azaz helyettesítési értékekből vouk le azutá mideféle következtetéseket. Mivel a mita véletle, a helyettesítési érték is véletle. Egy másik mitához általába másik helyettesítési érték tartozik. Ezért ezek a helyettesítési értékek szité valószíűségi változók, amelyekek va valamilye eloszlása. Ezek szerit a következtetéseik valamilye valószíűséggel lehetek jobbak, rosszabbak. Az, hogy milye függvéyt haszáluk, függhet attól, hogy vaak-e előzetes iformációik a sokaságról, és attól is, hogy milye szempotok alapjá tekitjük az egyiket jobbak a másikál. Például, következtethetük a sokaságra jellemző paraméterekre. Ilye a várható érték, vagy a szórás. Milye statisztikákkal becsülhetjük pl. a várható értéket, azaz a " súlyozott" átlagot? Az almás példáál maradva, vehetjük 1. a 10 érték átlagát (f = ( X i )/10); 2. az ötödik mért értéket (f = X 5 ); 3. az első és utolsó átlagát (f = (X 1 + X 10 )/2); 4. a mért értékek mediáját (agyság szerit a középső érték, ebbe az esetbe ics középső, ilyekor a két középső számtai közepe); 5. a legkisebb és legagyobb érték átlagát(f = (mi X i + max X i )/2); 6. a 10 érték átlagáak a felét (f = ( X i )/20); Melyiket válasszuk? Mivel midegyik valószíűségi változó, az kellee, amelyik a legagyobb valószíűséggel a legközelebb va ahhoz, amit becsüli akaruk. Először is olya kell, amelyikek a várható értéke ugyaaz, mit amit becsüli akaruk, vagyis amelyik átlagba közel va a becsledő értékhez. Az utoló " ötlet" yilvá em felel meg eek a követelméyek. A többiről viszot belátható, hogy megfelel. A legagyobb valószíűséggel az lesz közülük a legközelebb a várható értékhez, amelyikek legkisebb a szórása. Belátható, hogy az első redelkezik ezzel a tulajdosággal. Nem csak várható értéket becsülhetük, haem bármilye más paramétert is, pl. szórást. Kézefekvőek látszik a szórást az i=1 s = (X i m) 2 2

3 képlettel becsüli, de a valóságba m-et legtöbbször em ismerjük. Ekkor (jobb híjjá) a mitaátlagot tehetjük a várható érték helyébe, akkor kapjuk az u. empirikus (vagy tapasztalati) szórást: s = i=1 (X i X) 2. Defiíció: Paraméterek olya becslését, amelyek várható értéke megegyezik a becsüledő paraméterrel, torzítatla becslések evezzük. Az olya becslést, amelyek a szórása miimális, hatásos becslések evezzük. Belátható, hogy a mitaátlag a várható értékek torzítatla és hatásos becslése. Az empirikus szórás viszot em torzítatla becslése a szórásak, haem 1 s várható értéke a σ-ak -szerese, azaz aál valamivel kisebb. Ez azért lehet, mert a mita átlagos eltérését em a téyleges várható értéktől, haem a " saját" átlagától számoljuk, amihez kissé közelebb va. Ha a szórás becslésére a s i=1 = (X i X) 2 1 képletet, az u. korrigált empirikus szórást haszáljuk, akkor ez már torzítatla becslése lesz σ-ak. Ha tudjuk, hogy a valószíűségi változó, amelyre iformációkat gyűjtük a mitából, milye eloszlású, és csupá a paramétereket akarjuk becsüli, akkor alkalmazhatjuk az u. maximum-likelihood becslést, azaz, a legagyobb valószíűség elvé működő becslést. Ha ics elképzelésük, hogy milye lehet a tekitett valószíűségi változó eloszlása, akkor olya becsléseket kell találi, amelyek em függeek attól, kokréta milye eloszlása va a valószíűségi változóak. A cetrális határeloszlás tétel szerit, ha elég agy, akkor azoos eloszlású, függetle X i -k eseté, függetleül attól, hogy ezek eloszlása milye, az i=1 Y = X i m σ valószíűségi változó eloszlása jó közelítéssel stadard ormális (ahol m = E(X i ), σ = D(X i )). A törtet -el " egyszerűsítve" Y = P i=1 Xi m σ, amiből az következik, hogy agy eseté a mitaátlag olya ormális eloszlású valószíűségi változó, amelyek várható értéke m, szórása pedig σ. Mivel Y - et stadard ormálisak tekitjük, akármilye valószíűséghez tuduk olya itervallumot modai, ahová az adott valószíűséggel esik. Sőt, végtele sok ilyet is tuduk. Logikusak tűik, hogy a legrövidebb ilyet modjuk, ez pedig szimmetrikus a várható értékére, a ullára. Például, ha olya itervallumot 3

4 akaruk, amelybe 95% valószíűséggel esek az értékei, akkor (táblázatból kiolvasva) P ( 1, 96 < Y < 1, 96) = 0, 95. Jelöljük a mitaátlagot X-sal (olvasd: " x-voás" ). Ekkor Ebből akár a P ( 1, 96 σ < X m < 1, 96 σ ) = P (m 1, 96 σ < X < m + 1, 96 σ ) = 0.95, (1) akár a P (X 1, 96 σ < m < X + 1, 96 σ ) = 0.95 (2) valószíűségek felírhatók. Az előbbi azt mutatja, hogy egy m várható értékű σ szórású sokaságból vett elemű mita átlaga 95% valószíűséggel esik az adott itervallumba, a második pedig azt, hogy ha egy σ szórású sokaságból a mitaátlag az adott x, akkor milye itervallumba kell esie a várható értékek 95%-os valószíűséggel. Látjuk, hogy midkét esetbe az itervallum hossza egyeese aráyos a szórással, (agyobb szórás, agyobb bizoytalaság), és fordította aráyos a mita elemszámáak gyökével, amiek az a szomorú következméye, hogy ha az itervallumot felére akarjuk csökketei, égyszeresére kell öveli a mitát. Itt kell megjegyezük, hogy em szabad összekeveri az X valószíűségi változót x-sal, ami aak egy aktuális értéke. (Hasolóa: f egy függvéy, f(x) eek helyettesítési értéke az x helye.) Eek elleére még a külöböző statisztikaköyvekbe is gyakra keveredik, de szerecsére legtöbbször semmi problémát em okoz. (Mit ahogy legtöbbször f keverése f(x)-szel sem okoz legtöbbször godot.) Maga x a várható érték potbecslése, a (2)-be szereplő itervallum pedig a várható érték itervallumbecslése, más szóval kofidecia-itervalluma 95% megbízhatósági szite. Felmerül a kérdés, mit tuduk modai akkor, ha a szórást em ismerjük. Ha a korrigált szórást írjuk a helyébe, akkor a helyzet legalábbis elvileg léyegese megváltozik, mert akkor a cetrális határeloszlás-tételbe kostas helyett változó lee a evezőbe. Olyat pedig már láttuk, pl. a deriválásál is, hogyha em kostas szorzóról, haem változó szorzóról va szó, akkor egésze másképp kell eljári. Be lehet láti a következőket: Ha a mita elég agy, akkor (1)-be és (2)- be σ egyszerűe helyettesíthető s -gal. Meyi az az elég agy? Erre lehet vizsgálódásokat csiáli, de a gyakorlatba már általába elég agyak tekitik az 50 elemű mitát, sőt olykor a 30 eleműt is. Ha a mita elemszáma em elég agy, de feltehető, hogy a populációra jellemző valószíűségi változó ormális eloszlású, akkor a t = P i=1 Xi s m 4

5 valószíűségi változó u. ( 1) szabadságfokú Studet-eloszlású. Ezt ( 1) szabadságfokú t-eloszlásak is evezik. Eek sűrűségfüggvéye ugyaúgy szimmetrikus az origóra ézve, mit a stadard ormálisé, és a megfelelő valószíűségeket ugyaúgy táblázatból ézzük ki. A táblázat segítségével (1)-hez és (2)-höz hasolóa adhatuk meg itervallumokat m-re és X-re. Ha a mita elemszáma em agy, és ormalitást em tehetük fel, de ismerjük az eloszlás típusát, akkor legalábbis elvileg levezethető képlet a kofideciaitervallumra. Ha a mita kicsi, és mást sem tuduk, akkor e agyo akarjuk kijeletéseket tei, hogy milye jó a becslésük. Láttuk, hogy a szórás potbecslése s. Tuduk-e kofidecia-itervallumot modai a szórásra. Ige, mert be lehet láti, hogy a χ = ( 1)s 2 σ 2 valószíűségi változó ( 1) szabadságfokú χ 2 eloszlású valószíűségi változó, és a hozzá tartozó valószíűségeket, ill. adott valószíűséghez tartozó itervallumokat kiézhetjük a megfelelő táblázatból. Hipotézisvizsgálat Először példakét tekitsük egy kokrét kérdést. Tegyük fel, hogy egy automata mosóport adagol, 500 gr-osak cimkézett dobozba. Az automata típusa miatt a szórást tudjuk, de az automata idővel elállítódhat. Sem az alulsem a túladagolás em kíváatos, ezért időről időre elleőrzik a dobozokba levő mosópor meyiségét. Ha a mita alapjá úgy találjuk, hogy a várható érték em tekithető 500 gr-ak, akkor leállítjuk az adagolást, és az automatát beszabályozzuk. Ez a tevékeység költséggel jár, ezért yilvá csak akkor állítjuk le, ha az a feltevés, hogy jól működik, yilvávalóa elfogadhatatla. Tehát abból a feltevésből iduluk ki, hogy jól működik. Ez a ullhipotézis. Tegyük fel, egy-egy alkalommal 30 elemű mitát veszük. A mita átlaga persze em lesz potosa 500 gr, hol kevesebb, hol több, még akkor is, ha az átlag valóba 500 gr. Ha tehát a potbecslésből idulák ki, akkor szite mide alkalommal leállítaák a redszert. Ezért csak akkor állítjuk le, ha a mita szigifikása, azaz agyo külöbözik a kíváatostól. Milye hibát követhetük el, amikor a leállásról, vagy em-leállásról dötük. Mi csak a mitát ismerjük, a valóságot em. Ha a valóságba jó az automata, és a mita alapjá mi a em-leállást választottuk, vagy ha rossz az automata, és mi a leállást választottuk, akkor helyese dötöttük. Ha a ullhipotézis igaz, de mi mégis a leállás mellett dötük, mert véletleül épp olya szerecsétleül vettük mitát, akkor u. elsőfajú hibát követük el. Ha viszot rossz az automata, de véletleül épp olya szerecsétleül vettük mitát, hogy jóak találjuk, azaz elfogadjuk a ullhipotézist, pedig em igaz, akkor u. másodfajú hibát követük el. Az elsőfajú hiba valószíűségét úgy csökkethetjük, hogy csak akkor vetjük el a ullhipotézist, ha a mita valóba agyo messze jár a kíváatostól. Igeám, de ha a kíváatostól viszoylag távoleső értékeket még midig elfogaduk, akkor agyo megő a másodfajú hiba valószíűsége, azaz az, hogy em állítjuk le akkor sem, ha kellee. Ezek egymás elle hatak. Midkettő valószíűségét 5

6 egyszerre csak úgy csökkethetjük, ha a mita elemszámát öveljük, mert ezzel a mitaátlag szórása csökke, egyre kisebb itervallumba esik egyre agyobb valószíűséggel. Az elsőfajú hiba kezelése az egyszerűbb. Az (1) képlethez hasolóa meg tudjuk modai, hogy ha a ullhipotézis igaz, akkor milye itervallumba kell esi a mitaátlagak adott valószíűséggel. Legye ez a valószíűség (1 α). Ha em esik bele, akkor két eset lehetséges. Vagy téyleg em igaz a ullhipotézis, vagy olya rossz mitát vettük a külöbe jó sokaságból, amelyek a valószíűsége kisebb, mit α. Ha tehát akkor vetjük el a ullhipotézist, ha a mitaátlag kívül esik az adott itervallumo, akkor az elsőfajú hiba elkövetéséek valószíűsége α. Ezt az α-t evezzük szigifikacia szitek. A gyakorlatba em az (1) alakú itervallumot számítjuk ki, haem pl. 5% szigifikacia eseté P ( 1, 96 < Y < 1, 96) = 0.95 miatt a 1, 96 < x m σ < 1, 96 egyelőtleség teljesülését elleőrizzük, mert így a középe álló törtbe (az u. " tesztértékbe" ) szereplő kokrét számoktól függetleül, a H 0 : m = m 0 ullhipotézis eseté, midig a ( 1, 96; 1, 96) itervallumo kívüli értékekre vetjük el a ullhipotézist, ha 5% a szigifikacia szit, és a szórás ismert, vagy a mita elég agy. A 1, 96, ill 1, 96 határokat ugyais a stadard ormális eloszlás táblázatából vettük, és a mitaátlagra ez csak akkor alkalmazható, ha a szórás ismert, vagy a mita elég agy. Külöbe más eloszlás alapjá, más táblázatból kell meghatározi azt az itervallumot, amelybe még elfogaduk értéket, ill. azt, amelybe már em. A ullhipotézistől függőe lehet, hogy csak a túl agy, vagy csak a túl kicsi értékeket vetjük el. Arra, hogy a teszt-értéket milye próba eseté hogya érdemes kiszámítauk, a statisztikaköyvek adak útmutatást, de az elv midig az, amit fet bemutattuk: A mita értékeiből képezük egy olya függvéyértéket, amelyek az eloszlását ismerjük, és megállapítjuk, hogy ha a ullhipotézis igaz, akkor eek milye valószíűséggel, hova kell esie. Ha em oda esik, a ullhipotézist elvetjük. A másodfajú hiba kezelése sokkal összetettebb, azt mideki próbálja megértei valami köyvből. Megjegyzés a hipotézis felállítására: Kell leie egy ullhipotézisek H 0, és egy alteratív, vagy ellehipotézisek H a. Az " egyelőség" midig a ullhipotézisbe va, pl.: H 0 : m 40, H a : m > 40 H 0 : m = 10, H a : m 10 H 0 : p 1 = 0.2, p 2 = 0.3, p 3 = 0.5, H a : legalább az egyik em ayi H 0 : ξ ormális eloszlású, H a : ξ em ormális eloszlású 6

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék

æ MATEMATIKAI STATISZTIKA Dr. Bolla Marianna, Matematika Intézet, Sztochasztika Tanszék æ MATEMATIKAI STATISZTIKA Dr. Bolla Mariaa, Matematika Itézet, Sztochasztika Taszék Leíró statisztika Ω, A, P) statisztikai mező, ahol a P mértékcsalád olya P eloszlásokból áll, melyekkel Ω, A, P) valószíűségi

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS Összefüggésvizsgálat, paraméterbecslés A kísérletek sorá a redszer állapotát ellemző paraméterek kapcsolatát vizsgáluk. A yert adatok alapá felállítuk a redszer matematikai

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag

Részletesebben

PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László

PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ Írta Dr. Huzsvai László Debrece 2012 Tartalomjegyzék Bevezetés...1 Viszoyszámok...1 Középértékek (átlagok)...2 Szóródási mutatók...4 Idexek...7 Furfagos kérdések...8 Bevezetés

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Az új építőipari termelőiár-index részletes módszertani leírása

Az új építőipari termelőiár-index részletes módszertani leírása Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest Lektorálta: Zukál Edre Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések

Részletesebben

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula. Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószí ségszámítás és statisztika oktatási segédayag Kupá Pál Tartalomjegyzék fejezet Valószí ségszámítási alapfogalmak 5 Eseméyek 5 M veletek eseméyekkel 5 2 A valószí ség fogalma 7 3 Valószí ségi változók

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek? Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os

Részletesebben

VII.Valószínűségszámítási, statisztikai, gráfelméleti alapfogalmak

VII.Valószínűségszámítási, statisztikai, gráfelméleti alapfogalmak VII.Valószíűségszámítási, statisztikai, gráfelméleti alapfogalmak VII..A valószíűségszámítás elemei A valószíűségszámítás a véletle tömegjeleségeket taulmáyozó, kb. 300 éves tudomáy. Véletle jeleség: em

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Hosszmérés finomtapintóval 2.

Hosszmérés finomtapintóval 2. Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör Koeláció- és egesszió-aalízis Az is előfodulhat, hogy két változó között ics semmilye kapcsolat: Az X és Y véletle változók között az alábbi ábáko Az állat becsült ko pozitív összefüggés em lieáis összefüggés

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Statisztika október 27.

Statisztika október 27. Statisztika 2011. október 27. Külöbség valószíőségszámítás és statisztika között Kísérlet: 4-szer dobuk fel egy érmét. Megszámoljuk a fejek számát. Valszám: Ismert a fejdobás valószíősége. Milye valószíőséggel

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Az iparosodás és az infrastrukturális fejlődés típusai

Az iparosodás és az infrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa

Részletesebben

10. évfolyam, harmadik epochafüzet

10. évfolyam, harmadik epochafüzet 0. évfolyam, harmadik epochafüzet (Sorozatok, statisztika, valószíűség) Tulajdoos: MÁSODIK EPOCHAFÜZET TARTALOM I. Sorozatok... 4 I.. Sorozatok megadása, defiíciója... 4 I.. A számtai sorozat... 0 I...

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 8. Valószíűségszámítás ESEMÉNYEK 174 Eseméyek formális leírása, műveletek 175 Feladatok 176 A VALÓSZÍNŰSÉG FOGALMA 177 A valószíűség tulajdoságai 178 Mitapéldák 179 Feladatok 181 VALÓSZÍNŰSÉGI VÁLTOZÓK

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

MATEMATIKA ÉRETTSÉGI május 5. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI május 5. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 05. május 5. EMELT SZINT I. ) Oldja meg a valós számok halmazá az alábbi egyeleteket! a) si x cos x (6 pot) b) x x x (7 pot) a) cos x si x helyettesítése. Nullára redezve: si x si

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu FANTASZTIKUS KOMBINATORIKA Adva va külöböző elem Kiválasztuk k darabot Vesszük az összes elemet és sorba rakjuk A kiválasztás sorredje számít A kiválasztás sorredje em számít PERMUTÁCIÓ P matekig.hu Ha

Részletesebben

1. Az absztrakt adattípus

1. Az absztrakt adattípus . Az asztrakt adattípus Az iformatikáa az adat alapvető szerepet játszik. A számítógép, mit automata, adatokat gyűjt, tárol, dolgoz fel (alakít át) és továít. Mi adatak foguk tekitei mide olya iformációt,

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben