Kvantum-hibajavítás III.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kvantum-hibajavítás III."

Átírás

1 LOGO Kvantum-hibaavítás III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

2 A kvantum hibaavítási folyamat formális leírása

3 Eredmények formalizálása Legyen A egy x-es komplex mátrix: ahol a, b, c, d. A ai bσ cσ dσ X Y Z, Az A mátrixot az n - kvantumbites ψ állapot - ik kvantumbitére alkalmazzuk, amely megfeleltethető egy vagy több kvantumbit kódolási folyamatának a hibaavító algoritmusban. Ekkor A ψ a ψ bσ ψ cσ ψ dσ ψ ( ) ( ) ( ) ( ) X Y Z, ahol () a ψ kvantumállapot. kvantumbite. Tegyük fel, hogy a kódunk tetszőleges egyszeri σ, σ σ hiba ellen véd. X Y, Z

4 Eredmények formalizálása A hibaavító algoritmus első lépésének eredményét így a következőképpen formalizálhatuk: a ψ I szindróma bσ ψ σ ( ) ( ) X X cσ ψ σ ( ) ( ) Y Y dσ ψ σ ( ) ( ) Z Z szindróma szindróma szindróma. A szindróma meghatározása utáni állapo t: ψ ( a I szindróma σ ψ b σ ( ) ( ) X X σ ψ c σ σ ( ) ( ) Y Y ψ d σ ( ) ( ) Z Z szindróma szindróma szindróma ). A szindróma bemérése és a hiba avítása után visszaáll az eredeti kvantumállapot

5 Eredmények formalizálása A megengedett egy-kvantumbites unitér műveletek: I, X, Y, Z. Ha a. kvantumbiten egy tetszőleges, megengedett, egy kvantumbites unitér transzformációt hatunk végre, a kimeneti állapotot a következőképpen írhatuk fel: N ( ) ( ) ( ) ( ) ( ) Φ ψ ψ A ψ ψ A k k ( ) ( ) k ahol az A, A N mátrixok megadhatóak a formában. A ψ a I b σ c σ d σ ( ) ( ) ( ) ( ) k k X k Y k Z,

6 Eredmények formalizálása A szindróma meghatározása ill. megmérése utáni rendszerállapot: N k ( a b k k ψ ψ I szindróma I szindróma σ ψ ψ σ σ szindróma σ ( ) ( ) ( ) ( ) X X X X szindróma c k σ ψ ψ σ σ szindróma σ ( ) ( ) ( ) ( ) Y Y Y Y szindróma d ( ) ( ) ( ) ( ) k σz ψ ψ σz σz szindróma σ Z szindróma. ) A szindróma meghatározásával, valamint annak bemérésével a reprezentált tetszőleges hibát a 4 megengedett I, σ, σ, σ lehetséges hibaállapotra szűkítettük le: X Y Z Φ vel

7 Eredmények formalizálása A diszkrét hibaállapotokra történő leszűkítés után, a kapott szindróma értékének megfelelően elvégezzük a kvantumállapot avítását: ψ ψ b k N k σ ( a k I szindróma I szindróma szindróma σ ( ) ( ) X X szindróma k k ( ) ( ) σy szi σy c ndróma szindróma d σ szindróma σ ( ) ( ) Z Z szindróma. ) A így avítás utáni állapotból eltávolítuk a szindróma állapotokat, megkapuk a avított ψ ψ állapotot.

8 GH T : ( ) ( ) ( ) ( ) ( ) ( ) mod mod mod mod mod mod Bináris Hamming-kód

9 Bináris Hamming-kód A H T felső n k sorát meghagyuk, eléíruk az egységmátrixot és megkapuk G-t: G Legyen a vett (csatornakódolt és torzult) üzenet és. Mik lehettek az eredeti (tömörített) üzenetek, mivé dekódola a vevő őket? Hányadik pozícióban rontott a csatorna?

10 Fontos összefüggések A GH T összefüggést felhasználva, a G generátormátrix megkonstruálható a H paritásmátrixból is Ehhez k darab lineárisan független vektort kell találnunk, amely ortogonális a H sorvektoraira A talált k db vektor alkota a G generátormátrix oszlopvektorait

11 Fontos összefüggések A GH T összefüggést felhasználva, a H paritásellenőrző mátrix megkonstruálható a G generátormátrix alapán A duális kódokat használó CSS kvantum-kód előállítása során felhasználuk A H előállításához (n-k) darab lineárisan független, a G oszlopvektoraira ortogonális y i vektorra lesz szükségünk. Ezen feltételeknek megfelelő y i T vektorok alkoták a H sorvektorait.

12 Lineáris kódok kvantumrendszerekben Kvantum hibaavítás esetén a klasszikus H paritásellenőrző mátrix analógiáára - megkonstruálható az S stabilizátor mátrix. Az S mátrixot megkaphatuk a H mátrix alapán is: A H mátrixban lévő -esek helyét a Z operátorral cserélük fel. A kapott S stabilizátor pontosan ugyanazon klasszikus kódot definiála: Azaz az S stabilizátor ugyanazon mennyiségű bit-flip hiba kiavítását teszi lehetővé. A [7,4,3] Hamming kód S stabilizátora így: Z Z Z Z I I I Z Z I I Z Z I Z I Z I Z I Z

13 Bevezetés: CSS kódok Kvantum hibaavító kód konstruálható a C és C, klasszikus lineáris kódok alapán. A C kód paritásellenőrző mátrixában Z-re, míg a C mátrix paritásellenőrző mátrixában X-re cserélük az -eseket: Z Z Z Z I I I Z Z I I Z Z I Z I Z I Z I Z X X X X I I I X X I I X X I X I X I X I X C : [7,4,3] Hamming C : [7,4,3] Hamming [[7,,3]] QECC

14 Milyen CSS kódok lehetségesek? Nem minden C és C kódpárosítás lehetséges A C klasszikus kód duálisa a C kód, amelynek adott w elemére, valamint a C halmaz összes v kódszavára fennáll a v w összefüggés. (A C és C halmaz kódszavai egymásra ortogonálisak). A duális kódot a C paritásellenőrző mátrixának soraiból generáluk. Legyen v C és w C. Az egyes vektorokhoz rendelt Z, X operátorok akkor és csak akkor kommutatívak, ha v w. Ekkor a w C része a (C ) C halmaznak. A CSS kód előállításának feltétele: C C.

15 A CSS kódok alaptuladonságai AC,[n,k,d ] és a C, [n,k,d ] kódok alapán konstruált CSS kód ellemzői: [[n, k k - n, d ]] ahol d min (d,d ). A CSS kódot klasszikus kódszavak szuperpozícióának tekinthetük. Így, v C esetén: v v w w C Ha v-v C, akkorv és v ugyanazon állapot, így a v végigfut a teles C /C halmazon. (C C.)

16 Példa: CSS kódolk dolás

17 CSS kódolás követelményei A CSS kódolás megkonstruálásához szükségünk lesz a C és C klasszikus lineáris kódokra C : [n,k ] lineáris kód, C : [n,k ] lineáris kód k <k C C Ha a C és C kódok egyaránt t hiba avítására képesek, akkor a megkonstruált kód egy t kvantumhiba avítására alkalmas CSS : [n,k -k ] kód lesz A létrehozott CSS(C /C ) kóddal így tetszőleges, t kvantumbithiba avítható CSS(C /C ) A C kód C feletti CSS kóda [n,k -k ] kód: k-k logikai kvantumállapot n kvantumbiten tárolva

18 A CSS kód alaptuladonságai Mivel C C, így a C és C klasszikus lineáris kódok egymás duálisai is lehetnek, ekkor: C : [n,k] és C : [n,n-k]. Az előállítható CSS kód: CSS[n,k-n] Pl.: Adott a C [7,4] Hamming-kód, és annak duálisa C : [7,3] kód A megkonstruálható CSS kód paraméterei: CSS[7,x4-7] CSS[7,]. Egyetlen logikai hiba avításához 7 kvantumbit! Létezik obb konstrukció? CSS : (C [5,3]/C [5,]) CSS[5,]. (Laflamme, Miguel, Paz, Zurek, 996)

19 Kódolási lépések összefoglalása Adottak a C és C klasszikus lineáris kódok A kódtér mérete: Nk -k A C kódszavak közül kiválasztuk azon x,, x N C kódszavakat, amelyekre x, i x C ahol i. Mindig lehetséges, mivel a C /C halmaz elemei a k -k dimenziós részhalmazát alkoták, így ezen elemek mindegyikéhez létezik legalább helyes x kódszó Jelölük a kódolandó (k -k ) darab kvantumbit által meghatározott klasszikus állapotokat azok -(N-) közti bináris értékével A kódolás által realizált leképezés: x C x y C y C.

20 Kódolási lépések összefoglalása x C x C y C y. Mivel x x C, i így x C x C, i. i i A C-ből kiválasztott kódszót a C halmaz összes elemével összeaduk ( C elemek száma C-ben) ( ) Ha x C és x C, de x x C, ahol i, akkor i i x C x x x C x C i i.

21 CSS kód konstruálása Legyen adott C [7,4] és duálisa C [7,3] CSS[7,x4-7] CSS[7,]. A C [ 7,4,3 ] lineáris kódot A C [ 7,3, 4 ] G generátormátrixa alapán konstruáluk: G. lineáris kódot H paritásellenőrző mátrixa alapán konstruáluk: H. A H paritásellenőrző mátrix T sorait a G mátrix sorainak felhasználásával generáluk: T G

22 Fontos összefüggések A GH T összefüggést felhasználva, a H paritásellenőrző mátrix megkonstruálható a G generátormátrix alapán A duális kódokat használó CSS kvantum-kód előállítása során felhasználuk A H előállításához (n-k) darab lineárisan független, a G oszlopvektoraira ortogonális y i vektorra lesz szükségünk. Ezen feltételeknek megfelelő y i T vektorok alkoták a H sorvektorait.

23 CSS kód konstruálása T G A C duális kód H paritásellenőrző mátrixának kialakítása C C H.

24 A C kódszavainak előállítása H.

25 A kvantumkód vektorai ( ) uc A C halmaz összes lehetséges kódszava:. x C x y C y C x x C, i Mely kódszavak használhatók a C halmazból? i.

26 A kvantumkód vektorai Mely kódok felelnek meg az x, i i x C kritériumnak? Legyen x C : ( y ) y C, ahol y a C halmaz lehetséges összes kódszava ( is.) x C x y C y C C 8 ( y C x y. )

27 A kvantumkód vektorai Mi lesz a C /C halmaz eleméhez tartozó vektor? Olyan vektor kell a C -ből, amelynek elemei C -n kívüliek A vektor nem eleme C -nek Ugyanakkor eleme C -nek: GT mátrix utolsó sorát helyettesítük az utolsó két sor összegzésével kapott vektorral, mad az összes sort összeaduk T T G G. C

28 A kvantumkód vektorai Az C vektorhoz tartozó C elemek meghatározása x : C ( y ) y C, ahol y a C halmaz lehetséges összes kódszava. x x C i, i x C x y C y C C 8 ( y C x y. )

29 Eredmények összefoglalása A kapott eredmény: 7 kvantumbites Steane-kód. ( 8. ) ( 8. ) Az elméleti eredmények hogyan ültethetőek át a gyakorlatba? Hogyan épül fel a CSS-kódolást megvalósító kvantumáramkör?

30 Bithiba-avítás Steane-kóddal Kódolt állapot > > > > Eredmény: Nincs hiba

31 Bithiba-avítás Steane-kóddal Kódolt állapot > HIBA > > > > Eredmény: helyett Hiba azaz a 4. bit hibásodott meg

32 Lépések részletezése A szindróma meghatározásra szolgáló kvantumáramkör felépítése: Alsó 7 szálon: 7 kvantumbites regiszter, logikai bit kódolására Felső 6 szál: kiegészítő kvantumbitek a szindrómaszámításhoz A Steane-kódolás így egyetlen hiba avításához 3 kvantumbitet ( 7 kód 6 kiegészítő) használ

33 CSS kód alapú kvantum-hibaavítás.lépés Az R kvantumregiszterben lévő kvantum bitek száma legyen n. A y y s y reverzibiis transzformációval meghatározzuk az C kód s szindrómáát. ( ) ( y) Megmérük a szindrómát, a bit-flip ellegű hibákat NOT kapukkal avítuk X transzformációt alkalmazunk az R kvantumregiszter megfelelő kvantumbiteire

34 CSS kód alapú kvantum-hibaavítás.lépés Az R kvantumregiszter kvantumbiteire alkalmazzuk a H Hadamardtranszformációt.

35 CSS kód alapú kvantum-hibaavítás 3.Lépés ( ) A y y s y reverzibilis transzformációval meghatározzuk az C kód s szindrómáát. ( y) Megmérük a szindrómát, a bit-flip ellegű hibákat NOT kapukkal avítuk X transzformációt alkalmazunk az R kvantumregiszter megfelelő kvantumbiteire

36 CSS kód alapú kvantum-hibaavítás 4.Lépés Végül, az R kvantumregiszter kvantumbiteire ismét alkalmazzuk a H Hadamard-transzformációt.

37 Lépések részletezése A modell megkonstruálása során feltesszük, hogy a bit-negálódás ellegű hibák száma legfelebb t a fázisfordulás ellegű hibák száma legfelebb t A bit-hibát illetve a fázis-hibát reprezentáló hibavektor elölése n n legyen: e, f. Mindkét vektor legfelebb t darab -est tartalmazhat n Adott v vett-vektor esetén: v [ ] v[ n] v X X X v [] v[ n] v Z Z Z. és Az összes fellépő hiba így: e f XZ.

38 Lépések részletezése A e, f hibavektorokra fennállnak a következő összefüggések: e f X Z ( ) e n e e n H X Z H n e e n H Z X H f f e Z X.

39 Lépések részletezése A CSS-kódolás feltételeit telesítő kódolt kvantumállapotunk legyen: N α x C Az e és f hibák bekövetkezése utáni állapot: N N N α X α α e ( ) ( ) f Z x C ef f e Z X x C ef f Z x e C..

40 Lépések részletezése Kiszámítuk és bemérük a paritásvektor értékét, mad a C kódnak megfelelően végrehatuk a korrekciót. A szindróma által elzett kvantumbitekre NOT transzformációt alkalmazunk Az e hibavektor legfelebb t darab hibát elezhet. A kvantumrendszer állapota a hiba avítása után: N N N α α ( ) ( ) ef f Z x e C ef e f X Z x e C f α Z x C.

41 Lépések részletezése A kapott N f α Z x C kódra is fennáll a C C követelményünk A kód minden x kódszavát ennek megfelelően választuk meg A fenti állapoton elvégezzük a következő átírást: N N α Z α Z f f x X x C C.

42 Lépések részletezése Végrehatuk a Hadamardtranszformációkat Így:. n H C C ( ) α α α α. N f N f N f x x x x N x f n Z C Z H X C Z X f C X Z C

43 Lépések részletezése Kiszámítuk és bemérük a paritásvektor értékét, mad a C kódnak megfelelően végrehatuk a korrekciót. Az f hibavektor által megelölt kvantumbitekre NOT-transzformációt alkalmazunk ( ) ( ) α α α. x x x N f N e N x f x Z Z C Z f C X C f

44 Lépések részletezése Végrehatuk a Hadamardtranszformációkat Így:. n H C C α α α α. N N N N n x x x H X Z x Z C C C C

45 Lépések részletezése Megkaptuk az eredeti x C x y C y C. leképezésnek megfelelő eredményt. N α x C x, i. i x C.

46 Stabilizátor mátrix A 7 kvantumbites Steane-kód S stabilizátor mátrixa: A 6x4-es mátrix bal felében lévő - esek az X-operátorokat elölik ki a 7 kvantumbites szálon A obb oldalon lévő bitek értéke ekkor A mátrix obb oldalán lévő -esek a Z- operátorokat határozzák meg A bal oldalon lévő bitek értéke ekkor A mindkét oldalon megelenő -esek az Y-transzformációt (X és Z) elentik

47 Összefoglalás A kódolás nagyon erőforrásigényes Létezik gazdaságosabb megoldás? Kisebb kvantumregiszterek alkalmazása kvantumbitenkénti kontrollálhatósággal? Fizikailag kivitelezhetetlen (kvantumeffektusok, zavarok) Más felépítésű kódok keresése Hierarchikus struktúra: tetszőleges pontosság érhető el, azonban ehhez szintén emelnünk kell a kvantumbitek számát Mit várhatunk a hierarchikus kvantum kódolási struktúráktól? -> Kvantum konkatenációs kódolás

48 LOGO Köszönöm a figyelmet! Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

Kvantum-hibajavítás I.

Kvantum-hibajavítás I. LOGO Kvantum-hibajavítás I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Ismétléses kódolás Klasszikus hibajavítás Klasszikus modell: BSC (binary symmetric channel) Hibavalószínűség: p p 0.5

Részletesebben

Kvantum-hibajavítás II.

Kvantum-hibajavítás II. LOGO Kvantum-hibajavítás II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A Shor-kódolás QECC Quantum Error Correction Coding A Shor-féle kódolás segítségével egyidejűleg mindkét típusú hiba

Részletesebben

Kvantumkriptográfia II.

Kvantumkriptográfia II. LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Kódelméleti és kriptográai alkalmazások

Kódelméleti és kriptográai alkalmazások Kódelméleti és kriptográai alkalmazások Wettl Ferenc 2015. május 14. Wettl Ferenc Kódelméleti és kriptográai alkalmazások 2015. május 14. 1 / 11 1 Hibajavító kódok 2 Általánosított ReedSolomon-kód Wettl

Részletesebben

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk 1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2019. május 3. 1. Diszkrét matematika 2. 10. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Mérai László diái alapján Komputeralgebra Tanszék 2019. május

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Bevezetés az algebrába 2 Lineáris algebra alkalmazásai

Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar Kvantumszámítógép hálózat zat alapú prímfaktoriz mfaktorizáció Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Elemi kvantum-összead sszeadók, hálózati topológia vizsgálata Az elemi

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Alkalmazások H607 2017-05-10 Wettl Ferenc ALGEBRA

Részletesebben

Kvantum-kommunikáció komplexitása I.

Kvantum-kommunikáció komplexitása I. LOGO Kvantum-kommunikáció komplexitása I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Klasszikus információ n kvantumbitben Hány klasszikus bitnyi információ nyerhető ki n kvantumbitből? Egy

Részletesebben

Hibajavító kódok május 31. Hibajavító kódok 1. 1

Hibajavító kódok május 31. Hibajavító kódok 1. 1 Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Kvantumcsatorna tulajdonságai

Kvantumcsatorna tulajdonságai LOGO Kvantumcsatorna tulajdonságai Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Informáci cióelméleti leti alapok összefoglalásasa Valószínűségszámítási alapok Egy A és egy B esemény szorzatán

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus

Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus LOGO Kvatum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus Gyögyösi László BME Villamosméröki és Iormatikai Kar Bevezető Kvatum párhuzamosság Bármilye biáris üggvéyre, ahol { } { } : 0, 0,,

Részletesebben

Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a

Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a . Blokkrendszerek Definíció. Egy (H, H), H H halmazrendszer t (v, k, λ)-blokkrendszer, ha H = v, B H : B = k, és H minden t elemű részhalmazát H-nak pontosan λ eleme tartalmazza. H elemeit blokkoknak nevezzük.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Hadamard-mátrixok Előadó: Hajnal Péter február 23. Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

A kvantum-kommunikáció leírása sűrűségmátrix segítségével

A kvantum-kommunikáció leírása sűrűségmátrix segítségével LOGO A kvantum-kommunikáció leírása sűrűségmátrix segítségével Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Hogyan tekinthetünk a sűrűségmátrixokra? Zaos kvantumrendszerek kvantumállapotra

Részletesebben

Visontay Péter (sentinel@sch.bme.hu) 2002. január. 1. Alapfogalmak

Visontay Péter (sentinel@sch.bme.hu) 2002. január. 1. Alapfogalmak Kódelmélet összefoglaló Visontay Péter (sentinel@schbmehu) 2002 január 1 Alapfogalmak Kódolás: a k hosszú u üzenetet egy n hosszú c kódszóba képézzük le Hibák: a csatorna két végén megjelenő c bemeneti

Részletesebben

Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk.

Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk. Definíció. Hamming-kód Az -hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F fölötti vektorokkal foglalkozunk. Hamming-kód készítése: r egész szám (ellenırzı jegyek száma) n r a kódszavak hossza

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.

Részletesebben

Hibadetektáló és javító kódolások

Hibadetektáló és javító kódolások Hibadetektáló és javító kódolások Számítógépes adatbiztonság Hibadetektálás és javítás Zajos csatornák ARQ adatblokk meghibásodási valószínségének csökkentése blokk bvítése redundáns információval Hálózati

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése.

A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése. 1. Hibajavító kódok A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése. Célok Titkosírás (kriptográfia). A megváltoztatott adat illetéktelenek

Részletesebben

HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása

HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása Bevezetés HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása Discrete smooth approximation: an application of linear programming The best discrete approximation can be

Részletesebben

Ahol a kvantum mechanika és az Internet találkozik

Ahol a kvantum mechanika és az Internet találkozik Ahol a kvantum mechanika és az Internet találkozik Imre Sándor BME Híradástechnikai Tanszék Imre Sándor "The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to

Részletesebben

Mohó algoritmusok. Példa:

Mohó algoritmusok. Példa: Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor 12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

Diszkrét matematika alapfogalmak

Diszkrét matematika alapfogalmak 2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Adaptív dinamikus szegmentálás idősorok indexeléséhez

Adaptív dinamikus szegmentálás idősorok indexeléséhez Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november

Részletesebben

A lineáris tér. Készítette: Dr. Ábrahám István

A lineáris tér. Készítette: Dr. Ábrahám István A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos

Részletesebben

Kvantum összefonódás és erősen korrelált rendszerek

Kvantum összefonódás és erősen korrelált rendszerek Kvantum összefonódás és erősen korrelált rendszerek MaFiHe TDK és Szakdolgozat Hét Szalay Szilárd MTA Wigner Fizikai Kutatóközpont, Szilárdtest Fizikai és Optikai Intézet, Erősen Korrelált Rendszerek Lendület

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 7. gyakorlat Gyakorlatvezet : Bogya Norbert 2012. március 26. Ismétlés Tartalom 1 Ismétlés 2 Koordinátasor 3 Bázistranszformáció és alkalmazásai Vektorrendszer rangja Mátrix

Részletesebben

Kvantum-tömörítés II.

Kvantum-tömörítés II. LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz)

Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz) Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz) 1. Ön egy informatikus öregtalálkozón vesz részt, amelyen felkérik, hogy beszéljen az egyik kedvenc területéről. Mutassa be a szakmai

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

Kódelmélet. Tartalomjegyzék. Jelölések. Wettl Ferenc V A. Függelék: Véges testek 21

Kódelmélet. Tartalomjegyzék. Jelölések. Wettl Ferenc V A. Függelék: Véges testek 21 Kódelmélet Wettl Ferenc V0.5024 Tartalomjegyzék. Zajmentes csatorna, forráskód 2.. Entrópia = információ = bizonytalanság... 2.2. Feltételes entrópia............... 3.3. Egyértelm dekódolhatóság..........

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

Bevezetés a számításelméletbe (MS1 BS)

Bevezetés a számításelméletbe (MS1 BS) Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK

Részletesebben

Mat. A2 3. gyakorlat 2016/17, második félév

Mat. A2 3. gyakorlat 2016/17, második félév Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0

Részletesebben

Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.)

Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.) Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.) 1 Kommunikáció során az adótól egy vev ig viszünk át valamilyen adatot egy csatornán keresztül.

Részletesebben

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1 Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Shannon és Huffman kód konstrukció tetszőleges. véges test felett

Shannon és Huffman kód konstrukció tetszőleges. véges test felett 1 Shannon és Huffman kód konstrukció tetszőleges véges test felett Mire is jók ezek a kódolások? A szabványos karakterkódolások (pl. UTF-8, ISO-8859 ) általában 8 biten tárolnak egy-egy karaktert. Ha tudjuk,

Részletesebben

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =

Részletesebben

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A 2. és a 4. fejezet feladatai megoldva megtalálhatók a Testb vítés, véges testek;

Részletesebben

Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k)

Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k) Defiíci ció. Legye S=F q. Ekkor S az F q test feletti vektortér. r. K lieáris kód, k ha K az S k-dimeziós s altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor. W

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

A digitális számítás elmélete

A digitális számítás elmélete A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Véletlen lineáris kódok hibajavító rátáiról

Véletlen lineáris kódok hibajavító rátáiról Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Diplomamunka Véletlen lineáris kódok hibajavító rátáiról Mezőfi Dávid Csaba alkalmazott matematikus hallgató

Részletesebben

Numerikus módszerek beugró kérdések

Numerikus módszerek beugró kérdések 1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Szinguláris érték felbontás Singular Value Decomposition

Szinguláris érték felbontás Singular Value Decomposition Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban

Részletesebben

dolás, felbontható kód Prefix kód Blokk kódk Kódfa

dolás, felbontható kód Prefix kód Blokk kódk Kódfa Kódelméletlet dolás dolás o Kódolás o Betőnk nkénti nti kódolk dolás, felbontható kód Prefix kód Blokk kódk Kódfa o A kódok k hosszának alsó korlátja McMillan-egyenlıtlens tlenség Kraft-tételetele o Optimális

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Hibajavítás, -jelzés. Informatikai rendszerek alapjai. Horváth Árpád november 24.

Hibajavítás, -jelzés. Informatikai rendszerek alapjai. Horváth Árpád november 24. Hibajavítás és hibajelzés Informatikai rendszerek alapjai Óbudai Egyetem Alba Regia M szaki Kar (AMK) Székesfehérvár 2016. november 24. Vázlat 1 Hibákról 2 Információátvitel diagrammja forrás csatorna

Részletesebben

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása)

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása) Két /-es spinből álló rendszer teljes spinje spinek összeadása Két darab / spinű részecskéből álló rendszert írunk le. Ezek lehetnek elektronok, vagy protonok, vagy akármilyen elemi vagy nem elemi részecskék.

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Számítógépes Hálózatok. 5. gyakorlat

Számítógépes Hálózatok. 5. gyakorlat Számítógépes Hálózatok 5. gyakorlat Óra eleji kiszh Elérés: https://oktnb6.inf.elte.hu Számítógépes Hálózatok Gyakorlat 2 Gyakorlat tematika Szinkron CDMA Órai / házi feladat Számítógépes Hálózatok Gyakorlat

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és

Részletesebben

Infokommuniká cio Forrá sko dolá s e s hibátu ro ko dolá s

Infokommuniká cio Forrá sko dolá s e s hibátu ro ko dolá s Infokommuniká cio Forrá sko dolá s e s hibátu ro ko dolá s 1 Forráskódolás Jelölje X = {x1, x2,..., xn} a forrásábécét, azaz a forrás által előállított betűk (szimbólumok) halmazát, és X* a forrásábécé

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben