Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál"

Átírás

1 Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál

2 Legyen z f függvény [, b]-n értelmezett folytonos függvény. Tekintsük z [, b] intervllum egy 2 n egyenlő részre történő beosztását. Ilyenkor z osztópontok: x i = + i b 2 n, i = 0,1,...,2n. Az egyes részintervllumok hossz b 2 n. Jelölje m i z i-dik részintervllumbn függvényértékek minimumát (ezt felveszi függvény, hiszen folytonos): m i = min {f(x) x [x i 1, x i ] } Ehhez beosztáshoz képezzük z ún. (lsó) közeĺıtő összeget: s n = 2 n i=1 m i (x i x i 1 ) s n szemléletes jelentése (pozitív függvény esetében) nem más, mint z dott beosztáshoz trtozó beírhtó tégllpok területösszege.

3 Álĺıtás. Az s n sorozt konvergens. Bizonyítás. Először zt muttjuk meg, hogy s n felülről korlátos. Ugynis, jelölje M f függvény egy felső korlátját. Nyilván m i M. Ezért s n = 2 n i=1 m i (x i x i 1 ) M 2 n i=1 (x i x i 1 ) = M(b ) Másodjár belátjuk, hogy s n monoton nő. H egy intervllumon egy folytonos függvény minimum m, kkor z intervllum felezésével dódó két részintervllum mindegyikén függvény minimum leglább m. Emitt z s n+1 előálĺıtásábn szereplő két-két tg s n egy-egy tgjávl lulról becsülhető: s n+1 =...+m b 2i 1 2 n+1+m 2i b 2 n m b i 2 n +... = s n

4 Tehát s n monoton növekvő és felülről korlátos, ezért konvergens. Definíció. Az s n lsó közeĺıtő összegek soroztánk htárértéket z f függvény [, b] intervllumr vontkozó htározott integrál jánk nevezzük. Jelölése: f(x) dx vgy b f.

5 Nem folytonos, de korlátos függvény esetében htározott integrál így nem értelmezhető. Ekkor minimumok és mximumok helyett z lsó, illetve felső közeĺıtő összegek képzésében pontos lsó korlát és pontos felső korlát foglmát hsználjuk: m i = inf {f(x) x [x i 1, x i ] } M i = sup {f(x) x [x i 1, x i ] } s ezekkel képezzük z s és S lsó, illetve felső közeĺıtő összegeket. Tekintsük z [, b] intervllum összes lehetséges beosztásához (nemcsk z egyenlő részekre vló felosztásokhoz) trtozó lsó és felső közeĺıtő összegeket:

6 s = S = n i=1 n i=1 m i (x i x i 1 ) M i (x i x i 1 ) Akkor mondjuk f-et [, b]-n integrálhtónk, h z lsó közeĺıtő összegek pontos felső korlátj megegyezik felső közeĺıtő összegek pontos lsó korlátjávl, zz csk egy olyn szám vn, mely ngyobb vgy egyenlő bármely lsó közeĺıtő összegnél, és kisebb vgy egyenlő bármely felső közeĺıtő összegnél. Ezt számot nevezzük f [, b]-re vontkozó htározott integráljánk. Ezt z integrálfoglmt Riemnnintegrálnk is nevezik.

7 Ez utóbbi értelemben természetesen nem minden függvény integrálhtó, de tipikusk, pl. folytonosk, monotonk bizonyíthtón igen. Nem integrálhtó függvényre péld z [0, 1]-en értelmezett függvény, mely minden rcionális x szám esetén 0-át vesz fel értékként, s 1-et minden irrcionális x szám esetén. Ennél függvénynél nyilván minden lsó közeĺıtő összeg 0, s minden felső közeĺıtő összeg 1.

8 A htározott integrál értelmezéséből könnyen dódnk z lábbi tuljdonságok: 1) h f és g [, b]-n folytonos, kkor (f + g) = f + g 2) h f folytonos és λ R konstns, kkor λf = λ f 3) h f folytonos és c (, b), kkor c f = f + f c 4) h m f(x) M minden x [, b]-re, kkor m(b ) f M(b )

9 Megállpodás szerint f = 0 és b f = f. A 4) tuljdonság mitt m 1 b f M, így folytonos f esetén m-nek függvény minimumát, M- nek pedig mximumát válsztv következik, hogy vn olyn ξ (, b), hogy f(ξ) = 1 b f Ez utóbbi értéket z f függvény [, b] intervllumr vontkozó integrálközepének is nevezik.

10 Newton-Leibniz tétel A most bizonyítndó formul zt fejezi ki, hogy htározott integrál könnyen kifejezhető f egy primitív függvényének ismeretében: primitív függvénynek végpontokbn felvett értékeinek különbsége. Ez lényegesen megkönnyíti htározott integrálok kiszámítását. Előbb zt látjuk be, hogy h htározott integrál esetében felső htárt változónk tekintjük, kkor tuljdonképpen f egy primitív függvényét kpjuk. Legyen T(x) = x f (x [, b]) Elnevezése: területmérő függvény vgy integrálfüggvény.

11 Álĺıtás. H f folytonos [, b]-n, kkor T:[, b] R területmérő függvény mindenütt differenciálhtó, és T = f, zz T primitív függvénye (htároztln integrálj) f-nek. Bizonyítás. x 0 [, b]-ben vizsgáljuk differenciálhtóságot. Az egyszerűség kedvéért tegyük fel, hogy x > x 0. A htározott integrál tuljdonságit kihsználv T(x) T(x 0 ) = 1 x x 0 x x 0 ( x x0 f ) f = hol ξ (x 0, x). Ezért zz T (x 0 ) = f(x 0 ). = 1 x x 0 x x 0 f = f(ξ) lim = T(x) T(x 0) = f(x x x 0 ), 0 x x 0

12 Álĺıtás. (Newton-Leibniz szbály) H F primitív függvénye z f [, b]-n folytonos függvénynek, kkor f(x) dx = F(b) F(). Bizonyítás. Az előbb láttuk, hogy T(x) = x f területmérő függvény is primitív függvénye f-nek, ezért F(x) = T(x) + C, hol C R konstns. Így T() = 0 mitt f = T(b) T() = F(b) F(). A jobboldli kifejezésre gykrn tömörített [F(x)] b jelölést lklmzzuk.

13 Péld. Számítsuk ki π/2 0 sin x dx htározott integrált! Mivel sin x dx = cos x + C, π/2 sin x dx = [ cos x] π/2 0 = cos π + cos0 = Ezzel megkptuk szinusz félhullám ltti területet.

14 Integrálási szbályok A prciális integrálás és helyettesítéses integrálás szbályát htározott integrálokr is kiterjeszthetjük. Álĺıtás. H f és g [, b]-n differenciálhtó függvények és léteznek z f g és fg htároztln integrálok, kkor f (x)g(x) dx = f(b)g(b) f()g() f(x)g (x) dx Bizonyítás. A Newton-Leibniz szbály lpján = [ f(x)g(x) f (x)g(x) dx = ] b f(x)g (x) dx [ f (x)g(x) dx ] b = = f(b)g(b) f()g() f(x)g (x) dx

15 Álĺıtás. H f [, b]-n folytonos, vn primitív függvénye és g:[α, β] [, b] bijektív differenciálhtó függvény, g(α) =, g(β) = b, kkor f(x) dx = β α f(g(t))g (t) dt. Bizonyítás. f(x) dx = [ ] b f(x) dx = [ ] b f(g(t))g (t) dt(g 1 (x)) = = [ ] β f(g(t))g (t) dt α = β α f(g(t))g (t) dt.

16 Péld. Számítsuk ki z 1 0 e x dx htározott integrált! 1 + e2x Az x = g(t) = ln t, t = e x helyettesítést válsztjuk. Most g (t) = 1 t, s g(1) = 0, g(e) = 1, ezért 1 0 e x e 1 + e 2x dx = 1 t 1 e 1 + t 2 t dt = t 2 dt = [rctg t]e 1 = rctg e π 4.

17 Alklmzások A) Tegyük fel most, hogy két függvény görbéje zár közre egy síktrtományt, úgy, hogy f() = g() és f(b) = g(b), továbbá f(x) g(x) minden x [, b]-re. Ilyenkor két függvény görbe közötti síktrtomány területe nyilván (f(x) g(x)) dx. Példképp számítsuk ki kör területét! A felső félkört z y = R 2 x 2 függvény írj le, míg z lsót z y = R 2 x 2 függvény. A R T = 2 R 2 x 2 dx R htározott integrált kell kiszámítni.

18 Az x = g(t) = Rsin t helyettesítést lklmzzuk; most g (t) = Rcos t és g( π/2) = R, g(π/2) = R. Így T = R π/2 2 R 2 x 2 dx = 2 R π/2 R2 cos 2 tdt = = R 2 π/2 π/2 (1 + cos2t) dt = R2 [ t + cos2t 2 ] π/2 π/2 = R 2 π.

19 B) Egy függvénygörbe ívhosszát is meghtározhtjuk integrálll. Tegyük fel, hogy [, b]-n egy f folytonosn differenciálhtó függvény dott. Ilyenkor z [, b]-hez trtozó függvénygörbe ívhossz 1 + (f (x)) 2 dx mennyiben szóbnforgó integrál létezik. Ugynis görbe ívhosszát közeĺıthetjük z [, b] egy beosztásához trtozó töröttvonlll, melynek hossz n n d(p i 1 P i ) = (x i x i 1 ) 2 + (f(x i ) f(x i 1 )) 2 i=1 i=1 Lgrnge tétele szerint f(x i ) f(x i 1 ) = f (ξ i )(x i x i 1 ) vlmilyen ξ i (x i, x i 1 )-kel, így n i=1 d(p i 1 P i ) = n i=1 1 + (f (ξ i )) 2 (x i x i 1 )

20 C) Forgástestek felszínét és térfogtát is meghtározhtjuk integrálll. H z y = f(x) folytonosn differenciálhtó függvénygörbe [, b] között részét megforgtjuk z x tengely körül, kkor kpott forgásfelület felszíne: F = 2π f(x) 1 + (f (x)) 2 dx illetve folytonos f esetén forgástest térfogt V = π f2 (x) dx. Az első szbály csonkkúp plástjánk felszínére vontkozó összefüggés lklmzásávl igzolhtó, második mjd nyilvánvló.

21 Péld. Vezessük le gömb felszínére és térfogtár vontkozó képleteket! Most f(x) = R 2 x 2, így f (x) = x R 2 x 2. F = 2π R R R 2 x 2 x R 2 x 2 dx = V = π = 2π R R R R dx = 2π[Rx]R R = 4πR2. R (R2 x 2 ) dx = π [ R 2 x x3 3 ] R R = 4πR3 3.

22 Improprius integrálok Az integrálfoglom egyfjt kiterjesztését teszik lehetővé z improprius integrálok; egyik esetben nem véges intervllumr, másik esetben pedig nem korlátos függvényekre. A) Tegyük fel, hogy z f(x) folytonos függvény értelmezve vn minden x -r. Tekintsük T(b) = f(x) dx htározott integrált. H T függvénynek vn véges htárértéke végtelenben, kkor zt mondjuk, hogy f-nek z [, ) intervllumon létezik z improprius integrálj. Jelölése: f(x) dx = lim f(x) dx b

23 Most, mint látjuk, ezt z integrált nem közeĺıtő összegek segítségével definiáltuk, hnem korlátos intervllumon vett htározott integrálok htárértékeként. Egy blról végtelen (, ] intervllumon folytonos f függvény improprius integrálj z előbbihez hsonlón értelmezhető: f(x) dx = lim b b f(x) dx Legyen most f z egész számegyenesen folytonos függvény. Ekkor h vlmilyen R mellett létezik z f(x) dx és z f(x) dx improprius integrál, kkor z f függvény egész számegyenesen vett improprius integrálj: f(x) dx = f(x) dx + f(x) dx Könnyen láthtó, hogy z így értelmezett integrál nem függ z szám megválsztásától.

24 Péld. Számítsuk ki z improprius integrált! x 2 dx = 0-nál bontjuk: 1 dx = lim x2 [rctg b x]b 0 = π 2 A szimmetriából dódón blodli rész is ugynnnyi, így x 2 dx = π 2 + π 2 = π.

25 B) A függvény, melynek integrálját krjuk értelmezni, legyen most olyn, hogy csupán (, b]-n értelmezett (és folytonos), de nem feltétlenül korlátos. Ilyenkor z f(x) dx improprius integrálon következő htárértéket értjük, h létezik: lim f(x) dx. y +0 y Hsonlón értelmezendő z improprius integrál, h z f függvény b-ben nincs értelmezve.

26 Péld. Számítsuk ki x dx improprius integrált! dx = lim x y 0 y 1 x dx = lim y 0 [ 2 x ] 1 y = lim y 0 (2 2 y) = 2. Nem létezik viszont pl. következő improprius integrál: x dx = lim y 0 1 y 1 x dx = lim [ln y 0 x]1 y = lim ( ln y) =. y 0 Ilyenkor zt is mondjuk ez z integrál nem konvergens.

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

9. HATÁROZATLAN INTEGRÁL

9. HATÁROZATLAN INTEGRÁL 9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok 7. HATÁROZATLAN INTEGRÁL 7. efiníió és lpintegrálok efiníió. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differeniálhtó I-n,

Részletesebben

A határozott integrál fogalma és tulajdonságai

A határozott integrál fogalma és tulajdonságai . fejezet Htározott integrál A htározott integrál foglm és tuljdonsági D. Legyen f z [, b] intervllumon legfeljebb véges számú pont kivételével mindenütt értelmezett korlátos vlós függvény, továbbá legyen

Részletesebben

ANALÍZIS II. DEFINÍCIÓK, TÉTELEK

ANALÍZIS II. DEFINÍCIÓK, TÉTELEK ANALÍZIS II. DEFINÍCIÓK, TÉTELEK Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így dd tovább! 3.0

Részletesebben

Gazdasági matematika I. tanmenet

Gazdasági matematika I. tanmenet Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó

Részletesebben

Numerikus módszerek 2.

Numerikus módszerek 2. Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás. feruár 9.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény integrálhtó z, intervllum ármely, részin- tervllumán,

Részletesebben

Analízis II. harmadik, javított kiadás

Analízis II. harmadik, javított kiadás Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet

Részletesebben

Tekintsük az I (I R) intervallumon értelmezett f : I R függvényt. Ebben a

Tekintsük az I (I R) intervallumon értelmezett f : I R függvényt. Ebben a . . Egyváltozós függvények htároztln integrálj. Egyváltozós függvények htároztln integrálj PAP MARGIT. A primitív függvény foglm Tekintsük z I (I R) intervllumon értelmezett f : I R függvényt. Ebben prgrfusbn

Részletesebben

5.1. A határozatlan integrál fogalma

5.1. A határozatlan integrál fogalma 9 5. Egyváltozós vlós függvények integrálszámítás 5.. A htároztln integrál foglm Az eddigiekben megismertük differenciálás műveletét, melynek lpfeldt: dott f függvényhez megkeresni z f derivált függvényt.

Részletesebben

2. NUMERIKUS INTEGRÁLÁS

2. NUMERIKUS INTEGRÁLÁS numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

A határozott integrál

A határozott integrál A htározott integrál Bevezető problém: Egyenes úton egy utó időben változó v(t) = ds/dt sebességgel hld. A mindenkori sebesség ismeretében szeretnénk kiszámolni, hogy mekkor utt tesz meg vlmely t b időintervllumbn.

Részletesebben

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris

Részletesebben

Absztrakt vektorterek

Absztrakt vektorterek Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

INTEGRÁLSZÁMÍTÁS D (I) := {F : F D(I)} Állítás. D (I) is vektortér. Bizonyítás. Házi feladat.

INTEGRÁLSZÁMÍTÁS D (I) := {F : F D(I)} Állítás. D (I) is vektortér. Bizonyítás. Házi feladat. INTEGRÁLSZÁMÍTÁS SIKOLYA ESZTER 1. Primitív üggvény Legyen I tetszőleges intervllm (korlátos vgy nem korlátos, nyílt, zárt, élig nyílt stb.). Jelölje C(I) z I intervllmon értelmezett olytonos üggvények

Részletesebben

KALKULUS INFORMATIKUSOKNAK I.

KALKULUS INFORMATIKUSOKNAK I. Írt: GYŐRI ISTVÁN PITUK MIHÁLY KALKULUS INFORMATIKUSOKNAK I. Egyetemi tnnyg 20 COPYRIGHT: 20 206, Dr. Győri István, Dr. Pituk Mihály, Pnnon Egyetem Műszki Informtiki Kr Mtemtik Tnszék LEKTORÁLTA: Dr. Molnárk

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1 Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

INTEGRÁLSZÁMÍTÁS A GYAKORLATBAN. Készítette: Varga Viktor Témavezet : Sikolya Eszter

INTEGRÁLSZÁMÍTÁS A GYAKORLATBAN. Készítette: Varga Viktor Témavezet : Sikolya Eszter INTEGRÁLSZÁMÍTÁS A GYAKORLATBAN Készítette: Vrg Viktor Témvezet : Sikoly Eszter ELTE-TTK, Mtemtik Bsc Budpest, . fejezet Bevezetés Diplommunkám során z integrálszámítás gykorlti módszereibe szeretnék betekintést

Részletesebben

Fekete Mária. Matematika II. Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Matematika Tanszék

Fekete Mária. Matematika II. Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Matematika Tanszék Mtemtik II. Pollck jegzetek Fekete Mári Mtemtik II. Pécsi Tudománegetem Pollck Mihál Műszki Kr Mtemtik Tnszék Pécs, 2007 A jegzet PTE PMMK építőmérnök szk PMMANB312, PMMANB926 tntárgkódú Mtemtik II. kurzus

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Vektorok. Vektoron irányított szakaszt értünk.

Vektorok. Vektoron irányított szakaszt értünk. Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

Megint a szíjhajtásról

Megint a szíjhajtásról Megint szíjhjtásról Ezzel témávl már egy korábbi dolgoztunkbn is foglkoztunk ennek címe: Richrd - II. Most egy kicsit más lkú bár ugynrr vontkozó képleteket állítunk elő részben szkirodlom segítségével.

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

BEVEZETÉS AZ ANALÍZISBE

BEVEZETÉS AZ ANALÍZISBE BEVEZETÉS AZ ANALÍZISBE Jegyzetek és példtárk mtemtik egyetemi okttásához sorozt Algoritmuselmélet Algoritmusok bonyolultság Anlitikus módszerek pénzügyben és közgzdságtnbn Anlízis feldtgyűjtemény I Anlízis

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás

Részletesebben

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben.

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben. Htározott integrál, terület és térogt számítás XI. ejezet Htározott integrál, terület és térogt számítás Elméleti áttekintés A htározott integrál deinícióját ld. jegzeten. Newton-Leiniz tétel: ( ) d [

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.?

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.? FÜGGVÉNYEK HTÁÉTÉKE Mosóczi ndrás..?..?..?..?..?..?..?.8.? FOLYTONOSSÁG DEFINÍCIÓ. z üggvény olytonos az a helyen értelmezve van az a helyen létezik és véges a tárértéke az a helyen és a a DEFINÍCIÓ. z

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

Analízis jegyzet Matematikatanári Szakosok részére

Analízis jegyzet Matematikatanári Szakosok részére Anlízis jegyzet Mtemtiktnári Szkosok részére Sikoly Eszter ELTE TTK Alklmzott Anlízis és Számításmtemtiki Tnszék 203. július 2. Előszó Ez jegyzet elsősorbn z áltlános iskoli és középiskoli Mtemtiktnári

Részletesebben

Algebrai struktúrák, mátrixok

Algebrai struktúrák, mátrixok A számítástudomány mtemtiki lpji Algebri struktúrák, mátrixok ef.: Algebri struktúrán olyn nemüres hlmzt értünk melyen leglább egy művelet vn definiálv. ef.: A H nemüres hlmzon értelmezett kétváltozós

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Itegrálszámítás Gykorló feldtok Progrmtervező mtemtikus szkos hllgtókk z Alízis. című tárgyhoz Összeállított Bese Atl, Csillg Dávid, Kiss Blázs, Mátyás Gergely, Szili László 4. október Trtlomjegyzék I.

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

BEVEZETÉS AZ ANALÍZISBE

BEVEZETÉS AZ ANALÍZISBE BEVEZETÉS AZ ANALÍZISBE Mezei István, Frgó István, Simon Péter Eötvös Loránd Tudományegyetem Alklmzott Anlízis és Számításmtemtiki Tnszék ii Trtlomjegyzék 1. Előszó 1 2. Hlmzok, relációk, függvények 3

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Óravázlatok: Matematika 2. Tartományintegrálok

Óravázlatok: Matematika 2. Tartományintegrálok Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

IV. Algebra. Algebrai átalakítások. Polinomok

IV. Algebra. Algebrai átalakítások. Polinomok Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

Matematika példatár 5.

Matematika példatár 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 5 MAT5 modul Integrálszámítás alkalmazása SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

1. Sorozatok 2014.03.12.

1. Sorozatok 2014.03.12. 1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

Matematikai analízis. Editura Didactică şi Pedagogică

Matematikai analízis. Editura Didactică şi Pedagogică András Szilárd Mureşn Mrin Mtemtiki nlízis és lklmzási Editur Didctică şi Pedgogică Bucureşti, 2005 Descriere CIP Bibliotecii Nţionle României ANDRÁS SZILÁRD, MARIAN MUREŞAN Mtemtiki nlízis és lklmzási/

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Matematika BSc tanárszak Analízis IV. előadásjegyzet 2010/2011. tavaszi félév

Matematika BSc tanárszak Analízis IV. előadásjegyzet 2010/2011. tavaszi félév Mtemtik BSc tnárszk Anlízis IV. elődásjegyzet 2010/2011. tvszi félév Sikoly Eszter ELTE TTK Alklmzott Anlízis és Számításmtemtiki Tnszék 2011. október 11. ii Trtlomjegyzék Előszó v 1. Differenciálegyenletek

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42 Vizsgatematika = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika / 42 Bevezetés(logikai formulák és halmazok): logikai m veletek és m velettábláik,

Részletesebben

2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011

2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011 8 VEMIMAM44A előadásjegyzet, /. Fourier-elmélet.. Komplex trigonometrikus Fourier-sorok Tekintsük az [, ], C Hilbert-teret, ahol a skaláris szorzat definíciója f, g ftgt dt. Tekintsük a [, ] intervallumon

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Széchenyi István Egyetem

Széchenyi István Egyetem polár 3D gömbi Széchenyi István Egyetem Téglalapon vett integrál polár 3D gömbi Legyenek [a, b], [c, d] R véges intervallumok, és jelölje T az [a, b] [c, d] = {(x, y) R : a x b, c y d } téglalapot. Legyen

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

A határozott integrál alkalmazásai

A határozott integrál alkalmazásai EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR A htározott integrál lklmzási Szkdolgozt Készítette: Hbi Kitti Mtemtik BSc Mtemtiki elemző szkirány Témvezető: Gémes Mrgit Műszki gzdsági tnár Anlízis

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben