1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló"

Átírás

1 SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris menniségeknek, számoknk megdott szál szerint tálázt rendezett hlmz 3 Jelölése: A = Négzetes mátri: oln mátri, melen sorok és oszlopok szám megegezik Oszlopmátri: = 3 T Sormátri: = [ ] 3 ) Műveletek mátriokkl: Mátri trnszponáltj: tükrözés őátlór A mátri őátlóját z zonos indeű elemek lkotják T A = A = ( ) ( ) Mátriok összedás, kivonás: csk zonos méretű mátriok dhtók össze, ill vonhtók ki egmásól A+ B= C A = ; B = ( ± ) ( ± ) ( ± ) ( ± ) c c A+ B = ± = = c c ( ) Mátri szorzás (sor-oszlop komináció): A B = C, ( + ) ( + ) ( + ) ( + = ) - -

2 A= c, + c = = ( ) c + T T B= d, ( ) [ ] = ( + ) ( + ) = [ d d] ( ) c) Különleges mátriok: 0 Egségmátri: E = 0 Tuljdonság: E A= A E = A Az egségmátriszl történő szorzás nem változttj meg megszorzott mátriot T Szimmetrikus mátri: =, hol i, j =,,3, A mátri elemei megegeznek őátlór vett tükörképükkel 3 Például: A = A = A, zz T ij Ferdeszimmetrikus mátri: A = A, zz =, hol i, j =,,3, A mátri ármelik eleme megegezik őátlór vett tükörképének mínusz egszeresével Eől következik, hog őátlón csk zérus elemek lehetnek 0 5 Például: A = Vektorok skláris, kétszeres vektoriális és didikus szorzt: Vektor: iránított geometrii, vg iziki menniség, mi jellemezhető iránnl, ngsággl, mértékegséggel ) Vektorok skláris szorzt: Skláris szorzás értelmezése: = cosα, hol α vektorok áltl ezárt szög A skláris szorzás kiszámítás mátriszorzássl: = z = + + zz z A szorzás eredméne eg skláris menniség ) Vektorok kétszeres vektoriális szorzt: c c ( ), vg Kiszámítás kétéleképpen lehetséges: - két vektoriális szorzásnk kijelölt sorrenden történő elvégzésével, - kiejtési tétellel: ji ij ji - -

3 ( ) c = ( c ) ( c ), ill ( ) ( c c ) = c ( ) c) Vektorok didikus szorzt: Legen dott z, és c tetszőleges vektor Két vektor didikus szorztánk jelölése:, elnevezése: diád Két vektor didikus szorztát szorzás tuljdonságink megdásávl értelmezzük: - didikus szorzás és skláris szorzás sszocitív (csoportosíthtó, zz szorzások elvégzésének sorrendjét elcserélhetjük): ( ) c= ( c), - diád skláris szorzás szempontjáól nem kommuttív (nem mindeg, hog eg diádot joról vg lról szorzunk sklárisn eg vektorrl, mert más eredmént kpunk) c = c H szorzás ent leírt összeüggéseket kielégíti szorzás didikus Két vektor didikus szorztánk kiszámítás josodrású, derékszögű koordinát rendszeren z = z = z z z z z z 3 Tenzorok előállítás: ) Tenzorok értelmezése és tuljdonsági: Tenzor: homogén, lineáris vektor-vektor üggvén áltl megvlósított leképezés (hozzárendelés) w = v = T v v hozzárendelés w A T tenzor tetszőleges Ov v vektorhoz w képvektort rendeli hozzá ) Tenzor előállítás josodrtú, derékszögű descrtesi koordinát-rendszeren: Tenzor megdás: - tenzor koordinátáivl (mátriávl) és - koordinát rendszerrel történik Tenzor koordinátáink jelölése mátri rendezve: T T T z T T T3 - T T T T z T T T = = 3 z Tz Tz T zz T3 T3 T 33 Ow - 3 -

4 Tenzor előállítás: Legen ismert három értékpár: i = ( i), = i + j+ zk, j = ( j), = i + j + k, z k c= ( k), c c i c j c k = + + z T= i + j+ c k A tenzor didikus előállítás: c A tenzor mátri: T = c 3 Tenzor előállítás: Adott: r = i + 4j m P A r A z z z c z O r P ) A tenzor előállítás: Síkeli eseten tenzort két értékpárj htározz meg: i = i, j = j T= i + j A két értékpáról tenzor: A tenzor mátri: P 0 T = 0 ) Az origór tükrözött r A képvektor meghtározás: 0 ra = T rp = = ra = ( i j)m Feldt: ) Azon T tenzor mátriánk előállítás, mel z sík helvektoriól helvektoroknk koordinátrendszer O kezdőpontjár tükrözött vektorit állítj elő ) Előállítni zt z r A vektort, mel z vektor origór vett tükörképe r P - 4 -

5 3 Tenzor előállítás: r = 8i + j m, ϕ= 60 Adott: P r A ϕ r P A P Feldt: ) Azon T tenzor mátriánk előállítás, mel z sík helvektoriól helvektorok z tengel körül ϕ szöggel elorgtott vektorit állítj elő ) Előállítni zt z r A vektort, melet z r P vektor ϕ szöggel történő elorgtásávl kpunk ) A tenzor előállítás: ϕ j ϕ r P i Síkeli eseten tenzort két értékpárj htározz meg: i = ( cosϕ i + sinϕ j), j = ( sinϕ i + cosϕ j) T= i + j A két értékpáról tenzor: A diádok kiszámítás: 0 cosϕ 0 i = [ 0 ] = =, 0 sin ϕ sinϕ [ ] 0 0 cosϕ A tenzor mátri: j = 0 = = cosϕ sin ϕ 0,5 0,866 T = = sin cos ϕ ϕ 0,866 0,5 ) Az elorgtott r A vektor meghtározás: cosϕ sin ϕ P 0,5 0,866 8, 68 ra = T rp = = = sin ϕ cos ϕ P 0,866 0,5 7,98 r =, 68i + 7,98 j m A - 5 -

6 4 Dierenciálszámítás: Az üggvén deriváltján z ( + ) h : = lim h 0 h htárértéket értjük (eltételezve, hog létezik és véges) d Az = üggvén deriváltjánk jelölései:,,,,, st, hol d z idő szerinti első derivált A derivált 0 helen vett ( 0 ) helettesítési értékét szokás üggvén 0 helhez trtozó dierenciálhándosánk is nevezni A derivált előállítását deriválásnk vg dierenciálásnk nevezzük A ( 0 ) dierenciálhándos geometrii jelentése z = göre 0 helhez trtozó érintőjének z irántngense, zz = tgϑ ( ár) 0 = érintő ϑ 0 0 ϑ 0 tgϑ = 0 ár Amennien eg üggvén vlmel helen vg intervllumon deriválttl rendelkezik, kkor üggvén itt dierenciálhtó A dierenciálhtóságól pedig üggvén oltonosság következik Deriválási szálok: Legenek u, v,, g dierenciálhtó üggvének Ekkor: Cu = Cu, C állndó; u± v = u ± v; 3 uv = u v + uv ; 4 u uv uv =,v 0 ; v v 5 ( g ) = ( g ) g láncszál ; 6 Legen és = = ( ) Ekkor = t, = t, kkor = 7 H () () = ( ) ; - 6 -

7 Alpüggvének deriváltj: C α α = 0, C állndó ( sin ) = cos ( cos ) tg tg ; cos =α = sin = = + ( ctg = = + ctg ) ( e ) = e sin = ln A Értelmezzük üggvén második, hrmdik st deriváltját Jelölésük: üggvén dierenciálj: d = d ( ár) ( n),,,, = d 0 d + d ár 4 Péld: ( + h) A : = lim ormul lpján htározzuk meg z = és g h 0 üggvén deriváltját h + h + h+ h h+ h = lim = lim = lim = lim ( +h) = ; h 0 h h 0 h h 0 h h 0 ( + ) h lim h + h h g = + = lim = lim = lim = h 0 h h 0 h h 0 h h h 0 h ( + ) ( + ) = - 7 -

8 4 Péld: Htározzuk meg z lái üggvének deriváltját: = = = = ; ( ) = = = = ; A htároztln integrál: A (ng) F üggvént (kis) üggvén primitív üggvénének nevezzük vlmel nílt intervllumon, h itt F = Eg üggvénnek végtelen sok primitív üggvéne vn, és ezek összességét htároztln integráljánk nevezzük Jelölése: d+ C, hol C tetszőleges állndó (integrációs állndó) Például: d= + C Alpintegrálok: n+ n d = + C, hol C konstns, például: n+ d = ln + C ; 3 ed= e + C; 4 d= + C, például ln 5 sin d = cos + C; 6 cos d = sin + C d= + C; ln 3 d= + C; 3 Integrálási szálok: k d = k d = k F C +, például: cos d = sin + C ( + g h) d = F+ G H+ C, például: 3 = + n+ e + sin d = e cos ln + C ; n+ n d C, például: ; ln ln d = ln d = + C n ; - 8 -

9 4 d = ln + C, például: d = d = d = ln ln C ln ln ln +, } } } } sin tg d = d = ln cos + C cos, cos ctg d = d = ln sin C sin + Fk k d = + C, például: k 5 5 e e d = + C, d = ln + C 5 6 ( + ) ( n+ ) n+ n F + d = + C } sin 3 cos3 d = + C, 3 + 3} e d = e + C, például: e d = e + C; sind = cos + C, például: ( + ) ( + ) = ( + ) sin 3 3 d cos C 9 cosd = sin + C, például: ( e + ) cos( e + ) d = sin ( e + ) + C Prciális integrálás: uv d = uv u v d 6 A htározott integrál: Az üggvén [, ] intervllumr vontkozó htározott integrálján z integrálközelítő összegek soroztánk htárértékét értjük (eltéve, hog ez létezik és véges), n d: = lim ( ξi) i, () m 0 i = [, ] hol i = i i, hol = 0 < < < < n = z pedig z [ ] i i intervllum eg elosztás, ξ i részintervllum eg tetszőleges pontj Azt íg értelmezett integrált Riemnn-integrálnk is nevezzük H létezik z () htárérték, kkor zt mondhtjuk, hog z [, ] intervllumon integrálhtó H üggvén oltonos vlmel intervllumon, kkor ott integrálhtó - 9 -

10 H z [, ] intervllumon integrálhtó, és itt, kkor z () htározott integrál 0 = göre ltti és [, ] geometrii jelentése z = szksz ölötti síkidom területe d> 0 3 ár A htározott integrál tuljdonsági: =, c d c d C állndó; + = + g d d g d; c = +, < < d d d c c - 0 -

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Vektorok. Vektoron irányított szakaszt értünk.

Vektorok. Vektoron irányított szakaszt értünk. Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

Gazdasági matematika I. tanmenet

Gazdasági matematika I. tanmenet Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom:

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom: Bevezetés számítástudomány mtemtiki lpji Vektorlger elődás fóliák Elméleti nyg tételek, definíciók, izonyítás vázltok Bércesné Novák Ágnes Források, jánlott irodlom: Hjós György: Bevezetés geometriá, Tnkönyvkidó,

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

9. HATÁROZATLAN INTEGRÁL

9. HATÁROZATLAN INTEGRÁL 9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó

Részletesebben

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás. feruár 9.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény integrálhtó z, intervllum ármely, részin- tervllumán,

Részletesebben

Vektorok (folytatás)

Vektorok (folytatás) Vektorok (folyttás) Vektor szorzás számml (sklárrl) Vektor szorzás számml b 1 c 2b c 2 ( 1 ) 2 Az vektor k-szoros (k R, vgyis k egy vlós szám) z vektor, melynek hossz k, irány pedig k > 0 esetén irányávl

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben.

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben. Htározott integrál, terület és térogt számítás XI. ejezet Htározott integrál, terület és térogt számítás Elméleti áttekintés A htározott integrál deinícióját ld. jegzeten. Newton-Leiniz tétel: ( ) d [

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

A határozott integrál fogalma és tulajdonságai

A határozott integrál fogalma és tulajdonságai . fejezet Htározott integrál A htározott integrál foglm és tuljdonsági D. Legyen f z [, b] intervllumon legfeljebb véges számú pont kivételével mindenütt értelmezett korlátos vlós függvény, továbbá legyen

Részletesebben

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok 7. HATÁROZATLAN INTEGRÁL 7. efiníió és lpintegrálok efiníió. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differeniálhtó I-n,

Részletesebben

Absztrakt vektorterek

Absztrakt vektorterek Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

Lineáris algebra LI 1. Lineáris algebra. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Lineáris algebra LI 1. Lineáris algebra. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! LI Definíció: mátri LI Legyen m és n pozitív egész szám. Az : m : m......... n n : mn tábláztot m n típusú mártink nevezzük, és zt mondjuk, hogy A-nk m sor és n oszlop vn. ij z A mátri i-deik soránk j-edik

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Függvények, 7 8. évfolyam

Függvények, 7 8. évfolyam Függvének, 7 8. évfolm Orosz Gul 01. június 8. TARTALOMJEGYZÉK Trtlomjegzék Feldtok 7 1. Grfikonok................................... 7. Geometrii trnszformáiók.......................... 19 3. Geometrii

Részletesebben

A közönséges geometriai tér vektorai. 1. Alapfogalmak

A közönséges geometriai tér vektorai. 1. Alapfogalmak VEKTORALGEBRA A közönséges geometrii tér vektori 1. Alpfoglmk A hétköznpi tér z elemi geometri háromdimenziós euklideszi tere két különöző pontj, z A és B közti szksznk kétféleképpen dhtunk irányítást.

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Fekete Mária. Matematika II. Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Matematika Tanszék

Fekete Mária. Matematika II. Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Matematika Tanszék Mtemtik II. Pollck jegzetek Fekete Mári Mtemtik II. Pécsi Tudománegetem Pollck Mihál Műszki Kr Mtemtik Tnszék Pécs, 2007 A jegzet PTE PMMK építőmérnök szk PMMANB312, PMMANB926 tntárgkódú Mtemtik II. kurzus

Részletesebben

4. előadás: A vetületek általános elmélete

4. előadás: A vetületek általános elmélete 4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1

Részletesebben

Geometriai transzformációk, transzformációs egyenletek és alkalmazásuk a geoinformatikában

Geometriai transzformációk, transzformációs egyenletek és alkalmazásuk a geoinformatikában Geometrii trnszformációk, trnszformációs egenletek és lklmzásuk geoinformtikán Szkdolgozt Bódis Ktlin Szeged 999 Trtlomjegzék Trtlomjegzék Bevezetés.... Feldtok...5. A Föld felszínének sík vló leképezése...5.

Részletesebben

A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL

A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL MŰSZAKI ISKOLA ÉRETTSÉGI VIZSGA ADA, 06jnuár 0/06-ös iskolév, júniusi vizsgidőszk A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL Munkterület: GÉPÉSZET, ELEKTROTECHNIKA, ÉPITÉSZET Tntárg: MATEMATIKA

Részletesebben

5.1. A határozatlan integrál fogalma

5.1. A határozatlan integrál fogalma 9 5. Egyváltozós vlós függvények integrálszámítás 5.. A htároztln integrál foglm Az eddigiekben megismertük differenciálás műveletét, melynek lpfeldt: dott f függvényhez megkeresni z f derivált függvényt.

Részletesebben

SZENT ISTVÁN EGYETEM Gépészmérnöki Kar. Orova Lászlóné dr. Számítástechnika I. Tantárgyhoz Kidolgozott Excel feladatok. Gödöllő, 2004.

SZENT ISTVÁN EGYETEM Gépészmérnöki Kar. Orova Lászlóné dr. Számítástechnika I. Tantárgyhoz Kidolgozott Excel feladatok. Gödöllő, 2004. SZENT ISTVÁN EGYETEM Gépészmérnöki Kr Orov Lászlóné dr. Számítástechnik I. Tntárgyhoz Kidolgozott Ecel feldtok Gödöllő,. SZIE Informtik Tnszék Ecel - kidolgozott feldtok Bevezető A Számítástechnik I. tntárgy

Részletesebben

2. NUMERIKUS INTEGRÁLÁS

2. NUMERIKUS INTEGRÁLÁS numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül. 01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj

Részletesebben

VI. Kétismeretlenes egyenletrendszerek

VI. Kétismeretlenes egyenletrendszerek Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok

Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok SZENT ISTVÁN EGYETEM Gépészmérnöki Kr Orov Lászlóné dr. Informtik lpji Tntárgyhoz Kidolgozott Ecel feldtok Gödöllı, 8. Bevezetı Ez feldtgyőjtemény összefogllj z Informtik lpji tntárgy keretében okttott,

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben

Részletesebben

IV. Algebra. Algebrai átalakítások. Polinomok

IV. Algebra. Algebrai átalakítások. Polinomok Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 10. Monopólium

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 10. Monopólium űszki folymtok közgzdsági elemzése Elődásvázlt 3 októer onoólium A tökéletesen versenyző válllt számár ici ár dottság, így teljes evétele termékmennyiség esetén TR () = ínálti monoólium: egyetlen termelő

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α

Részletesebben

Alkalmazott matematika, II. félév Összefoglaló feladatok I.

Alkalmazott matematika, II. félév Összefoglaló feladatok I. lklmott mtemtik II. félé Össefoglló feldtok I. Műeletek mátriokkl determináns meghtároás mátri foglm. Neeetes mátriok. Mátriok egenlősége. Műeletek mátriokkl (össedás sklárrl ló sorás mátriok lineáris

Részletesebben

Koordinátarendszerek

Koordinátarendszerek Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Algebrai struktúrák, mátrixok

Algebrai struktúrák, mátrixok A számítástudomány mtemtiki lpji Algebri struktúrák, mátrixok ef.: Algebri struktúrán olyn nemüres hlmzt értünk melyen leglább egy művelet vn definiálv. ef.: A H nemüres hlmzon értelmezett kétváltozós

Részletesebben

Analízis II. harmadik, javított kiadás

Analízis II. harmadik, javított kiadás Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet

Részletesebben

ANALÍZIS II. DEFINÍCIÓK, TÉTELEK

ANALÍZIS II. DEFINÍCIÓK, TÉTELEK ANALÍZIS II. DEFINÍCIÓK, TÉTELEK Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így dd tovább! 3.0

Részletesebben

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + +

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + + LINEÁRIS ALGEBRA Mit evezük másodredő determiásk? Másodredő determiásk evezzük égy elem, két sor és két oszlop redezett táláztát, melyhez z lái módo redelük értéket: = d c c d Mit evezük egy determiás,

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Megjegyzés: jelenti. akkor létezik az. ekkor

Megjegyzés: jelenti. akkor létezik az. ekkor . Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

Végeselem modellezés. Bevezetés 2012.02.20.

Végeselem modellezés. Bevezetés 2012.02.20. Végeselem modellezés Bevezetés 1 21222 Számítógéppel segített szerkezettervezés Szerkezetmegdás, CAD rjzolás dtbevitel módosítás Méretezés, tervezés VEM dtbevitel ellenőrzés Részletek kidolgozás AutoCAD

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

hajlító nyomaték és a T nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál.

hajlító nyomaték és a T nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál. 5 RÚDELADATOK 51 íkgörbe rudk Grhof 1 -féle elmélete íkgörbe rúd: rúd köépvonl ( ponti ál) íkgörbe e P n e t Jelöléek: A köépvonl mentén pontokt ívkoordinátávl onoítjuk Pl P pont A P pontbn (P pontho trtoó

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e)

2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e) . Egenletek I. Feldtok. Oldj meg z lábbi egenleteket egenletrendszereket vlós számok hlmzán. ) b) ( ) ( ) 8 Klmár László Mtemtik Versen döntője 99. 8. osztál c) ( ) ( ) ( ) ( ) OKTV II. ktegóri. forduló

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

13. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) Rácsos tartók

13. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) Rácsos tartók SZÉHYI ISTVÁ YTM LKLMZOTT MHIK TSZÉK. MHIK-STTIK YKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni ábor, mérnöktnár).. Péld Rácsos trtók dott: z ábrán láthtó rácsos trtó méretei és terhelése. = k, = k. eldt:

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1 Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Kettős és többes integrálok

Kettős és többes integrálok Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

A határozott integrál

A határozott integrál A htározott integrál Bevezető problém: Egyenes úton egy utó időben változó v(t) = ds/dt sebességgel hld. A mindenkori sebesség ismeretében szeretnénk kiszámolni, hogy mekkor utt tesz meg vlmely t b időintervllumbn.

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

KALKULUS INFORMATIKUSOKNAK I.

KALKULUS INFORMATIKUSOKNAK I. Írt: GYŐRI ISTVÁN PITUK MIHÁLY KALKULUS INFORMATIKUSOKNAK I. Egyetemi tnnyg 20 COPYRIGHT: 20 206, Dr. Győri István, Dr. Pituk Mihály, Pnnon Egyetem Műszki Informtiki Kr Mtemtik Tnszék LEKTORÁLTA: Dr. Molnárk

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik emelt szint 1111 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formi előírások: Fontos tudnivlók 1.

Részletesebben

5.2. ábra. A mágnestűk a rúdmágnes erőterében az erővonalak irányát mutatják.

5.2. ábra. A mágnestűk a rúdmágnes erőterében az erővonalak irányát mutatják. 8 5. Néány közelítő megoldás geometrii szemléltetése A dy dx = y2 x 2 2xy y 2 x 2 +2xy 5.1. ábr. differenciálegyenlet lpján rjzoltó iránymező. 5.2. ábr. A mágnestűk rúdmágnes erőterében z erővonlk irányát

Részletesebben

Dr. Égert János Dr. Molnár Zoltán Dr. Pere Balázs ALKALMAZOTT MECHANIKA

Dr. Égert János Dr. Molnár Zoltán Dr. Pere Balázs ALKALMAZOTT MECHANIKA Dr Égert János Dr Molnár Zoltán Dr ere Blás ALKALMAZOTT MECHANIKA UNIVERSITAS-GYŐR Nonprofit Kft Gőr, 010 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK ALKALMAZOTT MECHANIKA

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

Az elégséges szint eléréséhez szükséges ismeretek matematikából a 9. évfolyamon

Az elégséges szint eléréséhez szükséges ismeretek matematikából a 9. évfolyamon Pdáni Ktolikus Gkorlóiskol, Veszprém Az elégséges szint eléréséhez szükséges ismeretek mtemtikáól 9. évfolmon Az elégséges szint eléréséhez szükséges ismeretek mtemtikáól 9. évfolmon Cél: pontos, kitrtó

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás

Részletesebben

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

INTEGRÁLSZÁMÍTÁS D (I) := {F : F D(I)} Állítás. D (I) is vektortér. Bizonyítás. Házi feladat.

INTEGRÁLSZÁMÍTÁS D (I) := {F : F D(I)} Állítás. D (I) is vektortér. Bizonyítás. Házi feladat. INTEGRÁLSZÁMÍTÁS SIKOLYA ESZTER 1. Primitív üggvény Legyen I tetszőleges intervllm (korlátos vgy nem korlátos, nyílt, zárt, élig nyílt stb.). Jelölje C(I) z I intervllmon értelmezett olytonos üggvények

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Anlízis A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben