Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok"

Átírás

1 SZENT ISTVÁN EGYETEM Gépészmérnöki Kr Orov Lászlóné dr. Informtik lpji Tntárgyhoz Kidolgozott Ecel feldtok Gödöllı, 8.

2 Bevezetı Ez feldtgyőjtemény összefogllj z Informtik lpji tntárgy keretében okttott, Ecellel kpcsoltos fıbb témköröket, ismertnek tekintve z lpvetı tábláztkezelıi mőveleteket, mint pl. formázás, képletek bevitele, beépített függvények beszúrás. Az Ecel további lklmzási területeivel z Informtik tárgy fogllkozik. A példtár szerkezete: témkörönként rövid elméleti összefoglló, kidolgozott péld, mjd gykorlásr jánlott feldtok, melyek megoldás példtár végén megtlálhtó. Jelen példtár Dr. Molnár Sándor Informtik lpji tárgy keretében trtott elıdásir épül. A példtár hsználtát megkönnyíti Molnár Sándor, Csikós Miklósné, Lágymányosi Attil: Informtik lpji jegyzetének ismerete. Ez feldtgyőjtemény kézirt, lehetséges, hogy még trtlmz hibákt. Minden egyes, elıször jelzett hibáért pontjutlmt d szerzı. Trtlomjegyzék. FÜGGVÉNYÁBRÁZOLÁS.... MÁTRIXMŐVELETEK LINEÁRIS TRANSZFORMÁCIÓK LINEÁRIS EGYENLETRENDSZER MEGOLDÁSA LINEÁRIS PROGRAMOZÁS ALAPJAI FELADATOK EREDMÉNYE...

3 . FÜGGVÉNYÁBRÁZOLÁS Az Ecel függvényt megdó mtemtiki összefüggés lpján nem tudj közvetlenül függvény görbéjét lerjzolni, de síkbeli (térbeli) pontokt dott koordinátákkl meg tud jeleníteni. A függvényábrázolás fıbb lépései: A függvény néhány pontjánk meghtározás: pontok koordinátáit trtlmzó táblázt. A pontok ábrázolás digrmvrázsló segítségével Pont (y), vgy Felület típusú digrmml, ttól függıen, hogy függvény egy-, vgy kétváltozós. Függvényábrázolás Descrtes-féle koordinátrendszerben Kidolgozott feldt Ábrázolj z f ( ) ln sin függvényt z [;5] intervllumon.-es lépésközzel! (Trigonometrikus függvény rdiánt hsznál z Ecelben.) Kidolgozás

4 Függvényábrázolás polárkoordinát rendszerben A polárkoordinát rendszerben megdott függvényt elıször át kell írni Descrtes-féle koordinát rendszerbe, mjd zt z elızıekhez hsonlón lehet ábrázolni: Kidolgozott péld Ábrázolj z r ϕ függvényt [;ϕ ] intervllumon! Kidolgozás 4

5 Kétváltozós függvény ábrázolás Kidolgozott feldt: Ábrázolj f(,y) y függvényt [-;] intervllumon! Kidolgozás Felület típusú digrm lklmzásávl: Egyenlet megoldás grfikusn Feldt: f()g() meghtározás Egy digrmon ábrázolv f() és g() függvényeket görbék metszéspontjánk leolvsásávl z egyenlet közelítı megoldás meghtározhtó. Kidolgozott péld sin,? [-4;4] intervllumon. 5

6 Kidolgozás Az egyenlet megoldás ±,4. Egyenlet megoldás Célérték-kereséssel Egyenlet megoldásár z Ecel beépített lehetısége Célérték-keresés. Fıbb lépések Az egyenlet konstnsr rendezése Az egyenlet ismeretlent trtlmzó oldlánk celláb vitele Ecel képletként, kezdeti érték felvételével Eszközök menü Célérték-keresés Csk kezdeti értékhez legközelebbi gyököt tlálj meg, többit más kezdeti értékhez trtozó Célérték-kereséssel lehet meghtározni. Érdemes ezért elıször grfikusn meghtározni gyökök számát és körülbelüli értékét. Kidolgozott péld Oldj meg ln sin, 5 egyenletet z [;5] intervllumon, Az egyenlet bl oldlánk ábrázolás megdott intervllumon gyökök szám:, gyökök közelítı helye, ;, 6 ;, 6 ld.. oldlon görbét. 6

7 A három különbözı gyökre külön-külön Célérték-keresés: Célcell: képletet trtlmzó cell (egyenlet bl oldl) Célérték: milyen értéke legyen képletnek (egyenlet jobb oldl). Mindig egy vlós szám! Módosuló cell: hol változó vn. (Az értékét trtlmzó cell, mire képletben hivtkozunk.) Eredmény módosuló cellábn olvshtó le: A8,87 A másik két kezdeti értékre is lefutttv Célérték-keresést:,596997,, Feldtok. Ábrázolj z f ( ) e függvény görbéjét [;5] intervllumon!. Ábrázolj z g( ) cos( ) e függvényt [;5] intervllumon,5-es lépésközzel!. cos( ) Ábrázolj z h ( ) függvény görbéjét [-5;5] intervllumon! 4 sin.4 Ábrázolj z r ( ϕ) sinϕ függvény görbéjét [;π ] intervllumon!.5 Ábrázolj z ( ϕ ϕ r ) sin( / ) függvény görbéjét [;π ] intervllumon.6 Ábrázolj f (, y) sin cos y függvényt [-;] intervllumon! 7

8 . MÁTRIXMŐVELETEK Összedás, kivonás Mátriok összedás, kivonás: megfelelı elemek összege (különbsége), csk zonos mérető mátriokkl végezhetı mőveletek. Kidolgozott péld A B?, h Fıbb lépések A kiindulási mátriok Ecel tábláztb, tömbbe írás, mátri minden egyes eleme külön celláb kerül. Az eredmény mátri helyének kijelölése: B5:D7 tömb. Szerkesztılécen képlet beírás: két tömb összege ( tömbök megfelelı celláink összege) A 4 B Az eredménynek több cellábn kell megjelennie (többértékő függvényt lklmztunk), ezért nem Enter-rel, hnem Ctrl Shift Enter együttes lenyomásávl zárjuk szerkesztést. (Érdemes z Enter-t utoljár lenyomni, miközben másik két billentyőt benyomv trtjuk.) Az eredmény: Mátri szorzás konstnssl Kidolgozott péld: Htározz meg B c A mátriot, h c 5! A megoldás menete z összevonáshoz hsonló: A kiindulási dtok bevitele. Az eredmény mátri helyének kijelölése: B5:D7 tömb. Szerkesztılécen képlet beírás: G*B:D Ctrl Shift Enter Az eredmény: 5 8

9 Mátriok szorzás Két mátri összeszorozhtó, h méretükre igz: z elsı mátri oszlopink szám megegyezik második mátri sorink számávl. Az eredménymátri sorink szám z elsı mátri sorink számávl, z oszlopink szám második mátri oszlopink számávl egyenlı. A fentiekbıl következik, hogy tényezık sorrendje csk speciális esetben cserélhetı fel. Mátriszorzás lépései Ecelben: A mátriok tábláztr vitele. Eredménymátri tömbjének kijelölése. Beépített függvény hsznált mszorzt(tömb;tömb) Ctrl Shift Enter Kidolgozott péld AB?, h A B Lépések: A mátriok tábláztb vitele után: Eredménymátri tömbjének kijelölése, mszorzt(b:d6;g:h5), Ctrl Shift Enter Eredmény: 9

10 Mátri trnszponálás A mátri trnszponálás megfelelı sorok és oszlopok felcserélése. Kidolgozott péld Állíts elı z A mátri trnszponáltját! A Megoldás menete mátriok tábláztb vitele után: Eredménymátri tömbjének kijelölése, trnszponálás(b:d5) Ctrl Shift Enter Mátri determináns Az A négyzetes mátri determináns: det A, egy vlós szám. H det A, kkor z A mátri sori, oszlopi lineárisn függetlenek, zz egyik sor (oszlop) sem állíthtó elı többi sor(ok) (oszlop(ok)) vlmelyikeinek lineáris kombinációjként. (Pl. másik két sor összegeként, különbségeként, z egyik oszlop - szorosként, stb ). H det A, kkor éppen ellenkezıleg, z A mátri sori, oszlopi lineárisn összefüggık. (Pl. egyik sor elıállíthtó másik két sor különbségének 5-szöröseként, stb ) Kidolgozott péld det A?, h A 5 7 Megoldás menete mátri tábláztb vitele után: Eredmény cellájánk kijelölése, mdeterm(tömb), Enter, mivel z eredményt egyetlen cellábn kell kiírtni.

11 Mátri inverze Az A mátri inverze z mátri, mellyel bármely oldlról megszorozv z eredmény egységmátri: Fontos tudnivlók * A * A A A E Csk négyzetes mátrink vn inverze, h determináns nem null. Az inverz mátri z eredeti mátriszl zonos mérető. Az egységmátri mindig négyzetes, fıátlóbn egyeseket, másutt nullákt trtlmz. (Jelen esetben mérete mátri méretével zonos.) Kidolgozott péld: A?, h A 5 7 Megoldás menete A mátri tábláztb vitele után: Eredménymátri tömbjének kijelölése, inverz.mátri(tömb), Ctrl Shift Enter Eredmény: Feldtok:. Adottk következı mátriok: A 8 4 B C 4 D Végezze el z lábbik közül z elvégezhetı mőveleteket Ecel segítségével! ) A D b) B C c) d) A B e) ( B C) det( B) f) D C T A D

12 . LINEÁRIS TRANSZFORMÁCIÓK A síkbeli lineáris trnszformációk (eltolás, tükrözés, ngyítás, forgtás) megvlósíthtók egyegy lklmsn megválsztott trnszformációs mátri és síkbeli lkzt jellemzı pontjiból lkotott mátri szorztként. Az eltolás mátri mitt szükséges z-es síkbn levı síkidomokt trnszformálni. Kidolgozott péld Forgss el z ABC háromszöget fokkl, ábrázolj z eredeti és trnszformált lkztot ugynbbn koordinát-rendszerben, h A(,), B(6,), C(4,7). A háromszöget kkor tudjuk ábrázolttni, h feltüntetjük z összekötendı pontokt, ezért z A pont koordinátái kétszer szerepelnek mátribn. Az Ecel szögfüggvényei rdiánt hsználnk szögek mértékegységeként.

13 Kidolgozás

14 Az eredeti és z elforgtott háromszög: Forgtás fokkl 9 8 -,589885, 8, , ,69654, 5,59876 Adtsor Adtsor 6,,588,,866544, Feldtok. Forgss el z ABCD négyszöget z A csúcs körül, h A(;;), B(;;), C(6;4;), D(5;7;)!. Tükrözze z ABC háromszöget z AB oldl egyenesére, h A(-;;), B(;;), C(;5;) 4

15 4. LINEÁRIS EGYENLETRENDSZER MEGOLDÁSA Lineáris egyenletrendszer áltlános lkj.. n n m m nm m m m b b b n Feldt: dott ij és b i i,, n, j,,.m esetén j meghtározás b esetén. Lineáris egyenletrendszer megoldás z együtthtómátri inverzének segítségével A fenti egyenletrendszer átírhtó mátriszorzás szbályink megfelelıen z lkbn: Ab, hol A : n n oszlopvektor,... m... m z együtthtómátri : z ismeretlenek... m nm b b : z egyenletrendszer jobb oldlából képzett oszlopvektor. b n Az inhomogén egyenletrendszer ( b ) megoldhtó z lábbi lkbn, h z egyenletek lineárisn függetlenek egymástól, zz, h det A : A - *b A lineáris egyenletrendszer megoldásához szükséges mőveletek: det A érvényességének megvizsgálás A - meghtározás szükséges mátriszorzás elvégzése (sorrend fontos!) 5

16 Kidolgozott péld Oldj meg z lábbi egyenletrendszert: A már megismert mőveletekkel z Ecelben megoldás: Egyenletrendszer megoldásár z Ecel beépített lehetısége SOLVER. Lineáris egyenletrendszer megoldás Solver segítségével Az elıbbi feldt megoldás Eszlözök /Solver segítségével: (H menüben SOLVER nem jelenik meg, rá kell keresni Solver.l-r, mjd el kell indítni, vgy Eszközök/Bıvíménykezelı menüpontbn be kell jelölni Solvert. A Solver lklms szélsıéték-feldtok megoldásár, lineáris és nemlineáris egyenletrendszerek megoldásár, lineáris progrmozási feldt megoldásár ld. késıbb.) Szükséges lépések: Az egyenletrendszert lkotó egyenletek konstnsr rendezése. Az ismeretlenek számár egy-egy cell kijelölése, célszerően egy tömbben, kezdeti értékek megdásávl. Pl.:. Az egyes egyenletek ismeretlen trtlmzó oldlánk egy-egy celláb vitele képlet formájábn. Solver párbeszédblk kitöltése: Célcell: egyik egyenlet bl oldl, Célérték: z elıbbi egyenlet jobb oldl (konstns!!!), Módosuló cell: Ismeretlenek tömbje, Korlátozó feltételek: többi egyenlet. 6

17 7 Kidolgozás Megoldás gomb megnyomás után Solver eredményeket z eredeti tábláztbn kérve z egyenletrendszer megoldás B5:D5 tömbben jelenik meg. (; -; ) Feldtok 4. Oldj meg z lábbi egyenletrendszereket z ismertetett módszerekkel: ) d c b d c b d c b c b b) 4 z y z y y c) w v u w u v u (B:D;B$5:D$5)

18 5. LINEÁRIS PROGRAMOZÁS ALAPJAI Problém: korlátozó feltételek mellett, vlmely cél szempontjából optimum elérése, zz vektor meghtározás - dott feltételek esetén (lineáris egyenlıtlenség rendszer) - vlmilyen cél teljesülésével. (Mimum, minimum, egy bizonyos érték elérése, mely z ismeretlen lineáris függvénye) Mtemtiki modell:?, h A B normál feldt c T Részletesen: m, i...n i *... n * * b n és *... n * * b m * m *... * mn n b c * c *... c n * m n n m... feltételrendszer célfüggvény További feldttípusok: Módosított normál feldt: feltételrendszerben z egyenlıtlenség mellett reláció is szerepel. Áltlános mimum, ill. minimumfeldt: feltételrendszerben < > relációk szerepelhetnek., s célfüggvénynek mimum- ill. minimum-helye kérdés. Alklmzás: termelési, keverési, drbolási, szállítási, hozzárendelési feldtok. Megjegyzés z LP feldtok megoldhtóságáról: z LP feldtnk nincs megengedett megoldás ( feltételrendszer megoldáshlmz üreshlmz), kkor z eredeti feldtnk sincs megoldás, z LP feldtnk vn ugyn megengedett megoldás, de nincs optimális megoldás, z LP feldtnk vn optimális megoldás - egyetlen optimális megoldás vn - végtelen sok optimális megoldás vn 8

19 Kidolgozott példák. Oldj meg következı LP feldtot grfikus úton! ; y ; y ; 4y 5 y Kidolgozás m Két ismeretlen lévén feltételek és célfüggvény is ábrázolhtó Descrtes-féle koordinát rendszerben. Azonos átlkításokt lklmzv z ábrázolndó feltételrendszer: és célfüggvény: ; y ; y (-)/; y 5-4 yc-*, s keressük feltételrendszert kielégítı legngyobb C értéket. (Az dott meredekségő egyenest önmgávl párhuzmosn felfelé tolv, míg feltételrendszer megoldáshlmzán vn (ld. ábr). E kétváltozós feldt lehet például z lábbi termelési feldt mtemtiki modellje: Kétféle terméket gyártunk: I. és II. z A és B nyersnygok felhsználásávl. Egy egységnyi I. termékhez egység A és 4 egység B nyersnyg szükséges, egy egységnyi II. termékhez pedig rendre, ill. egység. Hány egységet állítsunk elı z I. és II. termékekbıl, hogy mimális legyen bevétel, h nyersnygkészletek (, ill. 5 egység) nem léphetık túl és z I. ill. II. termék egységár ill.? (A pic felvevıképessége korlátln.) Nyersnyg\Termék I II Nyersnyg készlete A B 4 5 Eldási egységár 9

20 . Egy gyárbn négyféle terméket gyártnk (A, B, C, D). Minden eldott drb után várhtó hszon termékenként,, 6, 5 Ft. Egy drb termék elıállításához szükséges gépidı és megmunkáló gépek kpcitás z lábbi tábláztbn vn összefogllv. Htározz meg, hogy z egyes termékekbıl hány drbot állítsnk elı, h mimális hszonr törekszenek, de gépek kpcitását nem léphetik túl. Megmunkáló gépek Termékek Gépek A B C D kpcitás [ór/db] [ór/db] [ór/db] [ór/db] [ór] eszterg 8 mró 4 köszörő Kidolgozás Mtemtiki modell Ismeretlenek: A különbözı termékekbıl gyártndó drbszám: A, B, C, D [db]. Feltételek: - csk, vgy ettıl ngyobb drbszám állíthtó elı: A, B, C, D - drbszám egész érték lehet csk: A, B, C, D: egész - z eszterg, mró, köszörő kpcitások nem léphetık túl: Cél: A mimális bevétel: A B A C C B 8 4 [ór] D D 6 5 m [Ft] A B C D A feldt megoldásához szükséges lépések z Ecelben:. Alpdtok beírás; egy-egy cell biztosítás z ismeretleneknek, z egyenlıtlenségek bl oldlánk és célfüggvénynek (Ecel képletek, melyek hivtkozik z ismeretlen cellájár!).. Solverprméterek megdás, Solver futttás.

21 . lépés:. lépés:

22 Az A termékbıl tehát 7, B-bıl, C-bıl 9 és D termékbıl db elıállítás esetén érhetı el mimális hszon (45Ft) z dott feltételek mellett. Feldtok 5. Oldj meg grfikusn megoldott feldtot (z elsı Kidolgozott feldt) Solver segítségével! 5. Oldj meg z lábbi LP feldtot: ; y ; z y4z yz y4z 6 y6z m

23 6. FELADATOK EREDMÉNYE. Ábrázolj z f ( ) e függvény görbéjét [,5] intervllumon! f() Ábrázolj z g( ) cos( ) e függvényt [;5] intervllumon,5-es lépésközzel! g() cos( ). Ábrázolj z h ( ) függvényt [-5;5] intervllumon! 4 sin h(),5,5,5, ,5 4 6

24 .4 Ábrázolj z r ( ϕ) sinϕ függvény görbéjét [;π ] intervllumon! rsin(fi),5,5,5,5 - -,5 - -,5 -,5,5,5.5 Ábrázolj z ( ϕ ϕ r ) sin( / ) függvény görbéjét [;π ] intervllumon rsin(fi/)^,8,6,4, -,5 - -,5 -,,5 -,4 -,6 -,8.6 Ábrázolj f (, y) sin cos függvényt [-;] intervllumon! f(,y)sin cos,5,5 -,5 - -,5 S S S 4

25 .. Forgss el z ABCD négyszöget z A csúcs körül, h A(;;), B(;;), C(6;4;), D(5;7;)! A forgtás mátri O körül forgt, így feldt csk több lépésben oldhtó meg: Az lkzt eltolás úgy, hogy z A csúcs z origób kerüljön, mjd trnszformált lkzt elforgtás, s végül z elforgtott lkzt vissztolás, hogy z A csúcs z eredeti helyére kerüljön. 5

26 6. Tükrözze z ABC háromszöget z AB oldl egyenesére, h A(-,,), B(,,), C(,5,) Tükrözés mátrii koordinát-tengelyre tükröznek, ezért több trnszformációs lépésben oldhtó meg feldt. 4. ) d c b d c b d c b c b b) 4 z y z y y c) w v u w u v u ) b c d b) Nincs egyértelmő megoldás, mert z együtthtómátri determináns null. c) u - v w 5. Oldj meg következı LP feldtot: ; y ; y ; 4y 5; y m

27 . lépés. lépés Eredmény: A célfüggvény optimális értéke tehát: (E4),,5; y5 (B6:C6). 5. Oldj meg z lábbi LP feldtot: ; y ; z y4z yz y4z 6 y6z m Eredmény: célfüggvény m. értéke: 56,467; ; y,576; z,6; 7

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

Excel. Feladatok 2015.02.13. Geotechnikai numerikus módszerek 2015

Excel. Feladatok 2015.02.13. Geotechnikai numerikus módszerek 2015 05.0.3. Ecel Geotechniki numerikus módszerek 05 Feldtok Szögtámfl ellenőrzése A Ferde, terhelt térszín, szemcsés háttöltés, elcsúszás, nyomtéki ábr Sávlp süllyedésszámítás B Két tljréteg, krkterisztikus

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom:

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom: Bevezetés számítástudomány mtemtiki lpji Vektorlger elődás fóliák Elméleti nyg tételek, definíciók, izonyítás vázltok Bércesné Novák Ágnes Források, jánlott irodlom: Hjós György: Bevezetés geometriá, Tnkönyvkidó,

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0

Részletesebben

2. modul Csak permanensen!

2. modul Csak permanensen! MATEMATIKA C. évfolym. modul Csk permnensen! Készítette: Kovács Károlyné Mtemtik C. évfolym. modul: Csk permnensen! Tnári útmuttó A modul célj Időkeret Ajánlott korosztály Modulkpcsolódási pontok A htványzonosságok

Részletesebben

II. EGYENLETEK ÉS EGYENLŐTLENSÉGEK

II. EGYENLETEK ÉS EGYENLŐTLENSÉGEK Egyenletek és egyenlőtlenségek 5 II EGYENLETEK ÉS EGYENLŐTLENSÉGEK Az idők folymán ngyon sok gykorlti problém merült fel, melynek megoldásához egyenletekre volt szükség A mi egyszerű és tömör mtemtiki

Részletesebben

Gyakorló feladatsor 9. osztály

Gyakorló feladatsor 9. osztály Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometri A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS Mtemtik emelt szint Jvítási-értékelési útmuttó MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERFORRÁS MINISZTÉRIUM ÉRETTSÉGI VIZSGA 0. május. Mtemtik emelt szint

Részletesebben

A VI. FEKETE MIHÁLY EMLÉKVERSENY

A VI. FEKETE MIHÁLY EMLÉKVERSENY A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.

Részletesebben

Óravázlatok: Matematika 2. Tartományintegrálok

Óravázlatok: Matematika 2. Tartományintegrálok Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Anlízis A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik emelt szint 1111 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formi előírások: Fontos tudnivlók 1.

Részletesebben

Végeredmények, emelt szintû feladatok részletes megoldása

Végeredmények, emelt szintû feladatok részletes megoldása Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Végeselem modellezés. Bevezetés 2012.02.20.

Végeselem modellezés. Bevezetés 2012.02.20. Végeselem modellezés Bevezetés 1 21222 Számítógéppel segített szerkezettervezés Szerkezetmegdás, CAD rjzolás dtbevitel módosítás Méretezés, tervezés VEM dtbevitel ellenőrzés Részletek kidolgozás AutoCAD

Részletesebben

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2011

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2011 Mtemtik I. Mőszki informtiki mérnm rnöksszisztens http://jgypk.u jgypk.u-szeged.hu/tnszek/szmtech szmtech/oktts/mtemtik-.pdf Glmbos GáborG JGYPK - Mtemtik I. Felsıfokú Szkképzés A Mtemtik I. fıbb f témái:

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000 A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek.

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek. Ismertető A középiskolában sokféle egyenlet megoldásával megismerkednek a diákok. A matematikaórán azonban csak korlátozott típusú egyenletek fordulnak elő. Nem is cél az egyenletmegoldás általános tárgyalása,

Részletesebben

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4) Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket!

4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket! Mtemtik 0. elődás Végezzük el műveleteket!. 6... Alkítsuk szorzttá következő kifejezéseket!. 8 6 6. 7. 8. y Oldjuk meg z lái egyenleteket! 9. 0. 7 0 7 6. 7. Egy kétjegyű szám számjegyeinek összege. H felseréljük

Részletesebben

E42-101 Segédletek III. Excel alapok. Excel alapok

E42-101 Segédletek III. Excel alapok. Excel alapok z S1O1 hivtko- E42-101 Segédletek III. Excel lpok Excel lpok Áttekintés elemzésekre, A Microsoft dtbázis-kezelésre Excel egy tábláztkezelő (korlátozottn!) progrm, és dtok melyet grfikus dtbevitelre, megjelenítésére

Részletesebben

Geometriai transzformációk, transzformációs egyenletek és alkalmazásuk a geoinformatikában

Geometriai transzformációk, transzformációs egyenletek és alkalmazásuk a geoinformatikában Geometrii trnszformációk, trnszformációs egenletek és lklmzásuk geoinformtikán Szkdolgozt Bódis Ktlin Szeged 999 Trtlomjegzék Trtlomjegzék Bevezetés.... Feldtok...5. A Föld felszínének sík vló leképezése...5.

Részletesebben

VEKTOROK ÉS MÁTRIXOK

VEKTOROK ÉS MÁTRIXOK DR NAGY TAMÁS VEKTOROK ÉS MÁTRIXOK Miskolc, A bemuttott kuttó munk TÁMOP-B-//KONV-- jelű projekt részeként z Európi Unió támogtásávl, z Európi Szociális Alp társfinnszírozásávl vlósul meg This reserch

Részletesebben

Excel Hivatkozások, függvények használata

Excel Hivatkozások, függvények használata Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Néhány egyszerű tétel kontytetőre

Néhány egyszerű tétel kontytetőre Néhány egyszerű tétel kontytetőre ekintsük z ábr szerinti szimmeikus kontytetőt! ábr Az ABC Δ területe: ABC' m,v; ( ) z ABC Δ területe: ABC m ; ( ) z ABC* Δ területe: ABC* m ( 3 ) Az ábr szerint: m,v cos

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

Koós Dorián 9.B INFORMATIKA

Koós Dorián 9.B INFORMATIKA 9.B INFORMATIKA Számítástechnika rövid története. Az elektronikus számítógép kifejlesztése. A Neumann-elv. Információ és adat. A jel. A jelek fajtái (analóg- és digitális jel). Jelhalmazok adatmennyisége.

Részletesebben

Gazdasági matematika 1. tantárgyi kalauz

Gazdasági matematika 1. tantárgyi kalauz Dr Mdrs Lászlóné Gzdsági mtemtik tntárgyi kluz Szolnoki Főiskol Szolnok 005 Gzdsági mtemtik tntárgyi kluz A kluz következő három kidványhoz készült: Dr Csernyák László: Anlízis, Mtemtik közgzdászoknk sorozt,

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 7. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 02

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória 1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel

Részletesebben

Második epochafüzet. Matematika 9. évfolyam. Tulajdonos: ...

Második epochafüzet. Matematika 9. évfolyam. Tulajdonos: ... Második epochfüzet Mtemtik 9. évfolym Tuljdonos:... Trtlomjegyzék Amit z epoch végére tudni kell... Hlmzok...3 Intervllumok...6 Tájékozódás koordinát-rendszerben...9 Függvények...3 Függvények tuljdonsági...6

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

1. Laboratóriumi gyakorlat ELMÉLETI ALAPFOGALMAK

1. Laboratóriumi gyakorlat ELMÉLETI ALAPFOGALMAK . Lortóriumi gykorlt LMÉLTI ALAPFOGALMAK. Műveleti erősítők A műveleti erősítőket feszültség erősítésre, összehsonlításr illetve különöző mtemtiki műveletek elvégzésére hsználják (összedás, kivonás, deriválás,

Részletesebben

Kristályos szerkezetű anyagok. Kristálytan alapjai. Bravais- rácsok 1. Bravais- rácsok 2. Dr. Mészáros István Anyagtudomány tárgy előadásvázlat 2004.

Kristályos szerkezetű anyagok. Kristálytan alapjai. Bravais- rácsok 1. Bravais- rácsok 2. Dr. Mészáros István Anyagtudomány tárgy előadásvázlat 2004. Kristályos szerkezetű nygok BME, Anygtudomány és Technológi Tnszék Rácspontok, ideális rend, periodikus szerkezet Rendezettség z tomok között tuljdonságok Szimmetri, síklpok, hsdás, nizotrópi Dr. Mészáros

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Microsoft Excel. Táblázatkezelés. Dr. Dienes Beatrix

Microsoft Excel. Táblázatkezelés. Dr. Dienes Beatrix Microsoft Excel Táblázatkezelés Dr. Dienes Beatrix A táblázatkezelı feladata: Táblázatosan elrendezett adatok hatékony és látványos kezelése. Nagy adathalmazok adatbázis-kezelı Legfontosabb szolgáltatások:

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Matematika emelt szintû érettségi témakörök 2012. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2012. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 0 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK

6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK 6. Lbortóriumi gykorlt KAPAITÍV SZINTÉRZÉKELŐK. A gykorlt célj A kpcitív szintmérés elvének bemuttás. A (x) jelleggörbe ábrázolás szigetelő és vezető olyékok esetén. Egy stbil multivibrátor elhsználás

Részletesebben

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1 Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így

Részletesebben

MATEMATIKA 10. A tankönyv feladatai és a feladatok megoldásai

MATEMATIKA 10. A tankönyv feladatai és a feladatok megoldásai Dr Gerőcs László Számdó László MTEMTIK 0 tnkönyv feldti és feldtok megoldási megoldások olvsásához crobt Reder progrm szükséges, mely ingyenesen letölthető z internetről (például: dobelhu weboldlról) feldtokt

Részletesebben

ALKALMAZÁSI SZINTEK I. ALKALMAZÁS MEGÉRTÉS MAGASABB RENDŐ MŐVELETEK. 1. változat ISMERET

ALKALMAZÁSI SZINTEK I. ALKALMAZÁS MEGÉRTÉS MAGASABB RENDŐ MŐVELETEK. 1. változat ISMERET ALKALMAZÁSI SZINTEK I. ALKALMAZÁS MEGÉRTÉS MAGASABB RENDŐ MŐVELETEK ISMERET 1. változt KOGNITÍV KÖVETELMÉNYEK ISMERET MEGÉRTÉS ALKALMAZÁS MAGASABB RENDŐ MŐVELETEK TÉNYEK ÉS ELEMI INFORMÁCIÓK ISMERETE FOGALMAK,

Részletesebben

PÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében

PÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében PÁLYÁZATI ÚTMUTATÓ Társdlmi Megújulás Opertív Progrm keretében Munkhelyi képzések támogtás mikro- és kisválllkozások számár címmel meghirdetett pályázti felhívásához Kódszám: TÁMOP-2.1.3/07/1 v 1.2 A projektek

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 3. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 03

Részletesebben

Dr Polgár Mihályné Érdekes matematikai feladatok matek.fazekas.hu

Dr Polgár Mihályné Érdekes matematikai feladatok matek.fazekas.hu / KÜLÖNBÖZİ SZÁMHALMAZOK ) Kkukktojást keresünk! ) b) 60 0 0 8 6 8 0 c) d) π 8 0,000. 0,666. 0 0.) (nincs értelmezve 0-vl vló osztás) kidobjuk! 0 A megmrdt számhlmzbn 8 irrcionális szám: : dobjuk ki! nem

Részletesebben

A torokgerendás fedélszerkezet erőjátékáról 1. rész

A torokgerendás fedélszerkezet erőjátékáról 1. rész A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk

Részletesebben

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

Matematikai analízis. Editura Didactică şi Pedagogică

Matematikai analízis. Editura Didactică şi Pedagogică András Szilárd Mureşn Mrin Mtemtiki nlízis és lklmzási Editur Didctică şi Pedgogică Bucureşti, 2005 Descriere CIP Bibliotecii Nţionle României ANDRÁS SZILÁRD, MARIAN MUREŞAN Mtemtiki nlízis és lklmzási/

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

Mindig csak a kitevő?

Mindig csak a kitevő? MATEMATIKA C. évfolym. modul Mindig csk kitevő? Készítette: Kovács Károlyné Mtemtik C. évfolym. modul: Mindig csk kitevő? Tnári útmuttó A modul célj Időkeret Ajánlott korosztály Modulkpcsolódási pontok

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Matematika. Második kötet KÍSÉRLETI TANKÖNYV

Matematika. Második kötet KÍSÉRLETI TANKÖNYV Mtemtik Második kötet 10 KÍSÉRLETI TNKÖNYV tnkönyv megfelel z 51/0 (XII. ) EMMI rendelet: sz. melléklet: Kerettnterv gimnáziumok 9 évfolym számár.04 Mtemtik 6. sz. melléklet: Kerettnterv szkközépiskolák

Részletesebben

A Szolgáltatás minőségével kapcsolatos viták

A Szolgáltatás minőségével kapcsolatos viták I. A Szolgálttó neve, címe DITEL 2000 Kereskedelmi és Szolgálttó Korlátolt Felelősségű Társság 1051. Budpest, Nádor u 26. Adószám:11905648-2- 41cégjegyzékszám: 01-09-682492 Ügyfélszolgált: Cím: 1163 Budpest,

Részletesebben

Sűrűségmérés. 1. Szilárd test sűrűségének mérése

Sűrűségmérés. 1. Szilárd test sűrűségének mérése Sűrűségérés. Szilárd test sűrűségének érése A sűrűség,, definíciój hoogén test esetén: test töege osztv test V térfogtávl: V A sűrűség SI értékegysége kg/, hsználtos ég kg/d, kg/l és g/c Ne hoogén testnél

Részletesebben

Arányosság. törtszámot az a és a b szám arányának, egyszer en aránynak nevezzük.

Arányosság. törtszámot az a és a b szám arányának, egyszer en aránynak nevezzük. Arányosság Az törtszámot z és szám rányánk, egyszeren ránynk nevezzük. Az rány értéke zt ejezi ki, hogy z szám hányszor ngyo számnál, illetve szám hányszor kise z számnál. Az rányokkl végezhet két legontos

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

Összegezés az ajánlatok elbírálásáról

Összegezés az ajánlatok elbírálásáról 9. melléklet 92./2011. (XII.30.) NFM rendelethez Összegezés z jánltok elbírálásáról 1. Az jánltkérő neve és címe: Pécs Megyei Jogú Város Önkormányzt 7621 Pécs, Széchenyi tér 1. sz. 2. A közbeszerzés tárgy

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 4. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2010. jnuár 22. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym AMt2 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet

Részletesebben

Matematika emelt szintû érettségi témakörök 2015. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2015. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 05 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött

Részletesebben

Matematika emelt szintû érettségi témakörök 2014. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2014. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 04 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött

Részletesebben

A motiválás lehetőségei az algebra tanításában

A motiválás lehetőségei az algebra tanításában A motiválás lehetőségei z lgebr tnításábn Szkdolgozt Készítette: Sár Csenge Mtemtik Bsc, tnári szkirány Témvezető: Somfi Zsuzs ELTE TTK Mtemtiktnítási és Módszertni Központ Eötvös Loránd Tudományegyetem

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

14. modul Számtani és mértani közép, nevezetes egyenlőtlenségek

14. modul Számtani és mértani közép, nevezetes egyenlőtlenségek MATEMATIKA A 10. évfolym 14. modul Számtni és mértni közép, nevezetes egyenlőtlenségek Készítette: Vidr Gábor Mtemtik A 10. évfolym 14. modul: Számtni és mértni közép, nevezetes egyenlőtlenségek A modul

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA 9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos

Részletesebben