MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometria

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometria"

Átírás

1 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometri A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához! 1) Döntse el, hogy következő állítások közül melyik igz és melyik hmis! ) A háromszög köré írhtó kör középpontj mindig vlmelyik súlyvonlr esik. b) Egy négyszögnek lehet 180 -nál ngyobb belső szöge is. c) Minden trpéz prlelogrmm. ) hmis b) igz c) hmis Összesen: pont ) Egy derékszögű háromszög egyik befogójánk hossz cm, vele szemközti szög 18,5. Mekkor másik befogó? Készítsen vázltot, és válszát számítássl indokolj! tg18,5 A másik befogó 8,966 9 Összesen: pont ) Egy derékszögű háromszög átfogój 4,7 cm hosszú, z egyik hegyesszöge 5,5. Hány cm hosszú szög melletti befogó? Készítsen vázltot z dtok feltüntetésével! Válszát számítássl indokolj, és egy tizedes jegyre kerekítve dj meg! 18,5 5,5 4,7 cm 4,7 cos5,5,861 A befogó hossz kerekítve:,9 cm Összesen: pont

2 4) Döntse el, hogy következő állítások közül melyik igz, melyik hmis! ) A szbályos ötszög középpontosn szimmetrikus. b) Vn olyn háromszög, melynek súlypontj és mgsságpontj egybeesik. c) Minden prlelogrmm tengelyesen szimmetrikus. ) hmis b) igz c) hmis Összesen: pont 5) Egy háromszög belső szögeinek rány :5:11. Hány fokos legkisebb szög? ( pont) A legkisebb szög 0. ( pont) 6) Egy függőleges trtórúdr tljtól 4 m mgsn mozgásérzékelőt szereltek, hozzákpcsolt lámp 140º-os nyílásszögű forgáskúpbn világít függőlegesen lefelé. ) Készítsen vázltrjzot z dtok feltüntetésével! ( pont) b) Milyen messze vn lámpától legtávolbbi megvilágított pont? c) Megvilágítj-e z érzékelő lámpáj zt tárgyt, melyik tljon trtórúd ljától 15 m távolságr vn? d) A trtórúdon méterenként kmpókt helyeztünk el, melyekre fel tudjuk ksztni mozgásérzékelő lámpáját. Alulról számítv hánydik kmpót hsználjuk, h zt krjuk, hogy vízszintes tljon ne világítson meg lámp 100 m-nél ngyobb területet? (7 pont) ) m y b) ( pont) 4 y cos 70 11, 7 m c) A legtávolbbi megvilágított pont tljon rúd ljától 4tg70 távolságr vn, ( pont) 11 m így 15 méterre levő pont már nincs megvilágítv.

3 d) r r ,64 m 5,65 h tg70,05 m ( pont) ( pont) tehát z első vgy második kmpór kell ksztni z érzékelőt. ( pont) Összesen: 17 pont 7) Mekkor z egységsugrú kör 70 -os középponti szögéhez trtozó ívének hossz? ( pont) A középponti szögekre és z ívhosszkr vontkozó összefüggés lpján: Innen ( pont) 8) Döntse el, hogy z lábbi B állítás igz vgy hmis! B: H egy négyszög két szemközti szöge derékszög, kkor z tégllp. Írj le z állítás megfordítását (C). Igz vgy hmis C állítás? B logiki értéke: HAMIS C állítás: H egy négyszög tégllp, kkor két szemközti szöge derékszög. C logiki értéke: IGAZ Összesen: pont 9) Egy háromszög egyik oldlánk hossz 6 cm. Az ezeken nyugvó két szög 50º és 60º. A háromszög beírt körének középpontját tükröztük háromszög oldlir. E három pont háromszög csúcsivl együtt egy konve htszöget lkot. ) Mekkorák htszög szögei? (6 pont) b) Számíts ki htszög zon két oldlánk hosszát, mely háromszög 60º-os szögének csúcsából indul! (5 pont) c) Hány négyzetcentiméter htszög területe? (6 pont) A b) és c) kérdésekben válszt egy tizedes pontossággl dj meg!

4 ) A háromszög hrmdik szöge BAC 70 A beírt kör O középpontj belső szögfelezők metszéspontj. A tükrözésnél ezért z eredeti háromszög csúcsinál belső szögek felének kétszerese dódik hozzá z eredeti szöghöz, vgyis keletkezett htszög szögei: DAE FBD 10 ECF Az ABC háromszög szögfelezői áltl (z O középpontnál) bezárt szögek tükrözés mitt rendre megegyeznek htszög D, E és F csúcsú szögeivel: BDA CFB AEC 15 BDA 115, AEC 10, CFB 15, b) A tükrözés mitt BO BD BF Elegendő tehát z BO belső szögfelező szksz hosszát kiszámítni. ( pont) A BOC háromszögben szinusztétel lpján: A tükrözés mitt miből, 1 cm sin5 6 sin15 ( pont) htszög keresett két oldlánk hossz egyránt,1 cm. c) A tükrözés mitt htszög területe háromszög területének kétszerese. A háromszög AB c oldlár: c sin50 6 sin 70 miből c 4,9 cm 6c sin 60 A háromszög területe 1,7 cm A htszög területe 1, 7 5, 4 cm D B 60 A F O 6 E 50 C ( pont) Összesen: 17 pont

5 10) Egy háromszög oldlhosszúsági egész számok. Két oldl cm és 7 cm. Döntse el következő állításokról, hogy igz vgy hmis! ( pont) 1. állítás: A háromszög hrmdik oldl lehet 9 cm.. állítás: A háromszög hrmdik oldl lehet 10 cm. 1. állítás: Igz. állítás: Hmis Összesen: pont 11) Az ábrán láthtó háromszögben hány cm hosszú z 56 -os szöggel szemközti oldl? (Az eredményt egy tizedes jegy pontossággl dj meg!) Írj le számítás menetét! sin56 4,8 sin 41 61, ( pont) Összesen: pont 1) Egy négyzet és egy rombusz egyik oldl közös, közös oldl 1 cm hosszú. A négyzet és rombusz területének z rány :1. ) Mekkor rombusz mgsság? (5 pont) b) Mekkorák rombusz szögei? c) Milyen hosszú rombusz hosszbbik átlój? A válszt két tizedesjegyre kerekítve dj meg! m ) Helyes ábr

6 b) négyzet T és T m m 1 rombusz A rombusz mgsság m sin 0 m 65, cm (hol α hegyesszög) c) Bármelyik lehetséges derékszögű háromszögből jó összefüggést felír 150 hosszbbik átló segítségével, például e 1 cos15 e 5, 11 cm cos15 e 1 ( pont) Összesen: 1 pont 1) Adj meg z lábbi állítások igzságértékét (igz vgy hmis), mjd döntse el, hogy b) és c) jelű állítások közül melyik z ) jelű állítás megfordítás! ) H z ABCD négyszög tégllp, kkor átlói felezik egymást. b) H z ABCD négyszög átlói felezik egymást, kkor ez négyszög tégllp. c) H z ABCD négyszög nem tégllp, kkor átlói nem felezik egymást. ) igz b) hmis c) hmis Az ) megfordítás b). Összesen: 4 pont 14) Hányszorosár nő egy cm sugrú kör területe, h sugrát háromszorosár növeljük? ( pont) 9-szeresére nő terület. ( pont) 15) Egy derékszögű háromszög egyik befogój 5 cm, z átfogój 1 cm hosszú. Mekkorák háromszög hegyesszögei? (Válszát egész fokr kerekítve dj meg!) ( pont) A hegyesszögek: és 67 ( pont)

7 16) Adj meg z lábbi állítások logiki értékét! A tábláztbn krikázz be helyes válszt! A állítás: Minden rombusznk pontosn két szimmetritengelye vn. B állítás: Minden rombusznk vn két szimmetritengelye. C állítás: Vn olyn rombusz, melynek pontosn két szimmetritengelye vn. D állítás: Nincs olyn rombusz, melynek négy szimmetritengelye vn. A állítás: hmis B állítás: igz C állítás: igz D állítás: hmis Összesen: 4 pont 17) Vlmely derékszögű háromszög területe 1 cm, z hegyesszögéről pedig tudjuk, hogy tg. ) Mekkorák háromszög befogói? (8 pont) b) Mekkorák háromszög szögei, és mekkor köré írt kör sugr? (A szögeket fokokbn egy tizedesjegyre, kör sugrát cm-ben szintén egy tizedesjegyre kerekítve dj meg!) ) A befogók rány :. ( pont) Az egyik befogó, másik. háromszög területe: 1. b. 4. A (pozitív) megoldás: b A befogók hossz 6 cm és 4 cm. b) Az α hegyesszög 56, másik hegyesszög,7 -os. A derékszögű háromszög átfogój (Pitgorsz tétele szerint), kör sugr (z átfogó fele): 1, 6 cm. Összesen: 1 pont. 5 7, cm α

8 18) A következő kérdések ugynrr 0 oldlú szbályos sokszögre vontkoznk. ) Mekkorák sokszög belső szögei? Mekkorák külső szögek? b) Hány átlój illetve hány szimmetritengelye vn sokszögnek? Hány különböző hosszúságú átló húzhtó egy csúcsból? (6 pont) c) Milyen hosszú legrövidebb átló, h szbályos sokszög beírt körének sugr 15 cm? A válszt két tizedesjegyre kerekítve dj meg! (8 pont) ) A belső szögek 16 -osk, ( pont) külső szögek 18 -osk. b) Az összes átlók szám ( pont) Szemközti csúcsokt összekötő átlóból 10 vn, (ezek egyenese 1 1 szimmetritengely) szemközti oldlk felezőpontját összekötő szimmetritengelyből szintén 10, tehát összesen 0 szimmetritengelye vn sokszögnek. Egy csúcsból 17 átló húzhtó, ezek között 8 8 páronként egyenlő hosszú, tehát 9 különböző hosszúságú átló húzhtó egy csúcsból. c) A szbályos 0-szög egy oldlához trtozó O (konve) középponti szög 18 -os. tg tg9 4,75 cm A legrövidebb átló egy 16 szárszögű egyenlő szárú háromszögből számolhtó ki, melynek szári 4,75 cm hosszúk. d sin81 4,75 d 9,5 sin81 d 4, 75 sin 81 9,8 cm Összesen: 17 pont A B d C

9 19) Egy torony árnyék vízszintes tljon kétszer olyn hosszú, mint torony mgsság. Hány fokos szöget zár be ekkor Np sugr vízszintes tljjl? A keresett szöget fokbn, egészre kerekítve dj meg! ( pont) 7 ( pont) 0) Egy víztározó víztükrének lkját z ábrán láthtó módon z ABCD prlelogrmmávl közelítjük. A prlelogrmmánk z 1:0000 méretrányú térképen mért dti:, és. ) A helyi önkormányzt olyn kerékpárút építését tervezi, melyen z egész víztározót körbe lehet kerekezni. Hány km hosszúságú lesz ez z út, h hossz kb. 5%-kl több prlelogrmm kerületénél? Válszát egy tizedesjegyre kerekítve dj meg! b) Mekkor z legngyobb távolság, melyet motorcsónkkl, irányváltozttás nélkül megtehetünk víztározó víztükrén? Válszát BD AB,0 cm 4, 70 cm AD,80 cm km-ben, egy tizedesjegyre kerekítve dj meg! (7 pont) c) Körülbelül hány m -rel lesz több víz víztározóbn, h vízszintet 15 cm-rel megemelik? Válszát ezer m -re kerekítve dj meg! (6 pont) ) A térképen prlelogrmm kerülete 17,0 cm, kerékpárút pedig cm hosszú. 17,0 1,5 1,5 A vlóságbn kerékpárút hossz cm, zz 6,75 km. Egy tizedes jegyre kerekítve tehát kerékpárút hossz 6,4 km. A számításokt kezdhetjük térkép dtink vlós méretre váltásávl is. b) Az AC szksz leghosszbb. Az ABD háromszögre felírjuk koszinusztételt:, 4,7,8 4,7,8 cos BAD. Ebből: 0,7178 cos BAD 4,7,8, 4,7,8 1, (tehát BAD 44,1 és így ABC 15,9 ) Az ABC háromszögből koszinusztétellel: AC 4,7,8 4,7,8 cos ABC. miből AC 7,9 cm Ez vlóságbn (egy tizedes jegyre kerekítve),4 km.

10 c) A vízfelszín területe vlóságbn: ,7,8 sin 44,1 1, cm (Heron-képlet is hsználhtó.), mi 6 1, m. 6 1, ,15, m ( pont) Tehát kb. -rel lesz több víz tárolóbn, ( pont) mi ezer köbméterre kerekítve 168 ezer m vízmennyiséget jelent. Összesen: 17 pont 1) Egy egyenlő szárú háromszög lpj 5 cm, szár 6 cm hosszú. Hány fokosk háromszög lpon fekvő szögei? A szögek ngyságát egész fokr kerekítve dj meg! Válszát indokolj! Az lphoz trtozó mgsság felezi z lpot. A keletkező derékszögű háromszögben keresett szögre Az lpon fekvő szögek 65 -osk. Összesen: pont ) Tekintsük zt derékszögű háromszöget, melyben z átfogó hossz 1, z hegyesszög melletti befogó hossz pedig sin. Mekkor z szög? Válszát indokolj! (A szögfüggvények definíciój mitt), AC BC tehát 45 BC sin Összesen: pont A α C B

11 ) Egyenlő szárú háromszög lpj 40 cm, szárink hossz 5 cm. A háromszöget megforgtjuk szimmetritengelye körül. (A válszit két tizedesjegyre kerekítve dj meg!) ) Készítsen vázltrjzot z dtok feltüntetésével, és számíts ki, hogy mekkor keletkező forgáskúp nyílásszöge? b) Számíts ki keletkező forgáskúp térfogtát! c) Mekkor felszíne nnk gömbnek, melyik érinti kúp lpkörét és plástját? (6 pont) d) Mekkor kúp kiterített plástjánk területe? ) Jó vázltrjz z dtok feltüntetésével. ( pont) H kúp nyílásszöge φ, kkor 0 sin 0, Ebből 45, 4 b) m r m V V 0106, 19 cm c) A kúpb írt gömb sugr megegyezik z egyenlő szárú háromszögbe írt kör sugrávl. ( pont) A háromszög lpon fekvő szöge 67,8 tg,69 0 A 0 1, cm A gömb felszíne: A 4, 01 cm d) A körcikk ívének hossz T plást i r, i 0 15,66 cm ( pont) i R 0 6 T 67, 6 cm plást 5 F φ K F 0 5 B Összesen: 17 pont

12 4) Az ABC hegyesszögű háromszögben BC 14 cm, AC 1 cm, BCA szög ngyság pedig 40. ) Számíts ki BC oldlhoz trtozó mgsság hosszát! ( pont) b) Számíts ki z AB oldl hosszát! Válszit cm-ben, egy tizedesjegyre kerekítve dj meg! Az AB oldl felezőpontj legyen E, BC oldl felezőpontj pedig legyen D. Htározz meg z AEDC négyszög területét! c) Válszát -ben, egy tizedesjegyre kerekítve dj meg! (7 pont) cm ) Az ATC derékszögű háromszögben m 1sin 40 A 7, 7 cm ( pont) 1 cm m B T 14 cm 40 C A mgsság kifejezhető trigonometrikus területképletből is. b) A háromszög kérdéses oldlár koszinusztételt felírv: AB cos 40 AB 9, 1 cm c) Az AEDC négyszög trpéz, mert z ED szksz z ABC háromszögben középvonl, így párhuzmos z AC oldlll. ED 6cm A trpéz mgsság z ABC háromszög AC oldlhoz trtozó mgsságánk fele sin 40 Az ABC háromszög területe: T 54 cm Ebből z AC oldlhoz trtozó mgsság: m b T m b 9 cm m Az AEDC trpéz területe: T b 40, 5 cm A feldt megoldhtó hsonló háromszögek területrányánk felhsználásávl is. Összesen: 1 pont

13 5) Az ábr egy sütemény lpnygköltségeinek megoszlását muttj. Számíts ki vj felirtú körcikk középponti szögének ngyságát fokbn! Válszát indokolj! A sütemény összköltsége 640 Ft. A vj költsége ennek 8 része. A kérdéses körcikk középponti szöge 15. 6) A vízszintessel 6,5 -ot bezáró egyenes út végpontj 14 méterrel mgsbbn vn, mint kiindulópontj. Hány méter hosszú z út? Válszát indokolj! Az dtokt feltüntető helyes ábr, z út hossz. 14 sin 6, méter hosszú z út. 7) Két gömb sugránk rány kisebb gömb térfogtánk. Adj meg k értékét! Összesen: pont : 1. A ngyobb gömb térfogt k-szoros ( pont) k 8 ( pont) 8) Az és b vektorok 10 -os szöget zárnk be egymássl, mindkét vektor hossz 4 cm. Htározz meg z b vektor hosszát! ( pont) Az b vektor hossz 4 cm. ( pont) 9) Számíts ki szbályos tizenkétszög egy belső szögének ngyságát! Válszát indokolj! A (szbályos) tizenkétszög belső szögeinek összege: , ( pont) így egy belső szöge. Összesen: pont 150

14 0) Döntse el, melyik állítás igz, melyik hmis! ) A vlós számok hlmzán értelmezett hozzárendelési szbállyl megdott függvény grfikonj z tengellyel párhuzmos egyenes. b) Nincs két olyn prímszám, melyek különbsége prímszám. c) Az 1 cm sugrú kör kerületének cm-ben mért számértéke kétszer kkor, mint területének cm -ben mért számértéke. d) H egy dthlmz átlg 0, kkor szórás is 0. f 4 ) igz b) hmis c) igz d) hmis Összesen: 4 pont 1) Egy háromszög egyik oldlánk hossz 10 cm, hozzá trtozó mgsság hossz 6 cm. Számíts ki háromszög területét! ( pont) A háromszög területe 0 cm. ( pont) Összesen: pont ) Számíts ki z szög ngyságát z lábbi derékszögű háromszögben! sin 5 ( pont), 58 ( pont) Összesen: pont ) Egy kör sugr 6 cm. Számíts ki ebben körben 10 -os középponti szöghöz trtozó körcikk területét! ( pont) t r 1cm 60 7,7 cm ( pont) Összesen: pont

15 4) Egy 5 cm sugrú kör középpontjától 1 cm-re lévő pontból érintőt húzunk körhöz. Mekkor z érintőszksz hossz? Írj le számítás menetét! Ábr felrjzolás: Az ABC háromszögben lklmzzuk Pitgorsz tételét: e 1 cm e 1 5 Összesen: pont 5) Adj meg, hogy z lábbi geometrii trnszformációk közül melyek viszik át önmgáb z ábrán láthtó, háromszög lkú (sugárveszélyt jelző) táblát! ( pont) ) 60 -os elforgtás tábl középpontj körül. b) 10 -os elforgtás tábl középpontj körül. c) Középpontos tükrözés tábl középpontjár. d) Tengelyes tükrözés tábl középpontján és tábl egyik csúcsán átmenő tengelyre. b) és d) ( pont) 6) Az ábrán láthtó ABC háromszögben D pont felezi z AB oldlt. A háromszögben ismert:,, ) Számíts ki z ABC háromszög területét! (5 pont) b) Számítássl igzolj, hogy (egész milliméterre kerekítve) háromszög BC oldlánk hossz 60 mm! c) Számíts ki háromszög B csúcsánál lévő belső szög ngyságát! AB 48 mm 41sin 47 o CD 41 mm 47. ) Az ADC háromszög C csúcsához trtozó mgsság hossz: 0 mm. Ez ugynkkor, mint z ABC háromszög C csúcsához trtozó mgsság, 48 0 így kérdezett terület T 70 mm. b) A CDB szög o 1. o BC cos1 ( pont) Így BC oldl hossz kért kerekítéssel vlóbn 60 mm.

16 c) Az ABC szög legyen, ekkor szinusztételt felírv BCD háromszögben: sin 41 o sin1 60 sin0,4998. Mivel BCD háromszög D csúcsánál lévő belső szöge tompszög:. A feldt koszinusz-tétel megoldásávl is helyes! Összesen: 1 pont 0 7) Egy tégllp szomszédos oldlink hossz 4, cm és 5,6 cm. Mekkor tégllp körülírt körének sugr? Válszát indokolj! A tégllp körülírt körének átmérője tégllp átlój. A tégllp átlójánk hossz: A kör sugr,5 cm 4, 5,6 7 cm Összesen: pont 8) ) Egy háromszög oldlink hossz 5 cm, 7 cm és 8 cm. Mekkor háromszög 7 cm-es oldlávl szemközti szöge? intervllumon következő egyenletet! b) Oldj meg cos 1 4 0;. (6 pont) c) Adj meg z lábbi állítások logiki értékét (igz vgy hmis)! ( pont) I) Az, függvény pártln függvény. f II) Az, intervllum. III) A, : g : h : ; 4 4 sin f cos g cos h intervllumon. függvény értékkészlete ; zárt függvény szigorún monoton növekszik ) (A kérdezett szöget -vl jelölve) lklmzzuk koszinusztételt: 1 Ebből cos, zz (mivel egy háromszög egyik szögéről vn szó) cos

17 b) H c) 1 cos, kkor megdott intervllumon vgy H 5 1 cos,., kkor megdott intervllumon vgy I) igz II) hmis III) hmis 4,. 9) Újsághír: Szeizmológusok számítási lpján 004. december 6-án Szumátr szigetének közelében kipttnt földrengés Richter-skál szerint 9,-es erősségű volt; rengést követő cunmi (szökőár) hlálos áldoztink szám megközelítette 00 ezret. A földrengés Richter-skál szerinti erőssége és rengés középpontjábn felszbduló energi között fennálló összefüggés: M 4, 4 lg E. ( pont) Összesen: 1 pont Ebben képletben E földrengés középpontjábn felszbduló energi mérőszám (joule-bn mérve), M pedig földrengés erősségét megdó nem negtív szám Richter-skálán. ) A Ngskir 1945-ben ledobott tombomb felrobbnáskor 1, felszbduló energi joule volt. A Richter-skál szerint mekkor erősségű z földrengés, melynek középpontjábn ekkor energi szbdul fel? b) A 004. december 6-i szumátri földrengésben mekkor volt felszbdult energi? c) A 007-es chilei ngy földrengés erőssége Richter-skál szerint - vel ngyobb volt, mint nnk kndi földrengésnek z erőssége, mely ugynebben z évben következett be. Hányszor kkor energi szbdult fel chilei földrengésben, mint kndibn? (5 pont)

18 d) Az óceánbn fekvő egyik szigeten földrengést követően kilkuló szökőár egy körszelet lkú részt trolt le. A körszeletet htároló körív középpontj rengés középpontj, sugr pedig 18 km. A rengés középpontj sziget prtjától 17 km távolságbn volt (lásd felülnézeti ábrán). Mekkor szárzföldön elpusztult rész területe egész négyzetkilométerre kerekítve? (6 pont) ) b) M 4,4 lg 1, M 5 ( pont) 9, 4,4 lg lg E 0,58 E Tehát felszbdult energi körülbelül 0 E, 8 10 J c) A chilei rengés erőssége -vel ngyobb volt, mint kndi: 4,4 lg Ec 4,4 lg Ek Rendezve: lg E lg E c (A logritmus zonosságát lklmzv) Ebből E E c k 1000 k Ec lg E 1000-szer kkor volt felszbdult energi. d) Az ábr jelöléseit hsználjuk. Az AKF derékszögű háromszögből: 17 cos 18 19,. 8,4 T AKB 18 sin 8,4 100,6 km k 8,4 T ,6 km körcikk 60 T 108,6 100,6 8 km körszelet Az elpusztult rész területe körülbelül 8 km. Összesen: 17 pont

19 40) Egy tégltest lkú kvárium egy csúcsból kiinduló élei 0 cm, 40 cm, illetve 50 cm hosszúk. ) Hány literes ez z kvárium? (A számolás során tekintsen el z oldllpok vstgságától!) Tekintsük zt háromszöget, melynek oldlit z ábrán láthtó tégltest három különböző hosszúságú lpátlój lkotj. b) Mekkor ennek háromszögnek ) legkisebb szöge? Válszát fokbn, egészre kerekítve dj meg! (8 pont) V V 60 dm cm. Az kvárium térfogt 60 liter. b) Az egyes lpátlók hossz: ,0 cm , cm. cm,, ( pont) A legkisebb szög legrövidebb oldlll vn szemben. A legrövidebb oldlll szemközti szöget α -vl jelölve, koszinusztétellel:. ( pont) Ebből cosα cos 0,6696. ( pont) A háromszög legkisebb szöge: Összesen: 11 pont 41) Adj meg z lábbi állítások logiki értékét (igz vgy hmis)! ) Minden prlelogrmm tengelyesen szimmetrikus négyszög. b) A kock testátlój 45 -os szöget zár be z lplppl. c) A szbályos tizenhétszögben z egyik csúcsból kiinduló összes átló tizenhétszöget 15 háromszögre bontj. ( pont) 500= cosα α 48. ) Hmis b) Hmis c) Igz ( pont)

20 AB 10 cm ; 4) Az ABCD trpéz oldlink hossz: ;. Az csúcsnál fekvő belső szög ngyság 70. ) Mekkor távolságr vn pont z AB oldltól? b) Számíts ki négyszög átlójánk hosszát! Az pont z és metszéspontj. c) Számíts ki z ED szksz hosszát! CD 6 cm E AD 7 cm AD A D AC BC szárk egyenesének ) A pont merőleges vetületét z oldlon jelölje T. Meghtározndó DT szksz. Az derékszögű háromszögben: D ATD DT sin70 7 DT 7sin70 6,58cm AB.. b) A trpéz D csúcsnál lévő belső szöge 110. Írjuk fel z ACD háromszögben koszinusztételt: AC cos110. Kb. 10,66 cm z AC átló hossz. c) Az szksz párhuzmos háromszögek hsonlóság mitt: AB ,5 cm. CD szksszl, így z EDC és EAB Ebből , zz Összesen: 11 pont

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI http://zanza.tv/matematika/geometria/thalesz-tetele http://zanza.tv/matematika/geometria/pitagorasz-tetel http://zanza.tv/matematika/geometria/nevezetes-tetelek-derekszogu-haromszogben

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonan szolgálhatnak fontos információval

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

MATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 009. október 0. KÖZÉPSZINT I. 1) Számítsa ki 5 és 11 számtani és mértani közepét! A számtani közép értéke: 7. A mértani közép értéke: 55. Összesen: pont ) Legyen az A halmaz a 10-nél

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

MATEMATIKA ÉRETTSÉGI október 18. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI október 18. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 011. október 18. KÖZÉPSZINT I. 1) Írja fel prímszámok szorzataként a 40-at! ( pont) 40 3 5 7 3 5 7 ( pont) ) Bontsa fel a 36000-et két részre úgy, hogy a részek aránya 5:4 legyen!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Anlízis A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Tehát a lejtő hossza 90 méter. Hegyesszögek szögfüggvényei. Feladat: Megoldás: α = 30 h = 45 m s =? s = 2h = 2 45m s = 90m

Tehát a lejtő hossza 90 méter. Hegyesszögek szögfüggvényei. Feladat: Megoldás: α = 30 h = 45 m s =? s = 2h = 2 45m s = 90m Hegyesszögek szögfüggvényei Feldt: Kovás slád hétvégén kirándulni ment. Az útjuk során egy 0 -os emelkedőhöz értek. Milyen hosszú z emelkedő, h mgsság 45 méter? Megoldás: Rjzoljuk le keletkezett háromszöget!

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy

Részletesebben

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást

Részletesebben

. Számítsuk ki a megadott szög melletti befogó hosszát.

. Számítsuk ki a megadott szög melletti befogó hosszát. Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2 Nevezetes zoosságok: mteksoft.hu ( + ) + + ( x + ) x + 6 x + 9 ( x + y) 4x + 1xy + 9y ( ) + ( x ) x 6 x + 9 ( x y) 4x 1xy + 9y ( + + c) + + c + + c + c ( x + y + ) x + y + 4 + xy + 4x + 4y Htváyozás zoossági

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik középszint 061 ÉRETTSÉGI VIZSGA 007. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivlók Formi előírások:

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

9. évfolyam Hány darab ötjegyű kettes számrendszerbeli szám van?

9. évfolyam Hány darab ötjegyű kettes számrendszerbeli szám van? 9. évfolym 00. Ktink vn egy supsz áj. A ához már kpott kétféle klpot, három különöző lúzt, vlmint három különöző szoknyát. Hányféleképpen öltöztetheti fel előlük áját Kti, h egy szoknyát, egy lúzt és egy

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2008. jnuár 26. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 26. 11:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. május 9. KÖZÉPSZINT I. 1) Egy háromszög belső szögeinek aránya :5:11. Hány fokos a legkisebb szög? A legkisebb szög o 0. Összesen: pont ) Egy számtani sorozat első eleme 8, differenciája.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

Bevezetés. Alapműveletek szakaszokkal geometriai úton

Bevezetés. Alapműveletek szakaszokkal geometriai úton 011.05.19. Másodfokú egyenletek megoldás geometrii úton evezetés A középiskoli mtemtik legszerteágzóbb része másodfokú egyenletek megoldás. A legismertebb módj természetesen megoldóképlet hsznált. A képlet

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. október 15. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2013. október 15. KÖZÉPSZINT I. 1) Az A halmaz elemei a MATEMATIKA ÉRETTSÉGI 01. október 15. KÖZÉPSZINT I. 5 -nél nagyobb, de -nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az halmazt! A\

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Síkgeometria. Ponthalmazok

Síkgeometria.  Ponthalmazok Síkgeometria http://zanza.tv/matematika/geometria Ponthalmazok Alapfogalmak: pont egyenes sík (nincs kiterjedése; általában nagy betűvel jelöljük) (végtelen hosszú; általában kis betűvel jelöljük) (végtelen

Részletesebben

Végeredmények, emelt szintû feladatok részletes megoldása

Végeredmények, emelt szintû feladatok részletes megoldása Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

& ODl9 BC; OAl9 [BCD] & OAl9 BC. A két állításból & BC9 [OAlDl] & BC9 AlDl. Hasonlóan

& ODl9 BC; OAl9 [BCD] & OAl9 BC. A két állításból & BC9 [OAlDl] & BC9 AlDl. Hasonlóan Tetréder 9 788 789 788 Legyenek gömb érintési pontji lpsíkokkl Al, Bl, Cl és Dl ODl9 [ABC] & & ODl9 BC; OAl9 [BCD] & OAl9 BC A két állításból & BC9 [OAlDl] & BC9 AlDl Hsonlón beláthtó, hogy AB9 ClDl, AC9

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Dr Polgár Mihályné Érdekes matematikai feladatok matek.fazekas.hu

Dr Polgár Mihályné Érdekes matematikai feladatok matek.fazekas.hu / KÜLÖNBÖZİ SZÁMHALMAZOK ) Kkukktojást keresünk! ) b) 60 0 0 8 6 8 0 c) d) π 8 0,000. 0,666. 0 0.) (nincs értelmezve 0-vl vló osztás) kidobjuk! 0 A megmrdt számhlmzbn 8 irrcionális szám: : dobjuk ki! nem

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik emelt szint 1111 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formi előírások: Fontos tudnivlók 1.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

Vektorok. Vektoron irányított szakaszt értünk.

Vektorok. Vektoron irányított szakaszt értünk. Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,

Részletesebben

Térgeometria, térfogatszámítás

Térgeometria, térfogatszámítás Térgeometri, térfogtszámítás 80. ) A tégltest térfogt: 5 cm 6 cm 8 cm = 40 cm, így 40 db kock keletkezett vágásokkl. b) Távolítsuk el tégltestrõl zokt kockákt, melyeknek vlmelyik lpj tégltest felületén

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

Gyakorló feladatsorok 9. évfolyam

Gyakorló feladatsorok 9. évfolyam Gykorló feldtsorok 9. évfolym 1.) Legyen U {1;;;4;5;;7}, A {;4;;7} és B {1;;5;;7}. Készíts Venn-digrmot, mjd dd meg következő hlmzokt!.) A B; b.) B U c.) B \ A d.) A B.) Htározd meg z A és B hlmzokt, h

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22. osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 2007. jnuár 26. MATEMATIKA FELADATLAP 6. évfolymosok számár 2007. jnuár 26. 15:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! 1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Mgyr Mtemtik Verseny onyhá, 011. március 11 15. 11. osztály 1. felt: Igzoljuk, hogy ármely n 1 természetes szám esetén. Megolás: Az összeg tgji k k 1+ k = = 1+ + n +... < 1+ 1+ n 3 1+ k

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

MATEMATIKA FELADATLAP

MATEMATIKA FELADATLAP MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt :00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Egyenletek, egyenlőtlenségek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Egyenletek, egyenlőtlenségek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Egyenletek, egyenlőtlenségek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

1. Bevezetés a trigonometriába

1. Bevezetés a trigonometriába 1. Bevezetés a trigonometriába Ha egy háromszöget nagyítunk vagy kicsinyítünk, a szögei nem változnak. Az aránytartás következtében a megfelelőoldalak aránya szintén állandó. Ebből arra következtethetünk,

Részletesebben

1012/I. 1012/II. 1013.

1012/I. 1012/II. 1013. Húrnégyszögek, érintônégyszögek 7 0/ 0/ 0 008 Külsô pontól körhöz húzott érintôszkszok egyenlôk & A sokszög egy-egy csúcsáól induló érintôszkszok egyenlôk és két szomszédos oldl drji & Minden egyes érintôszkszól

Részletesebben

Ismételjük a geometriát egy feladaton keresztül!

Ismételjük a geometriát egy feladaton keresztül! Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.

Részletesebben

Megint a szíjhajtásról

Megint a szíjhajtásról Megint szíjhjtásról Ezzel témávl már egy korábbi dolgoztunkbn is foglkoztunk ennek címe: Richrd - II. Most egy kicsit más lkú bár ugynrr vontkozó képleteket állítunk elő részben szkirodlom segítségével.

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

14. modul Számtani és mértani közép, nevezetes egyenlőtlenségek

14. modul Számtani és mértani közép, nevezetes egyenlőtlenségek MATEMATIKA A 10. évfolym 14. modul Számtni és mértni közép, nevezetes egyenlőtlenségek Készítette: Vidr Gábor Mtemtik A 10. évfolym 14. modul: Számtni és mértni közép, nevezetes egyenlőtlenségek A modul

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS Mtemtik emelt szint Jvítási-értékelési útmuttó MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERFORRÁS MINISZTÉRIUM ÉRETTSÉGI VIZSGA 0. május. Mtemtik emelt szint

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben