Néhány szó a mátrixokról
|
|
- Bertalan Balog
- 8 évvel ezelőtt
- Látták:
Átírás
1 VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop vn, és hogy ij z A i-deik soránk j-edik eleme.
2 VE Az n n típusú mátrixokt n-edrendű kvdrtikus (négyzetes) mátrixoknk nevezzük. Minden kvdrtikus mátrixhoz hozzárendelünk egy vlós számot, mátrix determinánsát. Definíció: másodrendű mátrixok determináns det Péld: 6 4 det
3 VE 3 Definíció: hrmdrendű mátrix determináns (első sor szerinti kifejtéssel) det det det det (-7) - 4 (-5) (- 1) (-15) 1
4 VE 4 R 3, három dimenziós euklideszi tér Vektorlgebr R 3 R R R { (,b,c),b,c R } Ebben részben z R 3 elmeit könnyebb áttekinthetőség érdekében láhúzássl jelöljük
5 VE 5 Definíció: műveletek R 3 -bn Összedás H ( 1,, 3 ) és b (b 1,b,b 3 ), kkor b ( 1 b 1, b, 3 b 3 ) Szorzás számml H ( 1,, 3 ) és t R, kkor t ( t 1, t, t 3 )
6 VE 6 Skláris szorzás H ( 1,, 3 ), b (b 1,b,b 3 ), kkor Péld: <, b > b 1 b 1 b 3 b 3 H (,5,-1), b (4,-3,7), kkor: b 4 5 (-3) (-1) 7-14 Definíció: merőlegesség és b merőlegesek, h b 0
7 VE 7 Péld: Az (,1,-1) és b (4,-3,5) vektorok merőlegesek, mert b 4 1 (-3) (-1) 5 0 Definíció: vektor hossz (normáj) Az ( 1,, 3 ) vektor hossz (normáj): 1 3
8 A vektor geometrii foglm Szbdvektorok Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált osztályok VE 8 Helyzetvektorok helyzetvektorok pontok
9 VE 9 Vektor jellemzői: hossz (ngyság): irány helyzetvektor esetén: vontkozttási pont helye A hossz tuljdonsági: Speciális vektorok: 0 ( 0 0 ) λ λ b b nullvektor: 0 egységvektor: v 1
10 VE 10 Műveletek geometrii értelemben vett vektorokkl Definíció: összedás Az összedás tuljdonsági: b b ( b c ) ( b ) c 0 ( - ) 0
11 VE 11 Definíció: szorzás számml A számml vló szorzás tuljdonsági: t ( s ) ( t s ) 1 ( t s ) t s t ( b ) t t b
12 VE 1 Definíció: lineáris kombináció Az 1,,, n vektoroknk t 1, t,, t n számokkl képzett lineáris kombinációj vektor. t 1 1 t t n n
13 VE 13 Definíció: skláris szorzás b b cosα Egy fiziki péld: W F r cosα F r Megjegyzés: és b pontosn kkor merőlegesek, h b 0
14 VE 14 Megjegyzés: A koordinátrendszer és koordinát foglmánk bevezetésekor kiderül, hogy z R 3 hlmz zonosíthtó geometrii vektorokkl, továbbá hogy z előzőekben definiált vektorműveletek vektoroknk egy dott derékszögű koordinátrendszerbeli koordinátáit tekintve egybeesnek z R 3 -beli műveletekkel.
15 VE 15 Vektoriális szorzás Az és b vektorok vektoriális szorztán zt z b-vel jelölt vektort értjük, melyre b b sinα b b (, b, b) jobbsodrású rendszer
16 VE 16 Egy fiziki péld: F q (v B) Vegyes szorzás bc ( b c )
17 VE 17 A vektoriális szorzás tuljdonsági Tétel: b - (b ) ( b) c c b c ( t ) b t ( b) Az és b vektorok pontosn kkor párhuzmosk, h b 0
18 VE 18 Definíció: derékszögű koordinátrendszer H z i, j, k egységvektorok páronként merőlegesek ebben sorrendben jobbsodrású rendszert lkotnk O tér egy rögzített pontj kkor z (O, i, j, k ) négyest derékszögű koordinátrendszernek nevezzük.
19 VE 19 Elnevezések: i, j, k : bázisvektorok { i, j, k } : bázis (ortonormált vektorrendszer) O : koordinátrendszer kezdőpontj
20 VE 0 Tétel: Minden v vektor egyértelműen előállíthtó z i, j, k bázisvektorok lineáris kombinációjként: v v 1 i v j v 3 k Definíció: koordináták A v 1, v, v 3 vektor nevezzük. számokt v koordinátáink
21 VE 1 Megjegyzés: Egy vektor koordinátái különböző koordinátrendszerekben különbözőek! A koordinátrendszer megválsztás befolyásolhtj számítások bonyolultságát:
22 VE Definíció: pont koordinátái Egy pont koordinátáink pontb muttó helyzetvektor koordinátáit nevezzük. P (v 1, v, v 3 ) H dott egy koordinátrendszer, kkor R 3 és geometrii tér pontji (vektori) között kölcsönösen egyértelmű megfeleltetés létesíthető. Ennek lpján geometrii problémák R 3 beli számításokkl megoldhtók ( vektorok koordinátáivl kell számolni )
23 VE 3 Megjegyzés: Skláris szorzás lklmzási A skláris szorzás b b cosα definíciój vektoroknk egy dott derékszögű koordinátrendszerbeli koordinátáit tekintve egybeesik z R 3 -beli skláris szorzássl: h ( 1,, 3 ), b (b 1,b,b 3 ), kkor b 1 b 1 b 3 b 3
24 VE 4 Vektorlgebr Vektorok szögének kiszámítás b b b b b b b b cos α Péld: z (,-4,5) és b (3,1,) vektorok szöge: ) ( 5 1 4) ( 3 b b cos α α 68
25 VE 5 A koordináttengelyre eső merőleges vetület Vetületek hossz ( koordináták ): v 1 v i, v v j, v 3 v k Vetületvektorok: v 1 v 1 i (v i) i v v j (v j) j v 3 v 3 k (v k) k v (v i) i (v j) j (v k) k
26 VE 6 Tetszőleges (irányvektorávl megdott) egyenesre eső merőleges vetület A v vetületének hossz z vl párhuzmos egyenesre vontkozón: d v 0 Vetületvektor: d (v 0 ) 0 Ahol 0 1 z 0 vektorrl egyirányú egységvektor.
27 VE 7 Tétel: vektoriális szorzt kiszámítás koordinátákkl H ( 1,, 3 ), b (b 1,b,b 3 ), kkor b ( b 3-3 b, - 1 b 3 3 b 1, 1 b - b 1 ) Könnyebben megjegyezhető formábn: Emlékeztető: i b det b 1 1 b j k b 3 3 b b sinα b b (, b, b) jobbsodrású rendszer
28 VE 8 Vektorlgebr Péld: Az (4,5,-1) és b (,3,6) vektorok vektoriális szorzt: 6,) (33, k j 6 i 33 k det j det i det k j i det b
29 VE 9 A vektoriális szorzás geometrii lklmzás: háromszög területe Péld: A (1,3,0) B (5,8,-1) C (3,6,6) T b Ekkor (4,5,-1), b (,3,6), így b (33,-6,), T b 1 33 ( 6)
30 VE 30 A vegyes szorzt kiszámítás koordinátákkl bc det b c b c b c Emlékeztető: bc ( b c )
31 A vegyes szorzás geometrii lklmzás: tetréder térfogt VE 31 Péld: A (1,3,0) B (5,8,-1) C (3,6,6) D (-4,-3,0) V bc 6 Ekkor (4,5,-1), b (,3,6), c (-5,-6,0), bc 9 bc det V 1,
32 Egyenes előállítás R R 3 függvénnyel VE 3 Az r 0 helyzetvektor áltl meghtározott ponton átmenő, v irányvektorú egyenest állítj elő következő függvény: r(t) r 0 t v, t R Megjegyzés: A t prméterértékek és z egyenes pontji között kölcsönösen egyértelmű megfeleltetést jelent fenti függvénykpcsolt.
33 VE 33 Legyen r ( x, y, z ), r 0 ( x 0, y 0, z 0 ), v ( v 1, v, v 3 ). Ekkor fenti vektorfüggvény koordinátákr bontv (z egyenes prméteres egyenletrendszere): x(t) x 0 v 1 t y(t) y 0 v t, t R z(t) z 0 v 3 t r 0 v
34 VE 34 Péld: r 0 (,5,3 ), v ( 4,-3,1 ). Ekkor z egyenes: x(t) 4 t y(t) 5 3 t, t R z(t) 3 1 t Az egyenes néhány pontj és hozzá trtozó prméterérték: t 1 0 P 1 (,5,3) t P (10,-1,5) t 3-1 P 3 (-,8,)
35 Sík előállítás R R 3 függvénnyel VE 35 Az r 0 helyzetvektor áltl meghtározott ponton átmenő, z u és v vektorokkl párhuzmos síkot állítj elő következő függvény: r(t,s) r 0 t u s v, (t,s) R
36 VE 36 Legyen r (x,y,z), r 0 (x 0,y 0,z 0 ), u (u 1,u,u 3 ), v (v 1,v,v 3 ). Ekkor fenti vektorfüggvény koordinátákr bontv: x(t,s) x 0 u 1 t v 1 s y(t,s) y 0 u t v s, t,s R z(t,s) z 0 u 3 t v 3 s r 0 u v
37 VE 37 Péld: r 0 (,5,3), u (4,-3,1), v (1,,7). Ekkor sík: x(t,s) 4 t 1 s y(t,s) 5 3 t s, t,s R z(t,s) 3 1 t 7 s A sík néhány pontj és hozzá trtozó prméterérték: (t 1,s 1 ) (0,0) P 1 (,5,3) (t,s ) (1,) P (8,6,18) (t 3,s 3 ) (-1,1) P 3 (-1,10,9)
38 VE 38 Sík normálvektoros előállítás Az r 0 helyzetvektor áltl meghtározott ponton átmenő, z n normálvektorú sík egyenlete: r -r 0, n 0
39 VE 39 Legyen r (x,y,z), r 0 (x 0,y 0,z 0 ), n (A,B,C) Ekkor fenti egyenlet: r -r 0, n 0 (x,y,z) - (x 0, y 0, z 0 ), (A,B,C) 0 (x-x 0, y-y 0, z-z 0 ), (A,B,C) 0 A (x-x 0 ) B (y-y 0 ) C (z-z 0 ) 0 A x B y C z (-A x 0 -B y 0 -C z 0 ) 0 A x B y C z D 0
40 VE 40 A (x-x 0 ) B (y-y 0 ) C (z-z 0 ) 0 formul sík áltlános egyenlete. A változók együtthtói sík egy normálvektoránk koordinátái. Az áltlános egyenletet elosztv n(a,b,c) normálvektor hosszávl sík normál egyenletét kpjuk: (x-x 0 ) b (y-y 0 ) c (z-z 0 ) 0 hol c A A A B C B C C b A B B C C d A D B
Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük
Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált
Vektorok. Vektoron irányított szakaszt értünk.
Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,
Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)
Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér
Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom:
Bevezetés számítástudomány mtemtiki lpji Vektorlger elődás fóliák Elméleti nyg tételek, definíciók, izonyítás vázltok Bércesné Novák Ágnes Források, jánlott irodlom: Hjós György: Bevezetés geometriá, Tnkönyvkidó,
2010/2011 es tanév II. féléves tematika
2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok
/0 SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gábor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgebri összefoglló:
Vektoranalízis Vektor értékű függvények
VS Vektor értékű üggvények VS A korábbi ejezetekben tanulmányoztuk azokat a üggvényeket, amelyek értékkészlete a valós számok halmazának egy részhalmaza. Ezek egyrészt az R R típusú egyváltozós, valós
Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János
Budapesti Műszaki Főiskola, Neumann János Informatikai Kar Lineáris algebra 1. témakör Vektorok Fodor János Copyright c Fodor@bmf.hu Last Revision Date: 2006. szeptember 11. Version 1.1 Table of Contents
Vektoranalízis Vektor értékű függvények
Vektoranalízis VS Vektoranalízis Vektor értékű üggvények A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK engedélyével használhatók el! Vektoranalízis VS A korábbi ejezetekben tanulmányoztuk
Vektorok (folytatás)
Vektorok (folyttás) Vektor szorzás számml (sklárrl) Vektor szorzás számml b 1 c 2b c 2 ( 1 ) 2 Az vektor k-szoros (k R, vgyis k egy vlós szám) z vektor, melynek hossz k, irány pedig k > 0 esetén irányávl
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris
1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gáor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgeri összefoglló: ) Mátri
Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes. Források, ajánlott irodalom:
PPKE ITK Diszkrét mtemtik és lger Vektorlger elődás fóliák Elméleti nyg tételek, definíciók, izonyítás vázltok Bércesné Novák Ágnes Források, jánlott irodlom: Hjós György: Bevezetés geometriá, Tnkönyvkidó,
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)
Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.
Lineáris algebra LI 1. Lineáris algebra. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
LI Definíció: mátri LI Legyen m és n pozitív egész szám. Az : m : m......... n n : mn tábláztot m n típusú mártink nevezzük, és zt mondjuk, hogy A-nk m sor és n oszlop vn. ij z A mátri i-deik soránk j-edik
Absztrakt vektorterek
Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Vektorok összeadása, kivonása, szorzás számmal, koordináták
Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
Összeállította: dr. Leitold Adrien egyetemi docens
Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf81 2018-09-04
Valasek Gábor valasek@inf.elte.hu
Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
FELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:
I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf87 2017-09-05
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni Gábor, mérnök tnár) Erők eredője, fölbontás.1. Péld dott eg erő és eg egenes irán-egségvektor:
2. gyakorlat. A polárkoordináta-rendszer
. gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
A közönséges geometriai tér vektorai. 1. Alapfogalmak
VEKTORALGEBRA A közönséges geometrii tér vektori 1. Alpfoglmk A hétköznpi tér z elemi geometri háromdimenziós euklideszi tere két különöző pontj, z A és B közti szksznk kétféleképpen dhtunk irányítást.
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Lineáris algebra I. Vektorok és szorzataik
Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere
1. Transzformációk mátrixa
1 Transzformáiók mátrixa Lineáris transzformáiók Definíió T test Az A : T n T n függvény lineáris transzformáió, ha tetszőleges v,w T n vektorra és λ skalárra teljesül, hogy A(v + w) A(v) + A(w) és A(λv)
Hatványozás és négyzetgyök. Másodfokú egyenletek
Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x
IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN
4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z
Gyakorló feladatsor 11. osztály
Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc
Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15
Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont
Az egyenes és a sík analitikus geometriája
Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Algebrai struktúrák, mátrixok
A számítástudomány mtemtiki lpji Algebri struktúrák, mátrixok ef.: Algebri struktúrán olyn nemüres hlmzt értünk melyen leglább egy művelet vn definiálv. ef.: A H nemüres hlmzon értelmezett kétváltozós
λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0
Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Gyökvonás. Hatvány, gyök, logaritmus áttekintés
Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R
Összeállította: dr. Leitold Adrien egyetemi docens
Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA
Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.
01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok I.
Vektorok I. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított (kezdő és végponttal rendelkező) szakaszoknak a halmazát vektornak nevezzük. Jele: v ; v; AB (ahol A a vektor kezdőpontja,
V. Koordinátageometria
oordinátgeometri Szkszt dott rányn osztó pont súlypont koordinátái 6 6 6 ) xf + 9 yf + N 7 N F 9 i ) 7 O c) O N d) O c N e) O O 6 6 + 8 B( 8) 7 N 5 N N N 6 A B C O O O BA( 6) A B BA A B O $ BA A B Hsonlón
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre
6. előadás. Vektoriális szorzás Vegyesszorzat
6. előadás Vektoriális szorzás Vegyesszorzat Bevezetés Definíció: Az a és b vektorok vektoriális szorzata egy olyan axb vektor, melynek hossza a vektorok abszolút értékének és hajlásszögük szinuszának
1.1. Vektorok és operátorok mátrix formában
1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a
44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer
Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.
Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és
Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.
MATEMATIKA ÉRETTSÉGI ELŐKÉSZTŐ 11. évfolyam Óra A tanítási óra anyaga Ismeretek, 1. Év eleji szervezési feladatok 2. A hatványozásról tanultak ismétlése, feladatok az n- edik gyök fogalmára, azonosságaira
Lin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )
1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )
1. Szabadvektorok és analitikus geometria
1. Szabadvektorok és analitikus geometria Ebben a fejezetben megismerkedünk a szabadvektorok fogalmával, amely a középiskolai vektorfogalom pontosítása. Előzetes ismeretként feltételezzük az euklideszi
Lin.Alg.Zh.1 feladatok
LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális
Térbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
Analitikus térgeometria
Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös
1. Az euklideszi terek geometriája
1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.
1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,
Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt
Matematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
1. Mit jelent az, hogy egy W R n részhalmaz altér?
Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál
= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1
Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P
Vektoralgebra feladatlap 2018 január 20.
1. Adott az ABCD tetraéder, határozzuk meg: a) AB + BD + DC b) AD + CB + DC c) AB + BC + DA + CD Vektoralgebra feladatlap 018 január 0.. Adott az ABCD tetraéder. Igazoljuk, hogy AD + BC = BD + AC, majd
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
f (ξ i ) (x i x i 1 )
Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <
Differenciálgeometria feladatok
Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R
2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:
. Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
KIDOLGOZÁSA - INFORMATIKAI MATEMATIKA SZAK -
ANALITIKUS MÉRTANBÓL KITŰZÖTT ÁLLAMVIZSGA TÉTELEK KIDOLGOZÁSA - INFORMATIKAI MATEMATIKA SZAK - Trtlomjegyzék 1. Anlitikus mértn síkbn 1.1. Síkbeli egyenesek egyenletei Descrtes-féle koordinát rendszerhez