Vektoranalízis Vektor értékű függvények
|
|
- Dezső Szalai
- 6 évvel ezelőtt
- Látták:
Átírás
1 VS Vektor értékű üggvények
2 VS A korábbi ejezetekben tanulmányoztuk azokat a üggvényeket, amelyek értékkészlete a valós számok halmazának egy részhalmaza. Ezek egyrészt az R R típusú egyváltozós, valós értékű üggvények, másrészt az R n R típusú n változós, valós értékű üggvények voltak. Ebben a részben olyan üggvényekkel oglalkozunk, amelyek értékkészlete az R m halmaz egy részhalmaza (m>, egész szám. Mivel R m m dimenziós lineáris tér, úgy is ogalmazhatunk, hogy az értékkészletben m dimenziós vektorok vannak.
3 VS A vektor értékű üggvényen általában az R n R m alakú üggvényeket értjük, és bizonyos alapvető ogalmakat ezekre adunk meg, de a geometriai és a izikai alkalmazások szempontjából az alábbi üggvénytípusok a legontosabbak: R R (síkgörbék R R (térgörbék R R R R (vektormezők
4 VS 4 Deiníció: koordinátaüggvények Az R n R m típusú (x,x,,x n ( (x,x,,x n, (x,x,,x n,, m (x,x,,x n üggvény koordinátaüggvényei az,,, m : R n R n változós, valós értékű üggvények.
5 VS 5 Az R R típusú t ( (t, (t, (t üggvény (térgörbe koordinátaüggvényei speciálisan az,, : R R egyváltozós, valós értékű üggvények. A koordinátaüggvények értékei adják a üggvényértékek koordinátáit.
6 VS 6 Az R R típusú (x, x, x ( (x, x, x, (x, x, x, (x, x, x üggvény (vektormező koordinátaüggvényei speciálisan az,, : R R háromváltozós, valós értékű üggvények. A koordinátaüggvények értékei adják a üggvényértékek koordinátáit.
7 Vektoralgebra Egyenes előállítása R R üggvénnyel VE 7 Az r helyzetvektor által meghatározott ponton átmenő, v irányvektorú egyenest állítja elő a következő üggvény: Megjegyzés: r(t r + t v, t R A t paraméterértékek és az egyenes pontjai között kölcsönösen egyértelmű megeleltetést jelent a enti üggvénykapcsolat.
8 Vektoralgebra VE 8 Legyen r ( x, y, z, r ( x, y, z, v ( v, v, v. Ekkor a enti vektorüggvény koordinátákra bontva (az egyenes paraméteres egyenletrendszere: x(t x + v t y(t y + v t, t R z(t z + v t r v
9 Vektoralgebra VE 9 Példa: r (,5,, v ( 4,-,. Ekkor az egyenes: x(t + 4 t y(t 5 t, t R z(t + t Az egyenes néhány pontja és a hozzá tartozó paraméterérték: t P (,5, t P (,-,5 t - P (-,8,
10 Vektoralgebra Sík előállítása R R üggvénnyel VE Az r helyzetvektor által meghatározott ponton átmenő, az u és a v vektorokkal párhuzamos síkot állítja elő a következő üggvény: r(t,s r + t u + s v, (t,s R
11 Vektoralgebra VE Legyen r (x,y,z, r (x,y,z, u (u,u,u, v (v,v,v. Ekkor a enti vektorüggvény koordinátákra bontva: x(t,s x + u t + v s y(t,s y + u t + v s, t,s R z(t,s z + u t + v s r u v
12 Vektoralgebra VE Példa: r (,5,, u (4,-,, v (,,7. Ekkor a sík: x(t,s + 4 t + s y(t,s 5 t + s, t,s R z(t,s + t + 7 s A sík néhány pontja és a hozzá tartozó paraméterérték: (t,s (, P (,5, (t,s (, P (8,6,8 (t,s (-, P (-,,9
13 Vektoralgebra VE Sík normálvektoros előállítása Az r helyzetvektor által meghatározott ponton átmenő, az n normálvektorú sík egyenlete: r -r, n (A < > jel skaláris szorzást jelöl.
14 Vektoralgebra VE 4 Legyen r (x,y,z, r (x,y,z, n (A,B,C Ekkor a enti egyenlet: r -r, n (x,y,z - (x, y, z, (A,B,C (x-x, y-y, z-z, (A,B,C A (x-x + B (y-y + C (z-z A x + B y + C z + (-A x -B y -C z A x+ B y + C z+ D
15 VE 5 Vektoralgebra A (x-x + B (y-y + C (z-z ormula a sík általános egyenlete. A változók együtthatói a sík egy normálvektorának koordinátái. Az általános egyenletet elosztva a n(a,b,c normálvektor hosszával a sík normál egyenletét kapjuk: a (x-x + b (y-y + c (z-z ahol C B A A a + + C B A B b + + C B A C c + + C B A D d + +
16 Vektoralgebra VE 6 Megjegyzés: A normál egyenlet különlegessége: a P ( p, p, p pont távolsága az a (x-x + b (y-y + c (z-z normál egyenletű síktól: d,e a ( p -x + b ( p -y + c ( p -z
17 Vektoralgebra Megjegyzés: VE 7 Kapcsolat egy sík adatai (és így közvetve a kétéle egyenlete között: Ha u és v egy síkkal párhuzamos vektorok (de egymással nem párhuzamosak, akkor u v a sík normálvektora.
18 Vektoralgebra VE 8 Szögeladatok Egyenesek szöge egyenlő az irányvektoraik szögével. Síkok szöge egyenlő a normálvektoraik szögével.
19 Vektoralgebra VE 9 Egyenes és sík szöge az egyenes irányvektorának és a sík normálvektorának szögéből számítható.
20 Vektoralgebra VE Távolságeladatok A d,e távolság kiszámítható a következőképpen: T ABP d(a, B d, e d, e T ABP d(a, B
21 Vektoralgebra VE A d,s távolság kiszámítható a következőképpen: V ABCP T ABC d,s d,s V T ABCP ABC
22 Az R n R m típusú üggvények dierenciálása VS Deiníció: R n R m típusú lineáris üggvények Az (x, x,..., x n A x x M x n alakú üggvényeket, ahol A egy (m n típusú mátrix, R n R m típusú lineáris üggvényeknek nevezzük. Az A mátrix az üggvény mátrixa.
23 VS Deiníció: dierenciálhányados Az :D( R n R m üggvény dierenciálható a D értelmezési tartomány P belső pontjában, ha van olyan A:R n R m lineáris üggvény, melyre lim P P A P P P Ekkor az A üggvényt az üggvény P dierenciálhányadosának nevezzük. helyen vett
24 VS 4 Tétel A dierenciálhányados mátrixa a koordinátaüggvények parciális deriváltjaiból áll: m M K K n n M m
25 A dierenciálhányados mátrixa speciális esetekben: VS 5 R R típusú üggvények (vektormezők R n R típusú üggvények (n változós üggvények ' grad (,,..., n R R n típusú üggvények (görbék m ' ' M ' m M
26 VS 6 Deiníció: dierenciál Ha az :D( R n R m üggvény dierenciálható a P pontban, akkor az P pontbeli, P ponthoz tartozó dierenciálja: ( P-P P. Deiníció: lineáris közelítés Ha az :D( R n R m üggvény dierenciálható a P pontban, akkor az P pontbeli lineáris közelítése: + ( P-P + P, avagy: - P.
27 VS 7 Az R R típusú üggvények dierenciálása Deiníció Az (x, x, x a a a a a a a a a x x x alakú üggvények az R R típusú lineáris üggvények.
28 VS 8 Az (x, x, x ( (x, x, x, (x, x, x, (x, x, x üggvény (vektormező koordinátaüggvényei az,, : R R háromváltozós, valós értékű üggvények. A dierenciálhányados speciálisan:
29 VS 9 Példa (x, x, x (x x 4 + x x, x -x, 6 x határozzuk meg az üggvény dierenciálhányadosát; írjuk el a lineárist közelítést a P (,4, helyen; számoljuk ki az üggvény közelítő értékét a P (.,.8,. helyen!
30 VS (x, x, x (x x 4 + x x, x -x, 6 x, P (,4, + 6 x x x x 4x x x x, x, (x 4 6 (,4,
31 VS A lineáris közelítés ormulája: + ( P-P (x, x, x (x x 4 + x x, x -x, 6 x (,4, ( 6, 6, 4 6 (,4, + x 4 x x x, x, (x
32 VS + x 4 x x x, x, (x P (.,.8, (.,.8,.
33 VS Megjegyzés Adott vektormező (pl. sebességtér az áramló olyadékban, térerőség az elektromos erőtérben esetén a dierenciálhányados mátrixának elemei üggenek a koordinátarendszer megválasztásától. Az alábbiakban két olyan jellemzőt adunk meg, melyek a dierenciálhányados mátrix elemeiből számíthatók, de invariánsak a koordinátarendszer megváltoztatásával szemben, és közvetlen izikai tartalommal bírnak.
34 Deiníció: vektormező divergenciája VS 4 div + + Megjegyzés A divergencia egyenlő a dierenciálhányados mátrix őátlójában lévő elemek összegével. A divergencia a orrásossággával ügg ügg össze: egy vektormező orrásmentes, ha a divergenciája.
35 Példa VS 5 (x,x,x (x x 4 +x, x -5x, 6x x, P (-,, (x, x, x x x x 4 x 6x 4x 6x x div (x,x,x x x 4 x + 6x (,, 6 4 div (-,,
36 VS 6 Deiníció: vektormező rotációja rot ( +,, Könnyebben megjegyezhető az alábbi ormula: rot i det j k A determináns ormális kiejtésével a rotáció enti képletét kapjuk. A rotáció az örvényességgel ügg össze: egy vektormező örvénymentes, ha a rotációja (vektor.
37 VS 7 Példa: Határozzuk meg az (x,x,x (x x 4 +x, x -5x, 6x x vektormező rotációját! A parciális derivált üggvényekből képzett derivált üggvény: (x, x, x x x x 4 x 6x 4x 6x x Ennek elemeiből összeállítható a rotáció üggvény: rot i det rot (x,x,x ( 6x, 4x x, x - j k
38 VS 8 Példa: Határozzuk meg az (x,x,x (x x 4 +x, x -5x, 6x x vektormező rotációját a P (-,, helyen! (x, x, x x x x 4 x 6x 4x 6x x (,, 6 4 A parciális derivált üggvények pontbeli értékeiből kiszámítható a rotáció pontbeli értéke: rot i det rot (-,, ( 6-, -+4, - ( 6, 4, j k
39 VS 9 Jelölés: nabla operátor (,, A nabla operátor segítségével röviden elírhatók a dierenciál operátorok: div + + rot (, +,
40 VS 4 Megjegyzések A divergencia és a rotáció megjelenik az elektromágneses tér jellemzői közti összeüggéseket megadó Maxwell egyenletek dierenciális alakjában: E: elektromos térerősség D: elektromos eltolódás H: mágneses térerősség J: áramsűrűség ρ: elektromos töltéssűrűség D rot H J + t B rot E t div D ρ div B
41 VS 4 Az R R típusú üggvények (térgörbék dierenciálása Deiníció: koordinátaüggvények Az t ( (t, (t, (t üggvény koordinátaüggvényei az,, : R R egyváltozós, valós értékű üggvények. A térgörbék vizsgálatához általában elegendő a koordinátaüggvényekkel való számolás.
42 VS 4 Tétel Az (,, :[a,b] R üggvény dierenciálható a t [a,b] helyen, ha az,, : [a,b] R koordinátaüggvényei dierenciálhatók a t helyen. Ha az (,, : [a,b] R dierenciálható a t helyen, akkor a dierenciálhányadosa: ' ' '
43 VS 4 Megjegyzés Az R R típusú üggvényeket szokás r-rel, a dierenciálást pedig vessző helyett ponttal jelölni: r (t r(t & x& x& x& (t (t (t A izikában előorduló R R üggvényeknél a t paraméter (változó általában az idő, így a pont az idő szerinti deriválásra utal.
44 VS 44 Példa Határozzuk meg az r(t ( t 4, 5t -7t, 6t-t üggvény dierenciálhányadosát a t helyen! r&(t t t 7 6 t r&(
45 VS 45 Deiníció: érintő vektor Az r&(t vektort érintő vektornak, az egységnyi hosszúságúra normált e r(t & r(t & vektort érintő egységvektornak nevezzük.
46 VS 46 Deiníció: érintő egyenes Dierenciálható térgörbe érintő egyenese (lineáris közelítése: r(t e(t r(t + r(t & (t t
47 VS 47 Példa Határozzuk meg az r(t ( t 4, 5t -7t, 6t-t üggvény érintő egyenesét a t helyen! r(t e(t r(t + r(t & (t t r( r& ( e(t (t t + 4t 6 6t
48 VS 48 Megjegyzés: R R üggvények dierenciálása Az R R üggvények dierenciálásáról leírtak egyszerűen átvihetők az R R üggvényekre. Minden ogalom és ormula érvényes, a különbség csupán annyi, hogy három helyett két koordinátaüggvénnyel kell dolgozni. Míg az R R üggvények a térgörbék (térbeli pályák, addig az R R üggvények a síkgörbék (síkbeli pályák vizsgálatában játszanak ontos szerepet.
49 VS 49 A dierenciálhányados izikai jelentése Ha a t r(t üggvény egy mozgó pont hely-idő üggvénye, akkor a dierenciálhányados vektor adott időpontban érvényes pillanatnyi sebesség: v (t r(t &
50 VS 5 Példa: Tekintsünk a következő síkbeli mozgást, melynek hely-idő üggvénye: r(t ( cost, sint (a síkbeliség miatt ez egy R R üggvény Mivel r(t, a mozgás pályája az origó középpontú, egység sugarú.
51 VS 5 A hely-idő üggvény: A sebesség üggvény: A sebesség nagysága: r(t ( cost, sint v(t ( - sint, cost v 9 cos x + 9 sin x azaz itt egy egyenletes körmozgásról van szó, egység nagyságú sebességgel.
52 VS 5 v(t ( - sint, cost A pillanatnyi sebesség a tπ/6 időpontban: π v 6 cos π 6, sin π 6,
53 VS 5 Deiníció: binormális egységvektor A b r(t & && r(t r(t & && r(t vektort binormális egységvektornak nevezzük, ha r& (t & r(t Deiníció: őnormális egységvektor Az érintő vektor és a binormális egységvektor vektori szorzatát őnormális egységvektornak nevezzük: n e b
54 VS 54
55 VS 55 Deiníció: kísérő triéder Az érintő, a őnormális és a binormális egységvektorok a görbe bármely pontjában (ahol nem tűnnek el ortonormált vektorrendszert alkotnak. Az (e,n,b hármast a görbe kísérő triéderének nevezzük. A görbék vizsgálatában a kísérő triéder által meghatározott koordinátarendszer alapvető ontosságú.
56 VS 56 Deiníció: simulósík Az e és az n vektorok által kieszített sík a görbe simulósíkja. Deiníció: normális sík Az n és a b vektorok által kieszített sík a görbe normális síkja. Deiníció: rektiikáló sík Az e és a b vektorok által kieszített sík a görbe rektiikáló síkja.
57 VS 57 Deiníció: görbület Azt, hogy egy görbe egy adott helyen mennyire tér el az egyenestől a görbülettel mérjük. A görbület az érintő vektor irányának megváltozásával ügg össze. Ha a görbe kétszer dierenciálható és az első deriváltja nem tűnik el, akkor a görbület: κ(t r(t & && r(t r(t & Megjegyzések Egyenes görbülete nulla. Kör görbülete a sugár reciproka.
58 VS 58 Deiníció: torzió Azt, hogy egy görbe mennyire csavarodik a torzióval mérjük. A torzió a binormális vektor irányának változásával ügg össze: a görbe mennyire tér el a simulósíkjától. Ha a görbe háromszor dierenciálható és a első és a második deriváltak vektori szorzata nem tűnik el, akkor a torzió: τ(t r(tr(t & && &&& r (t r(t & && r(t
59 VS 59 Megjegyzés Síkgörbe a saját simulósíkjában van, így a torziója nulla. Az állítás megordítása is igaz, így a torzió eltűnése a síkgörbék jellemzője: Egy háromszor dierenciálható görbe pontosan akkor síkgörbe, ha a torziója nulla.
60 VS 6 Síkgörbék dierenciálásával kapcsolatos megjegyzések Egy t (x(t,y(t síkgörbe vizsgálatakor szükség lehet az x és az y kapcsolatát leíró jellemzőkre: y '(x dy dx y "(x d y dx mivel a síkgörbék jellemzőit megadó számos ormula (pl. érintő egyenlete, érintési paraméterek, simulókör, görbület ezeket az értékeket tartartalmazza. Ezek a dierenciálhányadosok kiszámíthatók a t x(t és a t y(t üggvények deriváltjaival a következők szerint:
61 VS 6 Ha t x(t deriváltja nem tűnik el egy adott helyen, akkor ott y'(x y"(x dy dx d y dx y(t & x(t & & y(tx(t & && x(ty(t & ( x(t & x & (t y &(t && x (t && y (t dx dt dy dt d x dt d y dt
Vektoranalízis Vektor értékű függvények
Vektoranalízis VS Vektoranalízis Vektor értékű üggvények A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK engedélyével használhatók el! Vektoranalízis VS A korábbi ejezetekben tanulmányoztuk
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes
Néhány szó a mátrixokról
VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
Többváltozós, valós értékű függvények
TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
Analitikus térgeometria
Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös
Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15
Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont
Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt.
Matematika A 8. feladatsor Dierenciálás Trigonometrikus függvények deriváltja. Határozzuk meg a dy/d függvényt. a) y = 0 + 3 cos 0 3 sin b) y = sin 4 + 7 cos sin c) y = ctg +ctg sin )+ctg ) d) y = tg cos
Koordinátarendszerek
Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Dierenciálgeometria feladatsor
Dierenciálgeometria feladatsor 1. Görbék paraméterezése 1. Határozzuk meg az alábbi ponthalmazok egy paraméteres el állítását: a a, b középpontú, r sugarú kör a síkban; b y = mx + b egyenlettel leírt egyenes
Dierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
Többváltozós, valós értékű függvények
Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,
Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16
Egyenes és sík Wettl Ferenc 2012-09-20 Wettl Ferenc () Egyenes és sík 2012-09-20 1 / 16 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont távolsága 2 Sík Sík
Matematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1
Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P
Az egyenes és a sík analitikus geometriája
Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy
Analízis II. gyakorlat
Analízis II. gyakorlat Németh Adrián 4. január 7. Tartalomjegyzék Előszó.................................................... Ismétlés................................................... Integrálás...............................................
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.
Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...
Vektorok összeadása, kivonása, szorzás számmal, koordináták
Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Összeállította: dr. Leitold Adrien egyetemi docens
Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
Analitikus térgeometria
5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T
Tartalomjegyzék Feltétel nélküli szélsőérték számítás
Dr. Vincze Szilvia Példa Egy adott talajtípuson az átlagosnak megelelő időjárási viszonyok között a búza hozamát hektáronként a elhasznált nitrogén és oszor hatóanyag erősen beolyásolja. A hektáronként
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Fizika 1 Mechanika órai feladatok megoldása 7. hét
Fizika 1 Mechanika órai feladatok megoldása 7. hét Az F erő által végzett munka, ha a test adott pályán mozog az r 1 helyvektorú P 1 pontból az r helyvektorú P pontba, az alábbi vonalintegrállal számolható:
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
9. előadás. Térbeli koordinátageometria
9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
Egy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó
1. feladatsor: Vektorfüggvények deriválása (megoldás)
Matematika A gyakorlat Energetika és Mechatronika BSc szakok 016/17 ősz 1. feladatsor: Vektorfüggvények deriválása megoldás) 1. Tekintsük azt az L : R R lineáris leképezést ami az 1 0) vektort az 1 0 )
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf81 2018-09-04
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf87 2017-09-05
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
Serret-Frenet képletek
Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor
{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek
1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és
I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:
I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:
x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Elektromágneses hullámok
Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,
Dierenciálhatóság. Wettl Ferenc el adása alapján és
205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük
Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
A kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +
Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János
Budapesti Műszaki Főiskola, Neumann János Informatikai Kar Lineáris algebra 1. témakör Vektorok Fodor János Copyright c Fodor@bmf.hu Last Revision Date: 2006. szeptember 11. Version 1.1 Table of Contents
1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.
1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Felületek differenciálgeometriai vizsgálata
Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres
, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
1.1 A függvény fogalma
1.1 A üggvény ogalma Deiníció: Adott két (nem üres) halmaz H és K. Ha a H halmaz minden egyes eleméhez valamilyen módon hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést üggvénynek nevezzük.
A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Koordináta geometria III.
Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r
Koordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
Kétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Vontatás III. A feladat
Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat
1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
Konvexitás, elaszticitás
DIFFERENCIÁLSZÁMÍTÁS ALKALMAZÁSAI Konveitás, elaszticitás Tanulási cél A másodrendű deriváltat vizsgálva milyen következtetéseket vonhatunk le a üggvény konveitására vonatkozóan. Elaszticitás ogalmának
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2
3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Geometriai alapok Felületek
Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
Lengyelné Dr. Szilágyi Szilvia április 7.
ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük: