Serret-Frenet képletek
|
|
- Lajos Kocsis
- 7 évvel ezelőtt
- Látták:
Átírás
1 Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor e b = (e t e n ) = e t e n = γe t e b = γe n. T = 1/τ = γ a görbe torziója(csavarodása), τ a torzió (csavarodás) sugara. A torzió a binormális vektor és egyúttal a simulósík elfordulásának szögsebességét jellemzi. Síkgörbe esetén T 1/τ = 0. e t = e n R, (1) e n = e t R + e b τ, (2) e b = e n τ. (3)
2 Könnyen igazolható, hogy a Frenet-képletek feĺırhatók egységesen a D = Ge b + T e t,darboux-vektor, Jean Gaston Darboux ( ) segítségével,mivel az a = D a (4) összefüggés igaz az a = e t, a = e n és a a = e b esetekben, és ezért bármely olyan a vektorra, amely a mozgó triéderhez mereven kapcsolódik.
3 Ha egy a vektort dϑ szöggel elforgatunk annak változása da = dϑ a vagy másként a = dϑ dl a. vagy mozgás esetén dϑ vektora nagysága D = dϑ dl, dl = dϑ dt dt dl = ω v ω = vd = v( e b R + e t τ ), ω = v G 2 + T 2 = v R, ahol ω a forgás szögsebességének 1 + ( ) 2 T. G
4 A torzió kifejezhető közvetlenül a helyzetvektor deriváltjaival: (??) r = e t, (1) r = e n R, (2) r = e t R 2 + ( ) 1 e n + e b R Rτ, (5) Képezzük a három derivált vegyes szorzatát: (r, r, r ) = (e t, e n, e b ) R 2 τ, ahonnan, az (e t, e n, e b ) = 1 összefüggés és (??) figyelembevételével: 1 τ = (r, r, r... ) (ṙ, r, r ) (r r = ) 2 (ṙ r) 2. Kinematikában a mozgás pályájának torziója: 1 τ = (v, a, ȧ) (v a) 2
5 l természetes (ívhossz) paraméter δ növekménye r = r(l + δ) r(l) a Frenet-triéder segítségével harmadrendig megközeĺıthető: r = r δ δ2 δ3 + r + r 1! 2! 3! + O(δ4 ) = ( = e t 1 G 2 ) 6 δ δ + e n (G G ) δ 2 3 δ 2 + e G b 6τ δ3 + O(δ 4 ) (6) elsőrendben az érintő irányú elmozdulás jelentkezik, míg a normálirányú elmozdulás csak másodrendben jut szerephez. A torzió egy tisztán harmadrendű hatás.
6 Felületek Egy háromdimenziós térbeli felület egy kétdimenziós sokaság, melyet megadhatunk különböző formában: implicit: f (x, y, z) = 0, vagy f (r) = 0. explicit: z = z(x, y) parametrikus: x = x(u, v), y = y(u, v), z = z(u, v), vagy r = r(u, v)
7 Példa 1. Sík: Implicit alak: Ax + By + Cz + D = 0. Az r0 pontra illeszkedő és m vektorra merőleges sík: (r r 0) m = 0, (7) 2. Gömb: Az r0 pontra illeszkedő valamint az a és b vektorokkal párhuzamos sík parametrikus alakja: r(u, v) = r 0 + ua + vb. x 2 +y 2 +z 2 = R 2, z = ± R 2 x 2 y 2, x = R sin u cos v, y = R sin u sin v, z = R cos v u [0, π v [0, 2 3. Hengerfelület: Az r 1 (u) vezérgörbéjű és a alkotó-irányú hengerfelület parametrikus alakja: r(u, v) = r 1 (u) + va
8 5. Kúpfelület : Az r 1 (u) vezérgörbéjű és r 0 csúcspontú kúpfelület felületegyenlete : r(u, v) = r 0 + v(r 1 (u) r 0 ). 6. Csavarfelület: z = b arctan y x, y x tan z b = 0, x = av cos u, y = av sin u, z = bu. 7. A e z tengelyirányú és ρ(z) meridiángörbéjű forgásfelület: r(u, v) = e x ρ(u) cos v + e y ρ(u) sin v + e z u. u R, v R Az r 1 (u) vezérgörbéjű és r 2 (u) irányhatározójú vonalfelület vektoregyenlete : r(u, v) = r 1 (u) + vr 2 (u). 9. Az r 1 (u) vezérgörbéjű és ennek érintői képezte, tehát ṙ 1 (u) irányhatározójú kifejthető vonalfelület vektoregyenlete : r(u, v) = r 1 (u) + vṙ 1 (u).
9 Az explicit feĺırási mód nem mindig alkalmazható. Például gömb
10 Első alapforma Az r(u, v) felületen meghatározható egy görbe az u és v paraméterekre kiszabott újabb feltétellel. Pl: r(u, c) vagy r(c, v), c=állandó, ún. paramétervonalak. Tetszőleges felületi görbe az u és v parametrikus kapcsolása révén: r = r[u(t), v(t)]. A felületen elhelyezkedő r(u, v) pontból elmozdulunk egy tetszőlegesen közel elhelyezkedő r(u + du, v + dv) másik pontba, dr = r u du + r v dv, ahol r u r u, r v r v, (8) r u és r v a megfelelő paramétervonalak és ugyanakkor a sík érintővektorai. A két érintővektor lineárisan független ezért kifeszítik a felület r u r v irányra merőleges érintő síkját.
11 (7) alapján a sík egyenlete: (R r) (r u r v ) = 0. A fenti vegyesszorzat koordinátás alakja: X x Y y Z z x u y u z u x v y v z v = 0 A dr elemi elmozduláshoz tartozó ívhossznégyzet: ahonnan ahol dl 2 = dr 2 = r 2 udu 2 + 2r u r v dudv + r 2 v dv 2 dl 2 = Edu 2 + 2Fdudv + Gdv 2, (9) E(u, v) = r 2 u, F (u, v) = r u r v, G(u, v) = r 2 v (10) A (9) egyenletet a felület első alapformájának az E, F és G függvényeket pedig Gauss-féle elsőrendű főmennyiségeknek nevezzük.
12 (9) jobboldala egy pozitív definit bilineáris forma (pozitív tetszőleges du és dv-re). Sylvester-tétele alapján a megfelelő mátrixra fennáll, hogy E F F G = EG F 2 > 0. Az érintő síkra merőleges r u r v irány a felületi normális vektor. Nagysága r u r v 2 = r 2 ur 2 v (r u r v ) 2 = EG F 2. A felületi normális egységvektor tehát m = r u r v. EG F 2 Az elemi felületvektor ds = r u r v dudv = m EG F 2 dudv. A paramétertérbeli D tartományhoz tartozó felület területe: S(D) = EG F 2 dudv. D
13 Második alapforma Az első alapforma elsőrendű sorfejtésből lett származtatva nem alkalmas másodrendű jellemzők leírására, pl.görbület. r = r u du + r v dv ( ruu du 2 + 2r uv dudv + r vv dv 2) A felület metszése egy síkkal mely magába foglalja a P pontot egy felületi görbét határoz meg. Ha fenti r elmozdulás a görbe mentén történik, ( r = e t 1 G 2 ) 6 dl dl + e n G dl2 2. A felülethez a P pontban illeszkedő érintő síkhoz képest, r m mértékű elmozdulást jelent. r u, r v és e t vektorok az m-re merőleges érintő síkban helyezkednek el.
14 ϕ: e n és m közötti szög: cos ϕ R = Ldu2 + 2Mdudv + Ndv 2 Edu 2 + 2Fdudv + Gdv 2. ahol, a Gauss-féle másodrendű főmennyiségek kifejezhetők mint: L = r uu m = (r uu, r u, r v ) EG F 2, M = r uv m = (r uv, r u, r v ) EG F 2, N = r vv m = (r vv, r u, r v ) EG F 2. du és dv nem függetlenek, hanem össze vannak kapcsolva a felületi görbén keresztül.
15 Euler-Monge ábrázolás Ha a felületet az explicit z = z(x, y) alakban adjuk meg akkor ez a parametrikus feĺırásban az u = x, v = y esetnek felel meg. Ebben az esetben r = (x, y, z(x, y)) és r u r x = (1, 0, p), r v r y = (0, 1, q), p z x, q z y. ahonnan az elsőrendű főmennyiségek E = r 2 x = 1 + p 2, F = r x r y = pq, G = r 2 y = 1 + q 2. Az felület első alapformája tehát dl 2 = (1 + p 2 )dx 2 + 2pqdxdy + (1 + q 2 )dy 2. míg a felületelem területe ds = EG F 2 dxdy = 1 + p 2 + q 2 dxdy.
16 Bevezetve a r z xx = p x, s z xy = p y = q x, t z yy = q y. jelöléseket, a másodrendű főmennyiségek L = r 1 + p2 + q 2, M = s 1 + p2 + q 2, N = t 1 + p2 + q 2. Ha felületet az f (x, y, z) = 0 implicit alakban írjuk fel, akkor f x + f z z x = 0, f y + f z z y = 0, ahonnan p = f x f z, q = f y f z,
17 Görbületek A felület egy P pontjának m normálvektorát tartalmazó sík a felületet egy görbében metszi, amelyet normálmetszetnek nevezzük.vizsgáljuk meg a P ponton átmenő normálmetszet görbületének változását, midőn a metszősík a P-beli felületi normális körül forog. Mivel cos ϕ = ±1 ± 1 R = L du2 + 2M dudv + N dv 2 E du 2 + 2F dudv + G dv 2 = L ahonnan Lξ 2 + 2Mξη + Nη 2 = ±1, ( ) 2 du +2M du dv dl dl dl +N ξ R du dl, η R dv dl. ( ) 2 dv = dl A fenti egyenlet Dupin-féle indikátrixként ismert kúpszeleteket határoz meg. Ezek a felület érintősíkjával párhuzamos, ehhez képest végtelenül kicsit eltolt sík és a felület metszéséből származó görbe egyenlete.
18 Főgörbületek: 1 R = Lh2 + 2Mh + N Eh 2 + 2Fh + G = f (h), f (h) = 0. h = u v másodfokú polinomiális egyenlet 1 R 2 2H 1 R + K = 0. H = 1 ( ) = 1 EN 2FM + GL 2 R 1 R 2 2 EG F 2 közép görbület Gauss-féle görbület K = 1 LN M2 = R 1 R 2 EG F 2
19 Lokális derékszögű koordinátarendszer Az {x, y, z} descartesi koordináták: x = x(u 1, u 2, u 3 ) y = y(u 1, u 2, u 3 ) z = z(u 1, u 2, u 3 ) u 1 = u 1 (x, y, z) u 2 = u 2 (x, y, z) u 3 = u 3 (x, y, z) Koordináta transzformáció r = x(u 1, u 2, u 3 )e x + y(u 1, u 2, u 3 )e y + z(u 1, u 2, u 3 )e z = r(u 1, u 2, u 3 ) Ha u 2 = c 2 =állandó és u 3 = c 3 =állandó r = r(u 1, c 2, c 3 ) koordinátagörbe. Minden ponton keresztül három koordinátagörbe halad keresztül. (u 1, u 2, u 3 ) görbevonalú koordinátarendszer.
20 e u1 = H i = r r u i = u i r u i r u 1 r u 1, e u 2 = r u 2 r u 2, e u 3 = ún. Lame-együtthatók e ui = 1 H i r u i i {1, 2, 3} r u 3 r u 3.
21 Ha az u 3 koordinátát rögzitjük r = r(u 1, u 2, c 3 ) koordinátafelület. Két koordinátafelület metszése az egyik koordinátagörbe. e ui e uj = δ ij, ortonormált rendszer lokális ortogonális koordinátarendszer. Az elemi térfogat: ( ) r r r dv =,, du 1 du 2 du 3 = H 1 H 2 H 3 du 1 du 2 du 3. u 1 u 2 u 3 Egy D paraméter-tartomány térfogata V (D) = H 1 H 2 H 3 du 1 du 2 du 3 D Az r(u 1, c 2, c 3 ) koordinátagörbének megfelelő elemi felület ( ds 1 = r r ) du 2 du 3 = H 2 H 3 du 2 du 3, ds 2 =... u 2 u 3
22 Sebesség tetszőleges lokális ortogonális koordonátarendszerben A descartesi koordonátarendszerben a részecske mozgásegyenlete r(t) = x(t)e x + y(t)e y + z(t)e z v(t) = dr(t) ṙ(t) = ẋ(t)e x + ẏ(t)e y + ż(t)e z. dt v x (t) = ẋ(t), v y (t) = ẏ(t), v z (t) = ż(t). v 2 = ẋ 2 + ẏ 2 + ż 2. Tetszőleges lokális ortogonális koordinátarendszerre v(t) = ṙ = r u 1 u 1 + r u 2 u 2 + r u 3 u 3, v = H 1 u 1 e u1 + H 2 u 2 e u2 + H 3 u 3 e u3 v ui = H i u i, i {1, 2, 3} A sebesség négyzete, figyelembe véve a vektorok ortogonalitását : v 2 = H 2 1 u H 2 2 u H 2 3 u 2 3
23 Gyorsulás tetszőleges lokális ortogonális koordonátarendszerben a = a i e i dv 2 dt = 2a v = 2 i Mivel v 2 az u i és u i függvénye: dv 2 = [ ] v 2 u i + v2 ü i = dt u i u i i i [ v 2 v 2 másodrendűen homogén u i -ben, tehát (11) i i a i H i u i. u i u i + d dt v 2 u i u i = 2v 2. ( v 2 u i u i [ H i u i a i 1 ( d v 2 )] v2 = 0. 2H i dt u i u i v A = 0 típusú a fenti egyenlet A = 0 vagy v A koordinátarendszertől függetlenül. Descartes-i K.R.-ben A = 0. ) ( d v 2 ) ] u i. dt u i (11)
24 a ui = 1 2H i [ d dt ( ) ] v 2 v2 u i u i i {1, 2, 3}
Bevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Görbék, felületek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 20 TARTALOMJEGYZÉK 0.0.. Serret-Frenet képletek.........................
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó
Geometriai alapok Felületek
Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus
v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M
Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P
x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
A Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy
8 Görbevonalú koordináták A Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy tetsz½oleges pont helyvektora ebben a bázisban r =xi+yj+zk ahol x; y; z a pont ún. Descartes-féle
Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső
Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy
Dierenciálgeometria feladatsor
Dierenciálgeometria feladatsor 1. Görbék paraméterezése 1. Határozzuk meg az alábbi ponthalmazok egy paraméteres el állítását: a a, b középpontú, r sugarú kör a síkban; b y = mx + b egyenlettel leírt egyenes
Lengyelné Dr. Szilágyi Szilvia április 7.
ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek
Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15
Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont
{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek
1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és
Kétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Vektoranalízis Vektor értékű függvények
VS Vektor értékű üggvények VS A korábbi ejezetekben tanulmányoztuk azokat a üggvényeket, amelyek értékkészlete a valós számok halmazának egy részhalmaza. Ezek egyrészt az R R típusú egyváltozós, valós
Számítógépes geometria (mester kurzus) III
2010 sz, Debreceni Egyetem Felületek A felület megadása implicit: F : R 3 R, F (x, y, z) = 0 Euler-Monge: f : [a, b] [c, d] R, z = f (x, y) paraméteres: r : [a, b] [c, d] R 3 trianguláris háló direkt megadása
Analitikus térgeometria
Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
Felületek differenciálgeometriai vizsgálata
Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres
Az elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
4. Felületek Forgásfelületek. Felületek 1. Legyen adott egy paramétersíkbeli T tartomány. A paramétersíkot az u és v koordinátatengelyekkel
Felületek 1 4. Felületek Legyen adott egy paramétersíkbeli T tartomány. A paramétersíkot az u és v koordinátatengelyekkel adjuk meg. Ekkor egy F felületet az (u, v) r(u, v), (u, v) T kétváltozós vektor-vektor
Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16
Egyenes és sík Wettl Ferenc 2012-09-20 Wettl Ferenc () Egyenes és sík 2012-09-20 1 / 16 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont távolsága 2 Sík Sík
1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.
1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az
Koordinátarendszerek
Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli
Vektoranalízis Vektor értékű függvények
Vektoranalízis VS Vektoranalízis Vektor értékű üggvények A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK engedélyével használhatók el! Vektoranalízis VS A korábbi ejezetekben tanulmányoztuk
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
Síkgörbék. 1. Készítsünk elfogadható ábrát a G: t frac(1/t) leképezés gráfjáról. (frac a törtrész függvény, ez a Maple függvénynév is.
Síkgörbék 1. Készítsünk elfogadható ábrát a G: t frac(1/t) leképezés gráfjáról. (frac a törtrész függvény, ez a Maple függvénynév is.) 2. (n szirmú virág.) Legyen r(t) = sin(nt), (0 t 2π). Ábrázoljuk polár
9. előadás. Térbeli koordinátageometria
9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy
1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
MODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását
Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6
Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja
A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Gyakorlati példák Dr. Gönczi Dávid
Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános
Matematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
Bevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Merev test mozgása Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 0.1. Alapfogalmak,jelölések............................
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf87 2017-09-05
5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól
Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete
mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati
ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc
Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János
Budapesti Műszaki Főiskola, Neumann János Informatikai Kar Lineáris algebra 1. témakör Vektorok Fodor János Copyright c Fodor@bmf.hu Last Revision Date: 2006. szeptember 11. Version 1.1 Table of Contents
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Óravázlatok: Matematika 2.
Óravázlatok: Matematika 2. Bartha Ferenc készültség: March 4, 2003 1. VEKTOR-SKALÁR FÜGGVÉNYEK DIFFERENCIÁLÁSA Legyen a továbbiakban M R n nyílt halmaz és f : M R valós függvény, x (x 1,.., x n ) M Ha
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
u u IR n n = 2 3 t 0 <t T
IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε
Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.
Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...
DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)
DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény
Kalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
r a sugara, h a magassága a hengernek a maximalizálandó függvényünk a V (r, h) = πr 2 h. Az érintkezési pontokban x 2 + y 2 = r 2 és z = h/2.
Feltételes szélsőérték Keressük úgy egy kétváltozós f (x, y) függvény szélsőértékét, hogy közben eleget tegyünk egy másik, g(x, y) = 0 típusú megszorításnak. Példa Határozzuk meg egy forgásellipszoidba
Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium
Klasszikus Térelmélet 2012. október 01. Tartalom: Jelölések bevezetése Kovariáns deriváltak kommutátora és a Riemann-tenzor Vektor megváltozása zárt görbe mentén Riemann-tenzor és a Stokes-tétel Geodetikus
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf81 2018-09-04
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Polárkoordinátás és paraméteres megadású görbék. oktatási segédanyag
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Polárkoordinátás és paraméteres megadású görbék oktatási segédanyag Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 01. Köszönetnyilvánítás Az
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
VIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Dierenciálgeometria és nemeuklideszi geometriák c. gyakorlat
matematikatanári szak (2017/18as tanév, 1. félév) 1. feladatsor (Másodrend görbék a projektív síkon. Konjugált pontok.) A koordinátageometriai feladatoknál feltesszük, hogy a σ euklideszi sík egy derékszög
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
Analízis II. gyakorlat
Analízis II. gyakorlat Németh Adrián 4. január 7. Tartalomjegyzék Előszó.................................................... Ismétlés................................................... Integrálás...............................................
Az egyenes és a sík analitikus geometriája
Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0
Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA XI. Előadás Robot manipulátorok III. Differenciális kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom A forgatási mátrix időbeli deriváltja A geometriai
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
n m db. szám a i R Lehet a k, vagy a α. i, α szabad index a ij két indexű mennyiség (i sor index, j oszlop index) a ib j
a R 1 db. szám a 1, a 2,..., a n {a i} i=1,n a i R Lehet a k, vagy a α. i, α szabad index a 11 a 12... a 1m a 21 a 22... a 2m........ a n1 a n2... a nm {a ij} i=1,n,j=1,m R a ij két indexű mennyiség (i
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
Bevezetés a görbe vonalú geometriába
Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű
Hármas integrál Szabó Krisztina menedzser hallgató. A hármas és háromszoros integrál
Hármas integrál Szabó Krisztina menedzser hallgató A hármas és háromszoros integrál Definició A fizikai meggondolások előzményeként jutunk el a hármas integrál következő értelmezéséhez. Legyen értelmezve
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
Riemanngeometria 1 c. gyakorlat A Riemann-terekkel kapcsolatos fogalmak, jelölések
A Riemann-terekkel kapcsolatos fogalmak, jelölések Az R m euklideszi tér természetes bázisának az e 1 = (1, 0,..., 0),..., e m = (0,..., 0, 1) vektorokból álló bázist mondjuk. Legyen M egy összefügg nyílt
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer