MODELLEZÉS - SZIMULÁCIÓ

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MODELLEZÉS - SZIMULÁCIÓ"

Átírás

1 Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált) MODELLEZÉS - SZIMULÁCIÓ 1

2 1 Merev testek kinematikája 1.1 Mozgásleírás adatokkal 6 szabadságfok pl. 3 pozíció, 3 szög 1. Forgatás térben 1..1 Euler szögek z--z konvenció: α az tengely és az N csomóvonal közötti szög. β a z tengely és a Z tengely közötti szög. γ az X tengely és az N csomóvonal közötti szög. cos γ sin γ R = sin γ cos γ 0 0 cos β sin β sin β cosβ 1.. Y-P-R z-y- konvenció: α a z tengely körül - Yaw fordul β az y tengely körül - Pitch - bukdácsol γ az tengely körül - Roll - dülöngél cos α sin α 0 sin α cos α R = cos γ sin γ 0 sin γ cos γ cos β 0 sin β sin β 0 cos β 1 cos α sin α 0 sin α cos α érbeli pozíciót ír le (R), minden pozíció leírható? Probléma a sorrend nem egyértelmű

3 1.. Rodrigues képlet Bármely r vektort elforgatja α szöggel az origón átmenő w tengely körül r -be. (abs(w)=1) r r r r r w φ w r α r w r r = r = w (w r) r = r r = r w (w r) w r w r abs w r = abs w abs r sin(φ) abs w r = abs w abs r abs r = abs r sin φ abs w r = abs w abs r sin(φ) α r r = r + r = r cosα + w r sinα + w w r r = r = r w (w r) cosα + w r sinα + w w r r = r cosα + w r sinα + w w r 1 cosα 3

4 w = w 1, w, w 3 r = r cosα + w r sinα + w w r 1 cosα W = 0 w 3 w w 3 0 w 1 w w 1 0 W r = w r W = i j k w 1 w w 3 r 1 r r 3 r = r cosα + W r sinα + w w r 1 cosα r = r + W r sinα + w w r r 1 cosα w w r r w w = w w r a b c = b a c c a b a b: = w c: = r w w r r = W r r = r + W r sinα + W r 1 cosα r = R r R = I + W sinα + W 1 cosα A forgatási mátri 4

5 1..3 Kvaternió - Komple számok általánosítása q = s,, y, z = s, v = s + i + y j + z k q 1 + q = s 1 + s, 1 +, y 1 + y, z 1 + z α q = α s, α, α y, α z q = s + + y + z s, v t, w = s t v w, s w + t v + v w q = s, v q q 1 = 1,0,0,0 q 1 = s, v q i j = k, j k = i, k i = j jobbsodrású j i = k, k j = i, i k = j 5

6 Forgatás w tengely körül (abs(w)=1) szöggel forgat a 0, v elforgatott = q 0, v q 1 q = cos α, w sin α z α v elforgatott y v A forgatás mátria v elforgatott = y z = R v = r 11 r 1 r 13 r 1 r r 3 r 31 r 3 r 33 y z q = cos α, w sin α 0, r 11, r 1, r 31 = q 0, 1,0,0 q 1 0, r 1, r, r 3 = q 0, 0,1,0 q 1 0, r 13, r 3, r 33 = q 0, 0,0,1 q 1 6

7 Példa 1 w = 0,0,1 α = π q = cos π, w sin π = 0, w = 0, 0,0,1 w z α y q = s + + y + z = 1 q 1 s, v = q = 0, w = 0, 0,0, 1 = 1,1,0 = 0, w 0, 1,1,0 0, w = = 0, 0,0,1 * 0, 1,1,0 * 0, 0,0, 1 i j k , 1,1,0 = 0, 1, 1,0 i j k , 1, 1,0 s, v t, w = s t v w, s w + t v + v w 7

8 Példa w z q = cos π, w sin π = 0, w = 0, 0,0,1 q 1 s, v = q = 0, w = 0, 0,0, 1 0, r 11, r 1, r 31 = q 0, 1,0,0 q 1 0, r 1, r, r 3 = q 0, 0,1,0 q 1 0, r 13, r 3, r 33 = q 0, 0,0,1 q 1 s, v t, w = s t v w, s w + t v + v w α v y 0, r 11, r 1, r 31 = 0, 0,0,1 0, 1,0,0 0, 0,0, 1 i j k , 0,1,0 i j k , 1,0,0 0, r 1, r, r 3 = 0, 0,0,1 0, 0,1,0 0, 0,0, 1 i j k , 1,0,0 i j k , 0, 1,0 0, r 13, r 3, r 33 = 0, 0,0,1 0, 0,0,1 0, 0,0, 1 i j k , 0,0,0 i j k , 0,0,0 R v = =

9 1.3 A mozgást leíró adatok Állapottér modell (mechatronikai) Pozíció r Sebesség v Gyorsulás a Szögsebesség ω Szöggyorsulás β z r c C ω ρ P r p = r c + ρ v p = v c + ωρ a p = a c + βρ y 9

10 1.4 Gép - merev testek összekapcsolása kényszerekkel y Kényszerek : csapágy, vezeték, 0 q fogaskerék Homogén koordináták D z (λ,λy,λ) 1 (,y,1) y, y, y, 1, y, z z, y z, 1 q 1 q 3 0 Az eltolás T y + a y + b 1 0 a 0 1 b y 1 = + a y + b 1 10

11 3D, y, z, y, z, 1, y, z, w w, y w, z w, 1 Perspektív transzformáció y η P y P Π y P k z d z z d, y z y d z d, d,1, y, z, z d C O Π P y s ξ P d z 0 d z d z y z 1 => ξ η d 1 11

12 1.4. Robotelemek csatolása - Denavit-Hartenberg transzformáció Az ízületek: Csúszó Forgó α i- a i-1 z i-1 y i-1 i-1 b i α i-1 a i ϴ i y i z i i α i z i-1 tengely az i. ízület forgás- vagy csúszó tengelye. i-1 tengely a z i-1 és a z i tengely közös normálisában Az i. koordináta-rendszer origója a z i-1 és a z i közös normálisa és a z i metszéspontja Párhuzamos forgástengelyek esetén a normális a megelőző ízülethez rendelt koordináta-rendszer origóján halad át. Egymást metsző tengelyeknél a koordináta-rendszer origója a tengelyek metszéspontja, az i tengely irányultsága pedig a (z i-1 z i ) vektoriális szorzattal párhuzamos. 1

13 α i- a i-1 z i-1 y i-1 i-1 b i α i-1 a i ϴ i y i z i i α i Elfordulás z i-1 körül ϴ i szöggel H θ i = Elmozdulás z i-1 mentén b i -vel H b i = cosθ i sinθ i 0 0 sinθ i cosθ i b i Elmozdulás i-1 mentén a i -vel H a i = Elfordulás i-1 körül α i -vel H α i = a i cosα i sinα i 0 0 sinα i cosα i Csukló Csúszka cosθ i sinθ i cosα i sinθ i sinα i a i cosθ i sinθ H α i H a i H b i H θ i = i cosθ i cosα i cosθ i sinα i a i sinθ i 0 sinα i cosα i b i cosθ i sinθ i cosα i sinθ i sinα i 0 sinθ H α i H b i H(θ i ) = i cosθ i cosα i cosθ i sinα i 0 0 sinα i cosα i b i

14 1.4.3 Általános koordináták Mozgásleírás egyéb általános koordinátákkal (pl. relatív szöghelyzet) q i (t) i=1..n Egyértelmű kapcsolat a fizikai koordinátákkal. r p = r p (q) p=1..n Általános sebesség Összetett függvény deriválása, Jacobi mátri. v p = dr p n dt = k=1 r p dq k q k dt p = 1.. n v = J q = r 1 q 1 r 1 q n r n q 1 r n q n q 1 q n 14

15 , cos cos l l , sin sin y l l , d, d d dt dt dt 1, d y, d y y d dt dt dt 1 d 1, 1, d1 dt dt dy y y dt dt 1 1 1, 1, d v Jφ 15

16 Dinamikai egyenletek.1 Newton-Euler egyenletek r c = v c.1.1 Newton.1. Euler Perdület v c = a c m v c = F = L = m r v L = Θ ω F i Tömegpont Merev test I = I yy = I zz = V V y + z + z + y ρ, y, z ddydz ρ, y, z ddydz ρ, y, z ddydz V Inercia tenzor I y = I y = I I y I z V Θ = I y I yy I yz I z = I z = V I z I zy I zz I yz = I zy = Szimmetrikus V valós sajátérték, sajátvektor (tehetetlenségi főtengelyek) z r c C ω e 1 ρ e e 1 y P y ρ, y, z ddydz z ρ, y, z ddydz yz ρ, y, z ddydz 16

17 pl. főtengely kr.-ban L c = I c ω = I 1c ω 1 e 1 + I c ω e + I 3c ω 3 e 3 Euler egyenlet L c = M c Newton-Euler egyenletek 6 szabadságfok 6 másodrendű lineáris differenciálegyenlet m v c = F = F i L c = M c Főtengely kr.-ban (a forgó koordinátarendszer miatt) M 1c = I 1c ω 1 + I 3c I c ω ω 3 M c = I c ω + I 1c I 3c ω 3 ω 1 M 3c = I 3c ω 3 + I c I 1c ω 1 ω 17

18 .1.3 Példa, kettős inga Θ = m 1 l 1 + m l Θ q = m 1 g l 1 sin q m g l sin q c sgn Θ q + c sgn L c = M c Elhanyagolás m R m 1 ; m R m I. Nem lineáris - Coulomb surlódás L = Θ ω q m 1 g l 1 m g l sin q = 0 q m 1 l1 q m R q+ M+ l mm g II. Lineáris - kis elmozdulás, viszkózus surlódás sin q ~ q c sgn q ~μ Θ Θ q + μ q III. Surlódásmentes q m 1 g l 1 m g l q = 0 q m 1 g l 1 m g l q = 0 18

19 Θ q t = e rt Θ r m 1 g l 1 m g l = 0 Θ q + c sgn q m 1 g l 1 m g l sin q = A lineáris, surl.mentes egyenlet zárt alakú megold. (III) q m 1 g l 1 m g l q = 0 r 1, = ± m 1 g l 1 m g l Θ m 1 l 1 < m l ω r = m 1 g l 1 m g l Θ q t e r 1 t = e +iω r t = cos ω r t + i sin ω r t e r t = e iω r t = cos ω r t i sin ω r t r 1 t = er 1 t r +e t = cos ω r t r t = er 1 t e r t i = c 1 cos ω r t + c sin ω r t = sin ω r t 19

20 .1.3. A lineáris, viszkózus surl. egy. zárt alakú megold. (II) Θ q + μ q m 1 g l 1 m g l q = 0 q t = e rt Θ q + c sgn q m 1 g l 1 m g l sin q = 0 Θ r + μ r m 1 g l 1 m g l = 0 r 1, = μ ± μ + 4 I m 1 g l 1 m g l Θ μ + 4 Θ m 1 g l 1 m g l < 0 ρ = μ Θ ω r = 4 I m g l m 1 g l 1 μ Θ 0

21 q t e r 1 t = e ρ t+iω r t = e ρ t cos ω r t e r t = e ρ t iω r t = e ρ t cos ω r t r 1 t = er 1 t r +e t = e ρ t cos ω r t r t = er 1 t r e t = e ρ t sin ω i r t + i sin ω r t i sin ω r t = c 1 e ρ t cos ω r t + c e ρ t sin ω r t 1

22 A nem lineáris surl.mentes egyenlet szétválasztható Θ q m 1 g l 1 m g l sin q = 0 Legyen ismeretlen függvény az ω(t)! ω = q = dq dt q = d q dt = dω dt = dω dq dq dt = dω dq ω dω dq ω = m 1 g l 1 m g l sin q Θ ω = dq dt Θ q + c sgn q m 1 g l 1 m g l sin q = 0

23 ω ω dω = m 1 g l 1 m g l Θ = m g l m 1 g l 1 Θ cos q + c 1 ω = ± m g l m 1 g l 1 cos q Θ sin q dq + c 1 dq dt = ± m g l m 1 g l 1 cos q Θ + c 1 ± Θ m g l m 1 g l 1 cos q + Θ c 1 dq = dt? ± Θ m 1 g l 1 m g l cos q + Θ c 1 dq = t + c 3

24 .1..4 A nem lineáris Coulomb surlódásos egyenlet Θ q + c sgn q m 1 g l 1 m g l sin q = 0 p = q q = p p = m 1 g l 1 m g l sin q c sgn p Θ? 4

25 . Numerikus megoldások..1 Numerikus deriválás integrálás..1.1 Az első deriváltak közelítése y n 1 y n f = y n y n 1 n n 1 ( n 1 ) + y n 1 n 1 n h = n n 1 df() d y n y n 1 h 5

26 ..1. Az első derivált másodrendű közelítése Lagrange féle súlyfüggvények f = y n 1 n n+1 n 1 n n 1 n+1 + y n 1 y n y n+1 y n n 1 n+1 n n 1 n n+1 + n 1 n n+1 y n+1 n 1 n n+1 n 1 n+1 n f = f i s i () df n d = y n 1 n ( n + n+1 ) n 1 n n 1 n+1 + i y n n ( n 1 + n+1 ) n n 1 n n+1 + y n+1 n ( n 1 + n ) n+1 n 1 n+1 n 6

27 df n d = y n 1 n ( n + n+1 ) +y n 1 n n 1 n n ( n 1 + n+1 ) +y n+1 n n 1 n n+1 n+1 n ( n 1 + n ) n+1 n 1 n+1 n df n d = y n 1 n n+1 n 1 n n 1 n+1 + y n y n+1 n n 1 + n n+1 n n 1 n n+1 + n n 1 n+1 n 1 n+1 n h = n n 1 = n+1 n y n 1 y n y n+1 n 1 n n+1 Az első derivált másodrendű közelítése df d = y n+1 y n 1 h Hiba a Taylor polinom maradéktagja Ο(h n ) g=numdiff(fun, [,d]) fun - SciLab függvény - a függvény független változója (vektor) d - a differencia vektor g - a közelítő gradiens (derivált) 7

28 ..1.3 Kvadratúrák (területszámítás szóból ered) h (f i + f i+1 ) trapéz Elsőfokú interpoláció. A hiba: h3 1 f (ξ) Simpson Newton 3/8 h (f i f i + f i+1 ) Másodfokú interpoláció Illetve súlyozott átlag. A hiba: a középpont trapéz m = h f i t = h I i = m+t 3 Harmadfokú interpoláció. A hiba: 3 f i 1 +f i+1 h f (ξ) 3 h (f i + 3 f i f i+ + f i+3 ) h f (ξ) 8 8

29 inttrap([,] y) Mérési adatok integrálása trapéz szabállyal - növekvő független változók vektora (def:1:size(y,'*') matri 1*m) y - a függő (mért változók) integrate("fvstr","valtstr",tol,ig[,ah[,rh]]) Definiált függvény (fvstr) integrálása kvadratúrával valtstr - a változó az fv-ben ah - abszolút hibahatár (def: 1.e-8 ) rh - relatív hibahatár (def:1.e-14) intg(tol,ig,fv) Külső függvény (fv) integrálása kvadratúrával intsplin([,] y) Mérési adatok integrálása spline interpolációval - növekvő független változók vektora (def: 1:size(y,'*') y - a függő (mért változók) deff("y=f()", "y=sin()") in=integrate("f()","",0,6.8) disp (in)

30 .. Differenciálegyenletek megoldása...1 Sorozatos közelítés (Szukcesszív approimáció) dy i d = f i, y 1, y y n i = 1,, n y i 0 = y i,0 kezdeti feltétel dy i = f i y i () y i,0 dy i = y i y i,0 = y i = y i,0 +, y 1, y y n d f i, y 1, y y n d 0 f i 0, y 1, y y n d f i, y 1, y y n d 0 30

31 y i 0 = y 0 y i,m = y i,0 + 0 y i = y i,0 + f i 0 f i, y 1,m 1, y,m 1 y n,m 1 d, y 1, y y n d Ha K 0,y i,0 környezetben f i εc 0 Ha f i, y 1, y y n < M és K > 0 folytonos f i, y 1 + y 1, y + y, y n + y n K y 1 + y + + y n Lipschitz y i,m = y i,0 + 0 fi ξ, y 1,m 1 ξ, y n1,m 1 ξ dξ y i,0 y i,0 31 Abszolút és egyenletesen konvergál az y i megoldáshoz Ο(h n )

32 Példa y i,m dy = y d y 0 = 1 kezdetiérték feladat y 0 () 1 y 1 = 1 + 1d = 1 + y = 1 + y 3 = 1 + y n = d = = y i,0 + 0 fi ξ, y 1,m 1 ξ, y n1,m 1 ξ dξ y i,0 y i,0 d = y n 1 d = n n! e Az e Taylor sora a 0 körül 3

33 ... Euler-Cauchy féle törtvonal módszer y(t) = f t, y y t 0 = y 0 t i = t 0 + i h y i = y t i y t i y i+1 y i h = f t i, y i y i+1 = y i + h f t i, y i y f(t) t 33

34 ...1. Első javítás f i = f t i, y i Prediktor-korrektor módszerek y i+1 = y i + h f i t i, y i y i+1 y i+1 első közelítése f i+1 = f t i+1, y i+1 itt f i+1 f korrigált értéke y i+1 = y i + h f i + f i+1 y f(t) t 34

35 ... Második javítás y i+1 (0) = y i + h f t i, y i f többször is korrigálható y (k) i+1 = y i + h f t k 1 i, y i + f t i+1, y i+1 k = 1, m ameddig y i+1 (m) y i+1 (m+1) > ε 35

36 ...3. Például Euler-Cauchy dy = y d y 0 = 1 y 0 = 1 h = 0.1 e y 1 = y 0 + h y 0 = = y = y 1 + h y 1 = = y 3 = y + h y = = y 4 = y 3 + h y 3 = = Euler-Cauchy 1.javítás y 0 = 1 y 1 = y 0 + h y 0 = = 1.1 y 1 = y 0 + h y 0 + y 1 = y i+1 = y i + h f y i+1 = y i + h f i f i+1 = f = y = y 1 + h y 1 = = y = y 1 + h y 1 + y = = y 3 = y + h y = = y 3 = y + h y + y = = t i, y i t i, y i t i+1, y i+1 y i+1 = y i + h f i + f i+1 36

37 ...3 Runge-Kutta féle módszer RK4 y = f t, y y t 0 = y 0 t i = t 0 + i h k 1 (i) = h f k (i) = h f k 3 (i) = h f k 4 (i) = h f t i, y i y i = y t i t i + h, y i + k 1 (i) t i + h, y i + k (i) (i) t i + h, y i + k 3 y i+1 = y i k 1 (i) + k i + k 3 i + k 4 (i) ha f C 5 hiba = θ h 5 37

38 Eplicit Runge-Kutta (i) y i+1 = y i + h b j k j s j=1 k (i) 1 = h f t i, y i k (i) = h f (i) t i + c h, y i + a,1 h k 1 k (i) 3 = h f k s (i) = h f Butcher tábla t i + c 3 h, y i + a 3,1 h k 1 i t i + c s h, y i + a s,1 h k 1 i + a 3, h k i + a s, h k i 0 c a,1 c 3 a 3,1 a 3, c s a s,1 a s, a s,s-1 b 1 b b s-1 b s RK4 0 1/ 1/ 1/ 0 ½ /6 1/3 1/3 1/6 + + a s,s 1 h k s 1 i i 1 j=1 s a i,j = c i b i = 1 i =,, s j=1 38

39 ...3. Például RK4 y = f t, y 0 1/ 1/ 1/ 0 ½ /6 1/3 1/3 1/6 y t 0 = y 0 t i = t 0 + i h k (i) 1 = h f t i, y i k (i) = h f k 3 (i) = h f k 4 (i) = h f t i + h, y i + k 1 (i) t i + h, y i + k (i) (i) t i + h, y i + k 3 dy y d = y y 0 = y i+1 = y i h = 0.1 e t 0 = 0 y 0 = 1 k (0) 1 = h y 0 = 0.1 k (0) = h (y 0 + k 1 0 ) = k (0) 3 = h (y 0 + k 0 ) = k 4 0 = h (y 0 +k 0 3 ) = t 1 = 0,1 y 1 = = k (1) 1 = h y 1 = k (1) = h (y 1 + k 1 1 ) = k (1) 3 = h (y 1 + k 1 ) = k 4 0 = h (y 1 +k 0 3 ) = 0.1 k 1 (i) + k i + k 3 i + k 4 (i) t 1 = 0, y = =

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Merev test mozgása Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 0.1. Alapfogalmak,jelölések............................

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Csuklós mechanizmus tervezése és analízise

Csuklós mechanizmus tervezése és analízise Csuklós mechanizmus tervezése és analízise Burmeister Dániel 1. Feladatkitűzés Megtervezendő egy többláncú csuklós mechanizmus, melynek ABCD láncában található hajtórúd (2-es tag) mozgása során három előírt

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram

Részletesebben

7. GRAVITÁCIÓS ALAPFOGALMAK

7. GRAVITÁCIÓS ALAPFOGALMAK 7. GRAVITÁCIÓS ALAPFOGALMAK A földi nehézségi erőtérnek alapvetően fontos szerepe van a geodéziában és a geofizikában. A geofizikában a Föld szerkezetének tanulmányozásában és különféle ásványi nyersanyagok

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA XI. Előadás Robot manipulátorok III. Differenciális kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom A forgatási mátrix időbeli deriváltja A geometriai

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer

Részletesebben

Serret-Frenet képletek

Serret-Frenet képletek Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

1. Vektorterek és lineáris leképezések

1. Vektorterek és lineáris leképezések 1. Vektorterek és lineáris leképezések 1.1. Feladat. Legyenek A, B : R 2 R 2 az A(x, y) = (2x y, y) B(x, y) = ( x, x + y) módon definiált leképezések. Ellenőrizzük, hogy lineárisak és írjuk fel a mátrixukat

Részletesebben

Merev testek mechanikája. Szécsi László

Merev testek mechanikája. Szécsi László Merev testek mechanikája Szécsi László Animáció időfüggés a virtuális világmodellünkben bármely érték lehet időben változó legjellemzőbb: a modell transzformáció időfüggése mozgó tárgyak módszerek az időfüggés

Részletesebben

Robotok inverz geometriája

Robotok inverz geometriája Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Gyakorlati példák Dr. Gönczi Dávid

Gyakorlati példák Dr. Gönczi Dávid Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet) Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az

Részletesebben

3D számítógépes geometria 2

3D számítógépes geometria 2 3D számítógépes geometria Numerikus analízis alapok ujjgyakorlat megoldások Várady Tamás, Salvi Péter / BME October, 18 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel Ujjgyakorlat 1

Részletesebben

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve.

Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve. TTK, Matematikus alapszak Differenciálegyenletek 1 (BMETE93AM15) Elhangzott gyakorlati tananyag óránkénti bontásban Mindkét csoport Rövidítve 1 gyakorlat 017 szeptember 7 T01 csoport Elsőrendű közönséges

Részletesebben

Ipari matematika 2. gyakorlófeladatok

Ipari matematika 2. gyakorlófeladatok Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

0. Teszt megoldás, matek, statika / kinematika

0. Teszt megoldás, matek, statika / kinematika 0. Teszt megoldás, matek, statika / kinematika Mechanika (ismétlés) statika, kinematika Dinamika, energia Áramlástan Reológia Optika find x Teszt: 30 perc, 30 kérdés Matek alapfogalmak: Adattípusok: Természetes,

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk

Részletesebben

Quadkopter szimulációja LabVIEW környezetben Simulation of a Quadcopter with LabVIEW

Quadkopter szimulációja LabVIEW környezetben Simulation of a Quadcopter with LabVIEW Quadkopter szimulációja LabVIEW környezetben Simulation of a Quadcopter with LabVIEW T. KISS 1 P. T. SZEMES 2 1University of Debrecen, kiss.tamas93@gmail.com 2University of Debrecen, szemespeter@eng.unideb.hu

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

1. feladatsor: Vektorfüggvények deriválása (megoldás)

1. feladatsor: Vektorfüggvények deriválása (megoldás) Matematika A gyakorlat Energetika és Mechatronika BSc szakok 016/17 ősz 1. feladatsor: Vektorfüggvények deriválása megoldás) 1. Tekintsük azt az L : R R lineáris leképezést ami az 1 0) vektort az 1 0 )

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19. Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Megjegyzés: jelenti. akkor létezik az. ekkor

Megjegyzés: jelenti. akkor létezik az. ekkor . Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4

Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4 Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris

Részletesebben

Kalkulus I. gyakorlat, megoldásvázlatok

Kalkulus I. gyakorlat, megoldásvázlatok Kalkulus I. gyakorlat, megoldásvázlatok Fizika BSc I/.. Ábrázoljuk a következ halmazokat a síkon! a {, y R : + y < }, b {, y R : + y < }, c {, y R : + y

Részletesebben

ÁLTALÁNOS JÁRMŰGÉPTAN

ÁLTALÁNOS JÁRMŰGÉPTAN ÁLTALÁNOS JÁRMŰGÉPTAN ELLENŐRZŐ KÉRDÉSEK 3. GÉPEK MECHANIKAI FOLYAMATAI 1. Definiálja a térbeli pont helyvektorát! r helyvektor előáll ortogonális (a 3 tengely egymásra merőleges) koordinátarendszer koordinátairányú

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt.

Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt. Matematika A 8. feladatsor Dierenciálás Trigonometrikus függvények deriváltja. Határozzuk meg a dy/d függvényt. a) y = 0 + 3 cos 0 3 sin b) y = sin 4 + 7 cos sin c) y = ctg +ctg sin )+ctg ) d) y = tg cos

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben