7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei"

Átírás

1 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség, : y tengelymetszet m<0 : függvény szigorún monoton csökken m=0: függvény konstns (nem elsıfokú ugyn, de lineáris) m>0 : függvény szigorún monoton nı ( meredekség egyéként z irányszög tngense) =0 esetén függvény grfikonj áthld z origón (egyenes rányosság) zérushely: = m Lineáris függvényeknek nevezzük z elsıfokú- és konstnsfüggvényeket együttesen. Egyenletek: Egyenlet: Két egyenlıségjellel összekpcsolt kifejezés vgy függvény. Az egyenletet szokás olyn speciális nyitott mondtnk (változó(k)tól függı állítás) is nevezni, melynek lphlmz egy számhlmz. Az egyenlet megoldás: Megkeressük két kifejezés/függvény közös értelmezési trtományánk lphlmzánk zon elemeit, melyekre két kifejezés/függvény helyettesítési értékei egyenlık. Ezek lesznek z egyenlet gyökei, melyeknek hlmz z egyenlet megoldáshlmz vgy más néven igzsághlmz. H z egyenlet z lphlmz minden elemére teljesül, kkor megoldáshlmz megegyezik z lphlmzzl, z egyenlet ilyenkor zonosság. Az egyenletek egyik megoldási módszere mérlegelv, melynek lpj: f () = g() f () + g() + c hol c R illetve f () = g() f () g() c hol R 0 c \{ } Az egyenletek megoldáskor ismeretlenekkel is végezhetünk mőveleteket: szorozhtunk és oszthtunk, mennyien z ismeretlenek értéke nem lehet null. Két egyenes ekvivlens (zz egyenértékő), h megoldáshlmzuk megegyezik.

2 H z egyenlıségjel két oldlán változóknk csk lgeri egész kifejezései vnnk, kkor lgeri egyenletnek nevezzük. Ennek fokszám enne szereplı legmgs fokszámú tg fokszámávl egyenlı. Nem lgerik például z szolút értékes, törtes, gyökös, z eponenciális, logritmikus, trigonometrikus egyenletek. Elsıfokú egyenlet: Redukált lkj: m + = 0, m; R m 0. Megoldás: = A megoldás módj mérlegelv lklmzás. Az elsıfokú egyenlet megoldáskor egy elsıfokú függvény zérushelyét keressük. m Másodfokú függvények: f : A R A R, A és f () = + c, hol ; ;c R 0 A másodfokú függvény képe prol (lásd 0. tétel). Árázolás: teljes négyzetté lkítássl f () = + u + ( ) v Tehát: u= és v= c A prol tengelypontj T ( u; v), és z függvény grfikonjához képest -szorosár megnyúlik (függvénytrnszformációk). Zérushelyek: + 0 /: mivel 0 c + = 0 + c = 0 c = c c h > 0 c< 0, kkor nincs megoldás, mivel 0 +

3 c h 0 c 0, kkor c = c c + = 0 szorzttá lkítv c c + + = 0 tehát vlmelyik tényezı 0 + c = vgy 1, ± c = zérushelyek c = összefogllv: Megjegyzés: D= c kifejezés másodfokú függvény/egyenlet diszkrimináns Szélsıérték: f () = D > 0 másodfokú függvénynek két zérushelye vn D = 0 másodfokú függvénynek egy zérushelye vn f () = így zh = D < 0 másodfokú függvénynek nincs zérushelye + ( u) + v szélsıértéke vn szé = u= -n, értéke yszé = v= c szélsıérték minimum: h > 0, mimum: h < 0 Másodfokú egyenletek: A másodfokú egyenletek redukált lkj: + 0, hol ; ;c R 0 A megoldáshlmz épp z f () = + c függvény zérushelyei kerülnek. Ezek tehát: 1, ± c =. Ez másodfokú egyenlet megoldóképlete. D= c kifejezés másodfokú egyenlet diszkrimináns. D > 0 másodfokú egyenletnek két vlós megoldás vn D = 0 másodfokú egyenletnek egy (két egyezı) vlós megoldás vn D < 0 másodfokú egyenletnek nincs vlós megoldás

4 Gyöktényezıs lk: Az egyenlet gyökeit 1 -gyel és -vel jelölve és zokt ehelyettesítve szorzttá lkítás után kpott egyenlete megkpjuk másodfokú kifejezés gyöktényezıs lkját: +, h D 0 ( ) ( ) 1 Összefüggések másodfokú egyenlet gyökei és együtthtói között Viéte-formulák: Tétel: A másodfokú egyenlet gyökeinek összege z elsıfokú tg együtthtójánk és fıegyütthtó hánydosánk ellentettje. Azz: 1+ = Bizonyítás: Összedv két gyököt: + c c + c c 1+ = + = = = Tétel: A másodfokú egyenlet gyökeinek szorzt konstnstg és fıegyütthtó hánydos. c Azz: 1 = Bizonyítás: Összeszorozv két gyököt: + c c ( + c) ( c) 1 = = = ( c) c c = = = A Viéte-formulák kkor is dnk eredményt, h z egyenletnek nincs is vlós gyöke, így ezek hsználtkor diszkrimináns segítségével ellenırzni kell, hogy vn-e gyöke z egyenletnek. A Viéte-formulákkl egyé gyökökre vontkozó összefüggések is kiszámolhtók: + = + ( 1 ) ( + ) 3 3 = ( + ) 3 ( ) = = Másodfokúr visszvezethetı mgsfokú egyenletek: 4 hiányos negyedfokú egyenlet: ; ;c R 0 y= új ismeretlen evezetésével 4 3 szimmetrikus negyedfokú egyenlet: + + c + = vl vló osztás után y = evezetése y = + És egyé irrcionális, eponenciális, logritmikus, trigonometrikus egyenletek, melyeket új ismeretlen evezetésével másodfokú egyenletre vezethetünk vissz.

5 Egyenletrendszer: Tö egyenlet, melyen z egyenlıségjellel összekpcsolt kifejezések tö változót trtlmzhtnk. Az egyenletrendszer megoldáskor minden változó zon lphlmzeli értékeit keressük, melyre megfelelı kifejezések helyettesítési értékei egyenlık. Az egyenletrendszer megoldáskor elıfordulht, hogy egy vgy tö változó értéke tetszıleges lphlmzeli elem lehet, ilyenkor változó(k) szd változó(k). Ekkor z egyenletrendszernek nincs egyértelmő megoldás, töi változó értékét szd változókkl lehet megdni. Lineáris egyenletrendszer: Olyn töváltozós egyenletrendszer, melyen minden változó mimum elsı fokon szerepel. Megoldásukr töféle módszer vn: - kifejezés: vlmelyik egyenletıl átrendezéssel z egyik változót egyenlıvé tesszük egy olyn kifejezéssel, mi változót már nem trtlmzz. A kpott kifejezést töi egyenlete írv változók számát csökkenthetjük (z egyenletek számávl együtt.) - egyenlı együtthtók módszere: z egyenleteket konstnsokkl eszorozv zonos szolútértékő együtthtókt állítunk elı z egyik változónál, így z egyenleteket kivonv vgy összedv változó kiesik (ennek továfejlesztett változt Guss-elimináció) - z egyenletekıl kifejezzük ugynzt változót, és egyenlıvé tesszük kifejezéseket Egy lineáris egyenletrendszer kkor és csk kkor oldhtó meg egyértelmően, h z egymástól független egyenletek (melyek lgeri úton nem lkíthtók egymás) és z ismeretlenek szám megegyezik és nem vezet ellentmondásr. Egyéként megoldásán szd változók lesznek. Másodfokú egyenletrendszer: Olyn töváltozós egyenletrendszer, melyen minden változó mimum másodfokon szerepel. Megoldásukr módszerei hsonlók: - h z egyik egyenlet lineáris, kkor onnn kifejezhetı könnyen változó - egyenlı együtthtók módszerével esetleg négyzetes tgok kiejthetık - új ismeretlenek evezetésével - nevezetes zonosságok felismerésével

6 Alklmzások: Mtemtikán elül: - egyenletek, egyenlıtlenségek megoldás - szöveges feldtok megoldás - másodfokú egyenlet gyökei elıjelének meghtározás (Viéte-formulákkl) - lgeri kifejezések szorzttálkítás - koordinátgeometrii feldtok (lkztok metszéspontj) - kifejezések értelmezési trtományánk vizsgált - szélsıérték-feldtok elemi úton történı megoldás Egyé: - mozgások leírásán (út idı grfikon) és ezekkel kpcsoltos feldtoknál - egyenletes (lineáris): s(t) = v t, - egyenletesen gyorsuló (másodfokú): s(t) = t + v0 t, v(t) = v0 + t - hjítások leírásán (másodfokú) és ezekkel kpcsoltos feldtoknál - megforgtott vízfelület lkji forgásproloid

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2 A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:

Részletesebben

MATEMATIKA 9. osztály I. HALMAZOK. Számegyenesek, intervallumok

MATEMATIKA 9. osztály I. HALMAZOK. Számegyenesek, intervallumok MATEMATIKA 9. osztály I. HALMAZOK Számegyenesek, intervllumok. Töltsd ki tábláztot! Minden sorbn egy-egy intervllum háromféle megdás szerepeljen!. Add meg fenti módon háromféleképpen következő intervllumokt!

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb: Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

Emelt szintő érettségi tételek. 3. tétel: Nevezetes ponthalmazok síkban és térben

Emelt szintő érettségi tételek. 3. tétel: Nevezetes ponthalmazok síkban és térben . tétel: Nevezetes ponthlmzok síkn és téren Ponthlmzok: Sík vgy tér részhlmzi, áltlán utsításokkl djuk meg: A P x; y R x + y = B= R Nevezetes ponthlmzok: = { ( ) } vgy { PO= r, r>. Két pont szkszfelezı

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

2014/2015-ös tanév II. féléves tematika

2014/2015-ös tanév II. féléves tematika Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik

Részletesebben

2010/2011 es tanév II. féléves tematika

2010/2011 es tanév II. féléves tematika 2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert: . Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok

Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok SZENT ISTVÁN EGYETEM Gépészmérnöki Kr Orov Lászlóné dr. Informtik lpji Tntárgyhoz Kidolgozott Ecel feldtok Gödöllı, 8. Bevezetı Ez feldtgyőjtemény összefogllj z Informtik lpji tntárgy keretében okttott,

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása) Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei

Részletesebben

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása Automták nlízise, szintézise és minimlizálás Formális nyelvek, 11. gykorlt Célj: Az utomták nlízisének és szintézisének gykorlás, utomt minimlizáió Foglmk: Anlízis és szintézis, nyelvi egyenlet és egyenletrendszer

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

Matematika emelt szintû érettségi témakörök 2012. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2012. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 0 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

MATEMATIKA 10. A tankönyv feladatai és a feladatok megoldásai

MATEMATIKA 10. A tankönyv feladatai és a feladatok megoldásai Dr Gerőcs László Számdó László MTEMTIK 0 tnkönyv feldti és feldtok megoldási megoldások olvsásához crobt Reder progrm szükséges, mely ingyenesen letölthető z internetről (például: dobelhu weboldlról) feldtokt

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

II. ALGEBRA ÉS SZÁMELMÉLET

II. ALGEBRA ÉS SZÁMELMÉLET MATEMATIKA FELADATSOR 9. évolym Elézést tegezésért! I. HALMAZOK Számegyeesek, itervllumok. Töltsd ki táláztot! Mide sor egy-egy itervllum hároméle megdás szerepelje!. Add meg következő itervllumokt! A

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

Matematika emelt szintû érettségi témakörök 2014. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2014. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 04 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

A VI. FEKETE MIHÁLY EMLÉKVERSENY

A VI. FEKETE MIHÁLY EMLÉKVERSENY A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.

Részletesebben

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2011

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2011 Mtemtik I. Mőszki informtiki mérnm rnöksszisztens http://jgypk.u jgypk.u-szeged.hu/tnszek/szmtech szmtech/oktts/mtemtik-.pdf Glmbos GáborG JGYPK - Mtemtik I. Felsıfokú Szkképzés A Mtemtik I. fıbb f témái:

Részletesebben

Matematika emelt szintû érettségi témakörök 2015. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2015. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 05 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk Tisztelt Vizsgázó! szóeli vizsgán tétel címéen megjelölt tém kifejtését és kitûzött

Részletesebben

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.) Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

11. évfolyam feladatsorának megoldásai

11. évfolyam feladatsorának megoldásai évolym eldtsoránk megoldási Oldjuk meg természetes számok hlmzán következő egyenleteket x ) y 6 x! 3 b) y 6 3 ) Átrendezve megoldndó egyenlet y 6 x! 3 H x 0, kkor H x, kkor H x, kkor H x 3, kkor H x, kkor

Részletesebben

IV. Algebra. Algebrai átalakítások. Polinomok

IV. Algebra. Algebrai átalakítások. Polinomok Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol

Részletesebben

Matematika. Második kötet KÍSÉRLETI TANKÖNYV

Matematika. Második kötet KÍSÉRLETI TANKÖNYV Mtemtik Második kötet 10 KÍSÉRLETI TNKÖNYV tnkönyv megfelel z 51/0 (XII. ) EMMI rendelet: sz. melléklet: Kerettnterv gimnáziumok 9 évfolym számár.04 Mtemtik 6. sz. melléklet: Kerettnterv szkközépiskolák

Részletesebben

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket, Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2011. május 3. MINISZTÉRIUM NEMZETI ERFORRÁS Mtemtik emelt szint Jvítási-értékelési útmuttó MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERFORRÁS MINISZTÉRIUM ÉRETTSÉGI VIZSGA 0. május. Mtemtik emelt szint

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

Abszolútértékes és gyökös kifejezések Megoldások

Abszolútértékes és gyökös kifejezések Megoldások Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása

Részletesebben

2. modul Csak permanensen!

2. modul Csak permanensen! MATEMATIKA C. évfolym. modul Csk permnensen! Készítette: Kovács Károlyné Mtemtik C. évfolym. modul: Csk permnensen! Tnári útmuttó A modul célj Időkeret Ajánlott korosztály Modulkpcsolódási pontok A htványzonosságok

Részletesebben

Numerikus módszerek 2.

Numerikus módszerek 2. Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

A függvényekről tanultak összefoglalása /9. évfolyam/

A függvényekről tanultak összefoglalása /9. évfolyam/ A függvényekről tanultak összefoglalása /9. évfolyam/ Készítette: Almási István almasi84@gmail.com Lineáris függvény A függvény általános alakja: f (x):= m 1 m 2 x+b m a meredekség b a tengelymetszet 2/42

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik emelt szint 1111 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formi előírások: Fontos tudnivlók 1.

Részletesebben

Egyenletek, egyenlőtlenségek, egyenletrendszerek I.

Egyenletek, egyenlőtlenségek, egyenletrendszerek I. Egyenletek, egyenlőtlenségek, egyenletrendszerek I. DEFINÍCIÓ: (Nyitott mondat) Az olyan állítást, amelyben az alany helyén változó szerepel, nyitott mondatnak nevezzük. A nyitott mondatba írt változót

Részletesebben

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás: Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

Kovács Judit ELEKTRO TEC HNIKA-ELEKTRONIKA 137

Kovács Judit ELEKTRO TEC HNIKA-ELEKTRONIKA 137 ELEKTROTECHNIKA-ELEKTRONIKA Kovács Judit A LINEÁRIS EGYENLETRENDSZEREK GAUSS-FÉLE ELIMINÁCIÓVAL TÖRTÉNŐ MEGOLDÁSÁNAK SZEREPE A VILLAMOSMÉRNÖK SZAKOS HALLGATÓK MATEMATIKA OKTATÁSÁBAN ON THE ROLE OF GAUSSIAN

Részletesebben

MATEMATIKA A 10. évfolyam

MATEMATIKA A 10. évfolyam MATEMATIKA A 0 évfolym modul Algeri zonosságok és másodfokú egyenletek Készítette: Dros Noémi Ágnes MATEMATIKA A 0 ÉVFOLYAM modul: ALGEBRAI AZONOSSÁGOK ÉS MÁSODFOKÚ EGYENLETEK TANÁRI ÚTMUTATÓ A modul célj

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

Mindig csak a kitevő?

Mindig csak a kitevő? MATEMATIKA C. évfolym. modul Mindig csk kitevő? Készítette: Kovács Károlyné Mtemtik C. évfolym. modul: Mindig csk kitevő? Tnári útmuttó A modul célj Időkeret Ajánlott korosztály Modulkpcsolódási pontok

Részletesebben

11.o Mozaikos könyvvel felkészülési útmutató pótvizsgára és gyakorló feladatsor megoldással

11.o Mozaikos könyvvel felkészülési útmutató pótvizsgára és gyakorló feladatsor megoldással .o Mozikos könyvvel felkészülési útmuttó pótvizsgár és gykorló feldtsor megoldássl Felkészülési útmuttó: A hetes nyárr szerezzetek mgtok mellé egy mgántnárt. Hetente egyszer kétórás fogllkozás kb 000-000

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Konfár László Kozmáné Jakab Ágnes Pintér Klára. sokszínû. munkafüzet. Harmadik, változatlan kiadás. Mozaik Kiadó Szeged, 2012

Konfár László Kozmáné Jakab Ágnes Pintér Klára. sokszínû. munkafüzet. Harmadik, változatlan kiadás. Mozaik Kiadó Szeged, 2012 Konfár László Kozmáné Jk Ágnes Pintér Klár sokszínû munkfüzet 8 Hrmdik, változtln kidás Mozik Kidó Szeged, 0 Szerzõk: KONFÁR LÁSZLÓ áltlános iskoli szkvezetõ tnár KOZMÁNÉ JK ÁGNES áltlános iskoli szkvezetõ

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

2. ALGEBRA ÉS SZÁMELMÉLET

2. ALGEBRA ÉS SZÁMELMÉLET Szkközépiskol 9. osztály Felkészülési jvslt jvítóvizsgár Véges, végtele, üres hlmz oglm Két hlmz egyelősége Részhlmz, vlódi részhlmz oglm Uiverzum, komplemeterhlmz Hlmzműveletek (uió, metszet, külöbség)

Részletesebben

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

II. EGYENLETEK ÉS EGYENLŐTLENSÉGEK

II. EGYENLETEK ÉS EGYENLŐTLENSÉGEK Egyenletek és egyenlőtlenségek 5 II EGYENLETEK ÉS EGYENLŐTLENSÉGEK Az idők folymán ngyon sok gykorlti problém merült fel, melynek megoldásához egyenletekre volt szükség A mi egyszerű és tömör mtemtiki

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

Matematika emelt szintû érettségi témakörök 2011. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2011. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Mtemtik emelt szintû érettségi témkörök 0 Összeállított: Kovácsné Németh Srolt (gimnáziumi tnár) Tájékozttó vizsgázóknk szóeli vizsg leírás: z emelt szintû szóeli vizsg z Okttási Hivtl áltl kidott tételsor

Részletesebben

2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e)

2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e) . Egenletek I. Feldtok. Oldj meg z lábbi egenleteket egenletrendszereket vlós számok hlmzán. ) b) ( ) ( ) 8 Klmár László Mtemtik Versen döntője 99. 8. osztál c) ( ) ( ) ( ) ( ) OKTV II. ktegóri. forduló

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben