Gazdasági matematika II.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gazdasági matematika II."

Átírás

1 Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/2010 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 1 / 180

2 Félévközi kötelező házi feladatok beadási határideje: 1. házi feladat beadása a március héten lévő gyakorlaton 2. házi feladat beadása a május 3 7 héten lévő gyakorlaton Ezek teljesítése, két sikeresen megírt dolgozat, valamint a gyakorlatra járás (legfeljebb 3 hiányzás) szükséges a gyakorlati aláíráshoz! Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 2 / 180

3 Ajánlott irodalom: KNUT SYDSÆTER és PETER HAMMOND Matematika közgazdászoknak Aula, DENKINGER GÉZA Analízis: gyakorlatok Nemzeti Tankönyvkiadó, DENKINGER GÉZA Valószínűségszámítás Tankönyvkiadó, DENKINGER GÉZA Valószínűségszámítás példatár Tankönyvkiadó, Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 3 / 180

4 Ajánlott irodalom: KOVÁCS ZOLTÁN Feladatgyűjtemény lineáris algebra gyakorlatokhoz Kossuth Egyetemi Kiadó, GÁSPÁR LÁSZLÓ Lineáris algebra példatár Tankönyvkiadó, KOZMA LÁSZLÓ Matematikai alapok Studium Kiadó, Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 4 / 180

5 Ajánlott irodalom: LOSONCZI LÁSZLÓ Előadáskövető anyagok és feladatok losi/huindex.htm PAP GYULA Előadáskövető anyagok és feladatok LAJKÓ KÁROLY Gazdasági matematika I. lajko/ Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 5 / 180

6 9. AZ R k VEKTORTÉR 9.1 Az R k vektortér fogalma Az R k vektortér R k := {(x 1, x 2,..., x k ) : x i R minden i = 1, 2,..., k esetén}. Az x = (x 1, x 2,..., x k ) R k sorozatok a tér pontjai. Az x 1, x 2,..., x k számok az x = (x 1, x 2,..., x k ) pont koordinátái. pontjait vektorokként is felfoghatjuk (koordinátarendszer felvétele után az egyes pontoknak a kezdőpontból hozzájuk vezető irányított szakaszt feleltetjük meg). R k Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 6 / 180

7 9. AZ R k VEKTORTÉR 9.1 Az R k vektortér fogalma Összeadás R k -ban Az x = (x 1, x 2,..., x k ) R k és y = (y 1, y 2,..., y k ) R k vektorok összege x + y := (x 1 + y 1, x 2 + y 2,..., x k + y k ). Skalárral való szorzás R k -ban Az x = (x 1, x 2,..., x k ) R k vektor λ R skalárral való szorzata λx := (λx 1, λx 2,..., λx k ). Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 7 / 180

8 9. AZ R k VEKTORTÉR 9.1 Az R k vektortér fogalma Az összeadás és a skalárral való szorzás tulajdonságai Bármely x, y, z R k esetén a 0 = (0, 0,..., 0) zérusvektorral és x := ( 1)x ellentett vektorral x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x, x + ( x) = 0. Bármely x, y R k és bármely λ, µ, 1 R esetén λ(x + y) = λx + λy, (λ + µ)x = λx + µx, (λµ)x = λ(µx), 1x = x. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 8 / 180

9 9. AZ R k VEKTORTÉR 9.2 Vektorok lineáris függetlensége, bázis Lineáris kombináció Az a 1, a 2,..., a n R k vektorok λ 1, λ 2,..., λ n R együtthatókkal képezett lineáris kombinációján a vektort értjük. λ 1 a 1 + λ 2 a λ n a n Lineáris függetlenség, függőség Az a 1,..., a n R k nevezzük, ha vektorrendszert lineárisan függetlennek λ 1 a 1 + λ 2 a λ n a n = 0 csak λ 1 = λ 2 = = λ n = 0 esetén áll fenn. Egy vektorrendszert lineárisan függőnek nevezünk, ha nem lineárisan független. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 9 / 180

10 9. AZ R k VEKTORTÉR 9.2 Vektorok lineáris függetlensége, bázis Ha a 1,..., a n lineárisan függő, akkor léteznek olyan λ 1, λ 2,..., λ n R együtthatók, melyek nem mind zérusok, és λ 1 a 1 + λ 2 a λ n a n = 0. Ezért van olyan l {1, 2,..., n} index, hogy λ l 0, így osztva λ l -lel a l = λ 1 a 1 λ l 1 a l 1 λ l+1 a l+1 λ n a n, λ l λ l λ l λ l azaz az a l vektor kifejezhető a többi vektor lineáris kombinációjaként. Lineáris függetlenség Az a 1,..., a n R k független, ha vektorrendszer akkor és csakis akkor lineárisan b = λ 1 a λ n a n, b = λ 1 a λ na n csak λ 1 = λ 1,..., λ n = λ n esetén teljesül. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 10 / 180

11 9. AZ R k VEKTORTÉR 9.2 Vektorok lineáris függetlensége, bázis Az R k vektortér k dimenziós abban az értelemben, hogy van R k -ban k darab lineárisan független vektor, de bárhogyan is választunk k + 1 darab vektort R k -ból, azok lineárisan függők. Bázis Az R k vektortér bármely k számú lineárisan független b 1,..., b k vektorát a tér bázisának nevezzük. Koordináták Ha b 1,..., b k az R k vektortér egy bázisa, akkor a tér minden v vektora egyértelműen írható v = β 1 b 1 + β 2 b β k b k alakban. Az itt szereplő β 1, β 2,..., β k skalárokat a v vektor b 1,..., b k bázisára vonatkozó koordinátáinak nevezzük. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 11 / 180

12 9. AZ R k VEKTORTÉR 9.2 Vektorok lineáris függetlensége, bázis Példa. Az e 1 = (1, 0,..., 0), e 2 = (0, 1,..., 0),..., e k = (0, 0,..., 1) R k vektorok az R k tér egy bázisát alkotják, melyet természetes bázisnak nevezünk. Ha v = (v 1, v 2,..., v k ) R k, akkor v = (v 1, v 2,..., v k ) = v 1 e 1 + v 2 e v k e k, így v koordinátái azonosak v-nek a természetes bázisra vonatkozó koordinátáival. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 12 / 180

13 9. AZ R k VEKTORTÉR 9.3 Altér és rang Altér Az R k vektortér alterén R k olyan L részhalmazát értjük, mely nem üres és zárt az összeadásra és a skalárral való szorzásra nézve, azaz a, b L és λ R esetén a + b L és λa L teljesül. Vektorrendszer által generált altér Egy a 1, a 2,..., a n vektorrendszert tartalmazó legszűkebb alteret a vektorrendszer által generált/kifeszített altérnek nevezzük. Jelölés: L(a 1, a 2,..., a n ). L(a 1, a 2,..., a n ) = {α 1 a α n a n : α 1,..., α n R}, azaz egy vektorrendszer által generált altér azonos a vektorrendszer vektoraiból képezhető összes lineáris kombinációk halmazával. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 13 / 180

14 9. AZ R k VEKTORTÉR 9.3 Altér és rang Altér dimenziója Egy L altér dimenziója r, ha van L-ben r darab lineárisan független vektor, de akárhogyan választunk r + 1 darab vektort L-ből, azok lineárisan függőek. Vektorrendszer rangja Egy a 1, a 2,..., a n vektorrendszer rangjának az általa generált L(a 1, a 2,..., a n ) altér dimenzióját nevezzük. Vektorrendszer rangja Az a 1, a 2,..., a n vektorrendszer rangja megegyezik e rendszerből kiválasztható maximális számú, lineárisan független vektorok számával. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 14 / 180

15 9. AZ R k VEKTORTÉR 9.3 Altér és rang Vektorrendszer által generált altér Az a 1, a 2,..., a n vektorrendszer által generált altér nem változik meg (és így a vektorrendszer rangja sem változik), ha megváltoztatjuk a vektorok sorrendjét, vagy valamelyik vektort egy λ 0 skalárral megszorozzuk, vagy valamelyik vektorához egy másik vektorát hozzáadjuk. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 15 / 180

16 10. MÁTRIXOK, DETERMINÁNSOK 10.1 Mátrix fogalma, műveletek mátrixokkal k n típusú (valós) mátrix Ha k n darab (valós) számot, az {a i,j : i = 1, 2,..., k; j = 1, 2,..., n} számokat, k sorban és n oszlopban helyezünk el az alábbi módon: a 1,1 a 1,2 a 1,n a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = vagy A = a 2,1 a 2,2 a 2,n......, a k,1 a k,2 a k,n a k,1 a k,2 a k,n akkor egy k n típusú (valós) A = (a i,j ) i=1,2,...,k; j=1,2,...,n mátrixot definiáltunk. Az összes k n típusú mátrixok halmazát R k n vagy M k n jelöli. A típus megadásánál mindig a sorok száma az első adat! Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 16 / 180

17 10. MÁTRIXOK, DETERMINÁNSOK 10.1 Mátrix fogalma, műveletek mátrixokkal Az A = (a i,j ) i=1,2,...,k; j=1,2,...,n mátrix i-edik sorvektora/sormátrixa és j-edik oszlopvektora/oszlopmátrixa a 1,j s i = [ ] a 2,j a i,1 a i,2 a i,n, oj =. Speciális mátrixok Az A mátrix négyzetes vagy kvadratikus, ha n sora és n oszlopa van, azaz A R n n. Diagonálisa (főátlója) : {a 1,1, a 2,2,..., a n,n }. n-edrendű egységmátrix: az az n-edrendű E = E n R n n kvadratikus mátrix, melynek főátlójában csupa 1 áll, azon kívül pedig csupa 0 áll. k n típusú zérusmátrix: az a k n típusú O = O k n R k n mátrix, melynek minden eleme 0. a k,j Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 17 / 180

18 10. MÁTRIXOK, DETERMINÁNSOK 10.1 Mátrix fogalma, műveletek mátrixokkal Mátrix transzponáltja Az A = (a i,j ) i=1,2,...,k; j=1,2,...,n R k n mátrix transzponáltján az A := (a j,i ) j=1,2,...,n; i=1,2,...,k R n k mátrixot értjük (a mátrix sorait és oszlopait megcserélve kapjuk a mátrix transzponáltját). Azonos típusú mátrixok összeadása és számmal való szorzása Legyenek A = (a i,j ) i=1,2,...,k; j=1,2,...,n, B = (b i,j ) i=1,2,...,k; j=1,2,...,n R k n azonos típusú mátrixok és legyen λ R. Ekkor az A + B R k n és λa R k n mátrixok definíciója: A + B := (a i,j + b i,j ) i=1,2,...,k; j=1,2,...,n, λa := (λa i,j ) i=1,2,...,k; j=1,2,...,n. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 18 / 180

19 10. MÁTRIXOK, DETERMINÁNSOK 10.1 Mátrix fogalma, műveletek mátrixokkal Az összeadás, számmal való szorzás és transzponálás tulajdonságai Az összes k n típusú valós mátrixok R k n halmazában az összeadás és a számmal való szorzás ugyanolyan tulajdonságokkal rendelkezik, mint az R l vektortérben. Továbbá bármely A, B R k n, λ R esetén (A + B) = A + B, (λa) = λa. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 19 / 180

20 10. MÁTRIXOK, DETERMINÁNSOK 10.1 Mátrix fogalma, műveletek mátrixokkal Két mátrix szorzata csak akkor értelmezett, ha az első mátrixnak annyi oszlopa van, mint ahány sora van a második mátrixnak. Mátrixok szorzata A = (a i,j ) i=1,2,...,k; j=1,2,...,n R k n és B = (b j,l ) j=1,2,...,n; l=1,2,...,m R n m mátrixok C = AB szorzatán azt a C = (c i,l ) i=1,2,...,k; l=1,2,...,m R k m mátrixot értjük, melyre n c i,l := a i,j b j,l = a i,1 b 1,l + a i,2 b 2,l + + a i,n b n,l j=1 ha i = 1, 2,..., k ; l = 1, 2,..., m. Ezt a szorzást röviden sor-oszlop kombinációnak mondjuk, mert a szorzatmátrix c i,l eleme éppen az A mátrix i-edik sorvektorának és a B mátrix j-edik oszlopvektorának a belső szorzata R n -ben. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 20 / 180

21 10. MÁTRIXOK, DETERMINÁNSOK 10.1 Mátrix fogalma, műveletek mátrixokkal Mátrixok szorzásának tulajdonságai A(BC) = (AB)C, (A + B)C = AC + BC, A(B + C) = AB + AC, (AB) = B A, AO = OA = O, ahol A, B, C, O olyan mátrixok, melyekre a felírt műveleteknek van értelme. Kvadratikus A mátrixokra AE = EA = A. A mátrixszorzás nem kommutatív, azaz általában AB BA. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 21 / 180

22 10. MÁTRIXOK, DETERMINÁNSOK 10.1 Mátrix fogalma, műveletek mátrixokkal Kvadratikus mátrix inverze Egy A kvadratikus mátrixot invertálhatónak nevezünk, ha van olyan B (kvadratikus) mátrix, melyre AB = BA = E teljesül. Ezt a B mátrixot A inverzének nevezzük és A 1 -gyel jelöljük. Ha A invertálható, akkor csak egy inverze van. Ugyanis, ha B inverze volna, akkor AB = B A = E miatt is A B = BE = B(AB ) = (BA)B = EB = B azaz B = B. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 22 / 180

23 10. MÁTRIXOK, DETERMINÁNSOK 10.2 Mátrix determinánsa Részmátrix Legyen A = (a i,j ) i=1,2,...,k; j=1,2,...,n R k n egy k n típusú mátrix. Az i-edik sor és j-edik oszlop elhagyásával visszamaradó (k 1) (n 1) típusú részmátrix jelölése A i,j. Mátrix determinánsa Az A = (a i,j ) i=1,2,...,n; j=1,2,...,n R n n determinánsa n = 1 esetén det(a) = A := a 1,1, n-edrendű kvadratikus mátrix n 2 esetén pedig (rekurzívan definiálva) n det(a) = A := ( 1) 1+l a 1,l det(a 1,l ). l=1 Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 23 / 180

24 10. MÁTRIXOK, DETERMINÁNSOK 10.2 Mátrix determinánsa Másod és harmadrendű determinánsok kiszámítása a 1,1 a 1,2 a 2,1 a 2,2 = a 1,1a 2,2 a 2,1 a 1,2, a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a 2,3 a 3,1 a 3,2 a 3,3 = a 1,1a 2,2 a 3,3 + a 1,2 a 2,3 a 3,1 + a 1,3 a 2,1 a 3,2 a 1,3 a 2,2 a 3,1 a 1,1 a 2,3 a 3,2 a 1,2 a 2,1 a 3,3. Kifejtési tétel Minden A = (a i,j ) i=1,2,...,n; j=1,2,...,n R n n n-edrendű kvadratikus mátrix és minden i, j {1,..., n} esetén n n det(a) = ( 1) i+l a i,l det(a i,l ) = ( 1) k+j a k,j det(a k,j ). l=1 k=1 Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 24 / 180

25 10. MÁTRIXOK, DETERMINÁNSOK 10.2 Mátrix determinánsa Permutációk Az {1, 2,..., n} számok egy π = (π 1, π 2,..., π n ) elrendezését ezen elemek egy permutációjának nevezzük. Az {1, 2,..., n} számok összes permutációinak halmazát S n jelöli. Egy π = (π 1, π 2,..., π i,..., π j,..., π n ) S n permutációban a (π i, π j ) pár inverzióban áll, ha i < j és π i > π j. Egy π permutáció inverzióinak számát (az inverzióban álló párok számát) I(π) jelöli. Az {1, 2,..., n} számok összes permutációinak száma n!. Minden A = (a i,j ) i=1,2,...,n; j=1,2,...,n R n n n-edrendű kvadratikus mátrix esetén det(a) = ( 1) I(π) a 1,π1 a 2,π2... a n,πn. π S n Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 25 / 180

26 10. MÁTRIXOK, DETERMINÁNSOK 10.2 Mátrix determinánsa A determináns alaptulajdonságai 1 Bármely A kvadratikus mátrixra teljesül det(a ) = det(a). 2 Ha egy sor minden elemét c-vel szorozzuk, akkor a determináns értéke c-szeresére változik. 3 Ha két sort felcserélünk, akkor a determináns előjelet vált. 4 Ha két sor megegyezik, akkor a determináns értéke nulla. 5 A determináns értéke nem változik, ha egy sorának elemeihez egy másik sor megfelelő elemeinek c-szeresét hozzáadjuk. 6 Ha egy sor minden eleme két tag összegére bomlik, akkor a determináns felirható két olyan determináns összegeként, melyek megfelelő soraiban éppen az egyes összeadandók állnak. 7 Ha egy sorban csupa 0 áll, akkor a determináns értéke nulla. 8 Az egységmátrixok determinánsa 1. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 26 / 180

27 10. MÁTRIXOK, DETERMINÁNSOK 10.1 Mátrix determinánsa Determinánsok szorzástétele Ha A, B R n n Inverz mátrix előállítása azonos rendű kvadratikus mátrixok, akkor det(ab) = det(a) det(b). Egy (kvadratikus) mátrix akkor és csakis akkor invertálható, ha determinánsa nem nulla. Egy A = (a i,j ) i=1,2,...,n; j=1,2,...,n n-edrendű invertálható kvadratikus mátrix A 1 = (b i,j ) i=1,2,...,n; j=1,2,...,n inverzének elemei b i,j = ( 1)i+j det(a j,i ). det(a) Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 27 / 180

28 10. MÁTRIXOK, DETERMINÁNSOK 10.3 Mátrix rangja Mátrix rangja Egy A mátrix rang(a) rangján az A oszlopvektoraiból álló vektorrendszer rangját értjük (ami a maximális lineárisan független oszlopvektorok száma). A zérusmátrixok rangja nulla. Aldetermináns Legyen A R k n egy k n típusú mátrix, és 1 l min{k, n}. Az A egy l-edrendű aldeterminánsát úgy kapjuk, hogy kiválasztjuk a mátrix l darab sorát és l darab oszlopát, és képezzük az ezek metszetében lévő elemekből alkotott l-edrendű determinánst. Rangszámtétel Bármely (nemzérus) mátrix rangja megegyezik a maximális rendű nullától különböző aldeterminánsainak rendjével. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 28 / 180

29 10. MÁTRIXOK, DETERMINÁNSOK 10.3 Mátrix rangja Egy mátrix sorvektorainak rangja egyenlő az oszlopvektorainak rangjával. Egy (kvadratikus) mátrix akkor és csakis akkor invertálható, ha a mátrix oszlopvektorai (vagy sorvektorai) lineárisan függetlenek. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 29 / 180

30 11. LINEÁRIS EGYENLETRENDSZEREK 11.1 Lineáris egyenletrendszer fogalma, Gauss-elimináció Lineáris egyenletrendszernek nevezzük az a 1,1 x 1 + a 1,2 x a 1,n x n = b 1 a 2,1 x 1 + a 2,2 x a 2,n x n = b 2 a k,1 x 1 + a k,2 x a k,n x n = b k egyenletrendszert, ahol {a i,j, b i : i = 1,..., k; j = 1,..., n} adott valós számok, {x i : i = 1,..., n} ismeretlen valós számok. Az a i,j számokat a rendszer együtthatóinak nevezzük, b i az i-edik egyenlet szabad tagja. Az egyenletrendszert homogénnek nevezzük, ha b 1 = = b k = 0, ellenkező esetben inhomogénnek mondjuk. Az egyenletrendszert szabályosnak nevezzük, ha k = n, azaz ha az egyenletek és ismeretlenek száma egyenlő.. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 30 / 180

31 11. LINEÁRIS EGYENLETRENDSZEREK 11.1 Lineáris egyenletrendszer fogalma, Gauss-elimináció Tömören: ahol Ax = b, a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A := Rk n, a k,1 a k,2 a k,n x 1 b 1 x 2 x :=. b 2 Rn 1, b :=. Rk 1. x n b k Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 31 / 180

32 11. LINEÁRIS EGYENLETRENDSZEREK 11.1 Lineáris egyenletrendszer fogalma, Gauss-elimináció Alapvető kérdések: Van-e az egyenletrendszernek megoldása, és ha igen, akkor egyértelmű-e? Hogyan határozhatjuk meg az összes megoldást? Egy (lineáris) egyenletrendszer megoldható, ha van megoldása; ellentmondásos, ha nincs megoldása; határozott, ha pontosan egy megoldás létezik; határozatlan, ha több megoldás van. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 32 / 180

33 11. LINEÁRIS EGYENLETRENDSZEREK 11.1 Lineáris egyenletrendszer fogalma, Gauss-elimináció Ekvivalens átalakítások Két egyenletrendszert ekvivalensnek nevezünk, ha megoldásaik halmaza egyenlő. Ekvivalens átalakítások Lineáris egyenletrendszerek esetén az alábbi átalakítások ekvivalens rendszereket eredményeznek: az egyenletek sorrendjének megváltoztatása; az egyenletekben szereplő tagok sorrendjének megváltoztatása; a rendszer bármelyik egyenletének szorzása (minden tag szorzása) egy nemzérus számmal; a rendszer bármelyik egyenletének hozzáadása egy másik egyenletéhez. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 33 / 180

34 11. LINEÁRIS EGYENLETRENDSZEREK 11.1 Lineáris egyenletrendszer fogalma, Gauss-elimináció Trapéz alakú lineáris egyenletrendszer Az egyenletrendszert akkor nevezzük trapéz alakúnak, ha van olyan r {1,..., n} szám, hogy a 1,1 0, a 2,2 0,..., a r,r 0, a i,j = 0, ha i = 1, 2,..., r és j < i, a i,j = 0, ha i > r és j = 1, 2,..., n. Ha r = n, akkor a rendszert háromszögalakúnak nevezzük. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 34 / 180

35 11. LINEÁRIS EGYENLETRENDSZEREK 11.1 Lineáris egyenletrendszer fogalma, Gauss-elimináció Gauss-elimináció Az ismeretlenek szukcesszív (fokozatos) kiküszöbölésével az egyenletrendszert trapéz alakra hozzuk a következő lépésekkel: Tegyük fel, hogy a 1,1 0. Az első egyenlet a i,1 a 1,1 -szeresét az i-edik egyenlethez hozzáadva i = 2, 3,..., k esetén, az x 1 ismeretlen eltűnik a második, harmadik,... k-adik egyenletből. Ha a 1,1 = 0, akkor az első egyenletben keresünk egy ismeretlent, melynek együtthatója 0, és ez veszi át x 1 szerepét. Ezután a második egyenlet alkalmas konstanszorosainak a harmadik... k-adik egyenlethez való hozzádásával kiküszöböljük a harmadik ismeretlent a negyedik,... k-adik egyenletből. Az eljárást hasonlóan folytatjuk, míg van mit kiküszöbölni. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 35 / 180

36 11. LINEÁRIS EGYENLETRENDSZEREK 11.1 Lineáris egyenletrendszer fogalma, Gauss-elimináció Trapéz alakú lineáris egyenletrendszer megoldhatósága Egy trapéz alakú egyenletrendszernek akkor és csakis akkor van megoldása, ha a trapéz alakban az r + 1-edik egyenlettől kezdve a szabad tagok mind nullák; megoldható esetben akkor és csakis akkor van pontosan egy megoldása, ha r = n, azaz ha a rendszer hároszögalakú; akkor és csakis akkor van több megoldása, ha r < n; ebben az esetben végtelen sok megoldása van, és a megoldások egy n r paraméteres sereget alkotnak. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 36 / 180

37 11. LINEÁRIS EGYENLETRENDSZEREK 11.2 Lineáris egyenletrendszerek megoldhatósága Lineáris egyenletrendszer megoldhatósága Egy lineáris egyenletrendszernek akkor és csakis akkor van megoldása, ha a rang(a) = rang(a b) rangfeltétel teljesül, ahol A a rendszer együtthatómátrixa, (A b) pedig a bővített mátrix, melyet az A mátrixból úgy kapunk, hogy az A mátrixhoz n + 1-edik oszlopként hozzáírjuk a szabad tagok b oszlopvektorát. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 37 / 180

38 11. LINEÁRIS EGYENLETRENDSZEREK 11.2 Lineáris egyenletrendszerek megoldhatósága Homogén rendszer esetén (amikor b 1 = = b k = 0 ), mindig van megoldás: az x 1 = x 2 = = x n = 0 triviális megoldás. Homogén rendszer nemtriviális megoldásának létezése Egy homogén lineáris egyenletrendszernek akkor és csakis akkor van triviálistól különböző megoldása, ha rang(a) < n, azaz ha a rendszer A mátrixának rangja kisebb mint az ismeretlenek száma. Ha ez teljesül, akkor a homogén rendszer összes megoldásai R n -nek egy n rang(a) dimenziós alterét alkotják. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 38 / 180

39 11. LINEÁRIS EGYENLETRENDSZEREK 11.2 Lineáris egyenletrendszerek megoldhatósága Lineáris egyenletrendszer megoldáshalmazának szerkezete Az Ax = b (A R k n, x R n 1, b R k 1 ) inhomogén lineáris egyenletrendszer bármely x megoldása x = x + x h alakba írható, ahol x az inhomogén egyenlet egy rögzített (partikuláris) megoldása, x h pedig a megfelelő Ax = 0 homogén egyenletrendszer egy tetszőleges megoldása. Így a megoldások halmaza a homogén egyenletrendszer megoldásalterének az x vektorral való eltoltja. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 39 / 180

40 11. LINEÁRIS EGYENLETRENDSZEREK 11.3 Cramer-szabály lineáris egyenletrendszerek megoldására Cramer-szabály Legyen A egy n-edrendű kvadratikus mátrix. Az Ax = b (A R n n, x R n 1, b R n 1 ) (szabályos) lineáris egyenletrendszernek akkor és csakis akkor van pontosan egy megoldása, ha det(a) 0. Ha ez teljesül, akkor a rendszer egyetlen megoldása x i = det(a i b) det(a) (i = 1, 2,..., n), ahol A i b az a mátrix, melyet az A mátrixból úgy kapunk, hogy annak i-edik oszlopát a szabad tagok b (oszlop)vektorára cseréljük ki. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 40 / 180

41 11. LINEÁRIS EGYENLETRENDSZEREK 11.3 Cramer-szabály lineáris egyenletrendszerek megoldására Szabályos homogén lineáris egyenletrendszer nemtriviális megoldásának létezése Legyen A egy n-edrendű kvadratikus mátrix. Az Ax = 0 (A R n n, x R n 1 ) (szabályos) homogén lineáris egyenletrendszernek akkor és csakis akkor van nemtriviális megoldása, ha det(a) = 0. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 41 / 180

42 12. LINEÁRIS TRANSZFORMÁCIÓK 12.1 Lineáris leképezés és mátrixa Lineáris leképezés/operátor/transzformáció A ϕ : R n R n leképezést lineáris leképezésnek nevezzük, ha bármely x, y R n és bármely λ R esetén ϕ(x + y) = ϕ(x) + ϕ(y) ϕ(λx) = λϕ(x) (azaz ϕ additív), (azaz ϕ homogén). Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 42 / 180

43 12. LINEÁRIS TRANSZFORMÁCIÓK 12.1 Lineáris leképezés és mátrixa Lineáris leképezés megadása mátrix segítségével Ha ϕ : R n R n lineáris leképezés, b 1,..., b n az R n egy bázisa, és A ϕ = (a i,j ) i,j=1,...,n az a mátrix, melyre n ϕ(b j ) = a i,j b i minden j = 1,..., n esetén, i=1 akkor minden x = n j=1 x jb j R n esetén ϕ(x) = y = n i=1 y ib i, ahol n y i = a i,j x j minden i = 1,..., n esetén. j=1 Bizonyítás: ϕ(x) = n x j ϕ(b j ) = j=1 n j=1 x j n a i,j b i = i=1 n ( n a i,j x j )b i. i=1 j=1 Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 43 / 180

44 12. LINEÁRIS TRANSZFORMÁCIÓK 12.1 Lineáris leképezés és mátrixa azaz mátrixos formában: Lineáris leképezés mátrixa y 1 a 1,1 a 1,2 a 1,n x 1 y 2. = a 2,1 a 2,2 a 2,n x , y n a n,1 a n,2 a n,n x n ϕ(x) = y = A ϕ x. Azt mondjuk, hogy az A ϕ (n-edrendű kvadratikus) mátrix a ϕ lineáris leképezés mátrixa a b 1,..., b n bázisban. Rögzített bázis esetén a ϕ A ϕ hozzárendelés kölcsönösen egyértelmű a ϕ : R n R n lineáris leképezések és az A ϕ R n n mátrixok között. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 44 / 180

45 12. LINEÁRIS TRANSZFORMÁCIÓK 12.1 Lineáris leképezés és mátrixa Lineáris leképezések összege, számszorosa és kompoziciója (ϕ + ψ)(x) := ϕ(x) + ψ(x) (x R n ), (λϕ)(x) := λϕ(x) (λ R, x R n ), (ϕ ψ)(x) := ϕ(ψ(x)) (x R n ). A ϕ A ϕ hozzárendelés tulajdonságai Rögzített bázis és tetszőleges ϕ, ψ : R n R n lineáris leképezések esetén A ϕ+ψ = A ϕ + A ψ, A λϕ = λa ϕ, A ϕ ψ = A ϕ A ψ. Továbbá ϕ : R n R n akkor és csakis akkor kölcsönösen egyértelmű, ha A ϕ invertálható. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 45 / 180

46 12. LINEÁRIS TRANSZFORMÁCIÓK 12.1 Lineáris leképezés és mátrixa Lineáris leképezés mátrixa különböző bázisokban Legyen b 1,..., b n és b 1,..., b n az R n tér két bázisa, és n A ϕ = (a i,j ) i,j=1,...,n, ahol ϕ(b j )= a i,j b i, i=1 A ϕ = (a i,j ) i,j=1,...,n, ahol ϕ(b j ) = n i=1 a i,j b i a ϕ : R n R n lineáris leképezés mátrixai. Akkor van olyan S R n n invertálható mátrix, hogy A ϕ = S 1 A ϕ S. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 46 / 180

47 12. LINEÁRIS TRANSZFORMÁCIÓK 12.2 Sajátértékek és sajátvektorok Kvadratikus mátrix sajátértéke, sajátvektora A λ R számot az A R n n mátrix sajátértékének nevezzük, ha van olyan nullától különböző x R n vektor, melyre Ax = λx teljesül. Az x vektort az A mátrix λ sajátértékéhez tartozó sajátvektorának nevezzük. Más alakban: (A λe)x = 0. Ennek a homogén lineáris egyenletrendszernek akkor és csakis akkor van nemtriviális megoldása, ha det(a λe) = 0. Ezt a determinánst kifejtve egy λ-ban n-edfokú polinomot kapunk. Ennek zérushelyei adják A sajátértékeit. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 47 / 180

48 12. LINEÁRIS TRANSZFORMÁCIÓK 12.3 Mátrixok diagonális alakra hozása Diagonális mátrix Egy n n-es D mátrixot diagonálisnak nevezünk, ha a főátlón kívüli elemei mind zérusok. Jelölés: λ λ 2 0 diag(λ 1,..., λ n ) = λ n Kvadratikus mátrix diagonális alakra hozása Egy n n-es A mátrixot diagonalizálhatónak (diagonális alakra hozhatónak) nevezünk, ha van olyan invertálható n n-es S mátrix és egy D diagonális mátrix, melyekre S 1 A S = D. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 48 / 180

49 12. LINEÁRIS TRANSZFORMÁCIÓK 12.3 Mátrixok diagonális alakra hozása Ha A és S két n n-es mátrix és S invertálható, akkor az A és S 1 A S mátrixok sajátértékei megegyeznek. Bizonyítás: det(s 1 A S λe) = det ( S 1 A S S 1 (λe)s ) = det ( S 1 (A λe)s ) A diagonalizálhatóság kritériuma = det(s 1 ) det(a λe) det(s) = det(a λe). Egy n n-es A mátrix akkor és csakis akkor diagonalizálható, ha van n lineárisan független sajátvektora, x 1,..., x n. Ekkor λ S 1 0 λ 2 0 A S = diag(λ 1,..., λ n ) =......, 0 0 λ n ahol az S mátrix oszlopvektorai rendre x 1,..., x n, a λ 1,..., λ n számok pedig a hozzájuk tartozó sajátértékek. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 49 / 180

50 12. LINEÁRIS TRANSZFORMÁCIÓK 12.4 Szimmetrikus és ortogonális mátrixok Szimmetrikus és ortogonális mátrixok Egy kvadratikus A mátrixot szimmetrikusnak nevezünk, ha A = A, illetve ortogonálisnak nevezünk, ha A A = E. Ortogonális/merőleges vektorok Az x, y R n vektorok akkor ortogonálisak, ha x, y = 0. Ortogonális mátrixok Egy kvadratikus A mátrix esetén a következő állítások ekvivalensek: A ortogonális; A invertálható, és A 1 = A ; A sorvektorai egységvektorok és páronként ortogonálisak; A oszlopvektorai egységvektorok és páronként ortogonálisak. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 50 / 180

51 12. LINEÁRIS TRANSZFORMÁCIÓK 12.4 Szimmetrikus és ortogonális mátrixok Szimmetrikus mátrixok sajátértékei és sajátvektorai Ha A egy kvadratikus szimmetrikus mátrix, akkor A sajátértékei mind valós számok; A különböző sajátértékeihez tartozó sajátvektorok ortogonálisak. Szimmetrikus mátrixok spektráltétele Ha A egy n n-es szimmetrikus mátrix, akkor létezik olyan ortogonális U mátrix, amelyre U 1 A U = diag(λ 1,..., λ n ), ahol λ 1,..., λ n az A sajátértékei, az U mátrix i-edik oszlopa pedig a λ i -hez tartozó sajátvektora (i = 1,..., n). Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 51 / 180

52 12. LINEÁRIS TRANSZFORMÁCIÓK 12.5 Kvadratikus függvények Bilineáris és kvadratikus függvények/formák Ha A = R n n, akkor az F : R n R n R, F(x, y) := Ax, y, (x, y R n ) függvényt bilineáris függvénynek/formának nevezzük; a Q : R n R, Q(x) := Ax, x, (x R n ) függvényt kvadratikus függvénynek/formának nevezzük. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 52 / 180

53 12. LINEÁRIS TRANSZFORMÁCIÓK 12.5 Kvadratikus függvények Tehát ha x = (x 1,..., x n ) R n, akkor Q(x) = Q(x 1,..., x n ) = Ax, x = n i=1 j=1 n a i,j x i x j, így feltehető, hogy A szimmetrikus mátrix. Ezért létezik olyan U ortogonális mátrix, melyre ahol λ 1,..., λ n ezért y := U x jelöléssel U 1 A U = D = diag(λ 1,... λ n ), az A sajátértékei. Innen A = U D U 1 = U D U, Q(x) = Ax, x = U DU x, x = D U x, U x = Dy, y = Ezt a Q kvadratikus forma kanonikus alakjának nevezzük. n i=1 λ i y 2 i. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 53 / 180

54 12. LINEÁRIS TRANSZFORMÁCIÓK 12.5 Kvadratikus függvények Kvadratikus függvény definitsége A Q : R n R kvadratikus függvény pozitív definit, ha Q(x) > 0 bármely x R n, x 0 esetén; negatív definit, ha Q(x) < 0 bármely x R n, x 0 esetén; indefinit, ha Q(x) felvesz pozitív és negatív értékeket is. Kritérium kvadratikus függvény definitségére Egy szimmetrikus A R n n mátrixszal képezett Q(x) := Ax, x (x R n ) kvadratikus függvény akkor és csakis akkor pozitív definit, ha A összes sajátértéke pozitív, negatív definit, ha A összes sajátértéke negatív, indefinit, ha A-nak van pozitív és negatív sajátértéke is. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 54 / 180

55 12. LINEÁRIS TRANSZFORMÁCIÓK 12.5 Kvadratikus függvények Kritérium kvadratikus függvény definitségére Legyen A = (a i,j ) R n n szimmetrikus mátrix, és legyen k (k = 1,..., n) az A mátrix bal felső k k-s sarokmátrixának determinánsa (sarokfőminora), azaz 1 :=a 1,1, 2 := a 1,1 a 1,2 a 2,1 a 2,2, a 1,1 a 1,2 a 1,3 3 := a 2,1 a 2,2 a 2,3 a 3,1 a 3,2 a 3,3,..., n := A, akkor a Q(x) := Ax, x (x R n ) kvadratikus függvény akkor és csakis akkor pozitív definit, ha k > 0 minden k = 1,..., n esetén; negatív definit, ha ( 1) k k > 0 minden k = 1,..., n esetén. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 55 / 180

56 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.1 Metrika és topológia R k -ban Skaláris/belső szorzás R k -ban Az x = (x 1, x 2,..., x k ) R k és y = (y 1, y 2,..., y k ) R k vektorok skaláris vagy belső szorzata x, y := x 1 y 1 + x 2 y x k y k. k-dimenziós Euklideszi tér R k ellátva a skaláris/belső szorzással A skaláris/belső szorzás tulajdonságai Bármely x, y, z R k x + y, z = x, z + y, z, λx, y = λ x, y, x, y = y, x, és bármely λ R esetén x, x 0, és x, x = 0 akkor és csakis akkor, ha x = 0. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 56 / 180

57 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.1 Metrika és topológia R k -ban Cauchy-Schwarz-egyenlőtlenség Bármely két x, y R k vektor esetén x, y x, x y, y. Vektor hossza/normája Az x = (x 1, x 2,..., x k ) R k vektor hossza/normája x := x, x. A hossz/norma tulajdonságai Bármely x, y R k és bármely λ R esetén x 0, és x = 0 akkor és csakis akkor, ha x = 0, λx = λ x, x + y x + y. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 57 / 180

58 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.1 Metrika és topológia R k -ban Pontok távolsága Az x, y R k pontok távolsága d(x, y) := x y. Pont (nyílt) környezete Egy a R k halmazt értjük. pont ε > 0 sugarú (nyílt) környezetén a K (a, ε) := {x R k : d(x, a) = x a < ε} k = 1 esetén K (a, ε) az a pontra nézve szimmetrikus 2ε hosszúságú ]a ε, a + ε[ nyílt intervallum. k = 2 esetén K (a, ε) az a = (a 1, a 2 ) pont körüli ε sugarú nyílt körlap. k = 3 esetén K (a, ε) az a = (a 1, a 2, a 3 ) pont körüli ε sugarú nyílt gömb. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 58 / 180

59 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.1 Metrika és topológia R k -ban Az a R k pontot az A R k halmaz belső pontjának nevezzük, ha a-nak van olyan környezete, mely A-ban van (azaz van olyan ε > 0, hogy K (a, ε) A ). Az a R k pontot az A R k halmaz izolált pontjának nevezzük, ha a A, és a-nak van olyan környezete, melyben a-n kívül nincs A-beli pont (azaz a A, és van olyan ε > 0, hogy (K (a, ε) \ {a}) A = ). Az a R k pontot az A R k halmaz torlódási pontjának nevezzük, ha a bármely környezetében van tőle különböző A-beli pont (azaz bármely ε > 0 esetén (K (a, ε) \ {a}) A ). Az a R k pontot az A R k halmaz határpontjának nevezzük, ha a bármely környezetében van A-beli és nem A-beli pont is (azaz bármely ε > 0 esetén K (a, ε) A és K (a, ε) A, ahol A := R k \ A az A halmaz komplementere). Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 59 / 180

60 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.1 Metrika és topológia R k -ban Az A R k halmazt nyíltnak nevezzük, ha minden pontja belső pontja A-nak. Az A R k halmazt zártnak nevezzük, ha komplementere nyílt. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 60 / 180

61 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.1 Metrika és topológia R k -ban Sorozat R k -ban Egy a : N R k függvényt R k -beli sorozatnak nevezünk. Jelölés: (a n ) n N, ahol a n := a(n), és a n = (a n,1, a n,2,..., a n,k ), ha n N. Konvergens sorozat R k -ban Az R k -beli (a n ) n N sorozatot konvergensnek nevezzük, ha van olyan b R k, hogy bármely ε > 0-hoz létezik olyan N(ε) R szám, hogy a n b < ε amennyiben n > N(ε). A b pontot a sorozat határértékének (limeszének) nevezzük. Jelölés: a n b ha n, vagy lim n a n = b. Egy R k -beli sorozatot divergensnek nevezünk, ha nem konvergens. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 61 / 180

62 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.1 Metrika és topológia R k -ban R k -beli konvergencia = koordinátánkénti konvergencia a n = (a n,1, a n,2,..., a n,k ) b = (b 1, b 2,..., b k ) ha n akkor és csakis akkor, ha a n,i b i ha n minden i = 1, 2,..., k esetén. Ez azt jelenti, hogy egy vektorsorozat akkor és csakis akkor konvergens, ha a sorozat minden koordinátája konvergens, és határértéke a határvektor megfelelő koordinátája. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 62 / 180

63 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.2 Többváltozós függvény határértéke és folytonossága Egy D R k halmaz torlódási pontjainak halmazát D -vel jelöljük. Többváltozós függvény határértéke Legyen f : D R k R és legyen x 0 D. Azt mondjuk, hogy f -nek van (véges) határértéke az x 0 pontban, ha van olyan a R szám, hogy minden ε > 0-hoz van olyan δ(ε) > 0, hogy f (x) a < ε ha 0 < x x 0 < δ(ε) és x D. Az a R számot az f függvény x 0 nevezzük. Jelölés: pontbeli határértékének f (x) a ha x x 0, vagy lim x x0 f (x) = a. A határérték, ha létezik, akkor egyértelmű. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 63 / 180

64 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.2 Többváltozós függvény határértéke és folytonossága Átviteli elv Legyen f : D R k R és legyen x 0 D. Ekkor azzal egyenértékű, hogy lim f (x) = a x x0 lim f (x n ) = a teljesül bármely olyan n D \ {x 0 }-beli (x n ) n N sorozatra, melyre lim n x n = x 0. A műveletek, egyenlőtlenségek és határérték kapcsolata most is érvényes. A határérték fogalma a = + -re és a = -re hasonlóan kiterjeszthető, mint egy változónál. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 64 / 180

65 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.2 Többváltozós függvény határértéke és folytonossága Többváltozós függvény folytonossága Az f : D R k R függvényt értelmezési tartományának x 0 D pontjában folytonosnak nevezzük, ha bármely ε > 0-hoz van olyan δ(ε) > 0, hogy f (x) f (x 0 ) < ε ha x x 0 < δ(ε) és x D. Átviteli elv többváltozós függvény folytonosságára Az f : D R k R függvény az x 0 D pontban akkor és csakis akkor folytonos, ha lim f (x n ) = f (x 0 ) teljesül bármely olyan D-beli n (x n ) n N sorozatra, melyre lim x n = x 0. n Folytonos függvények tulajdonságai ugyanazok, mint az egyváltozós esetben. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 65 / 180

66 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.3 Többváltozós függvények differenciálhatósága (Totális) differenciálhatóság Az f : D R k R függvényt az x 0 D belső pontban (totálisan) differenciálhatónak nevezzük, ha van olyan A R k vektor, hogy f (x) f (x 0 ) A, x x 0 lim = 0. x x 0 x x 0 Az f (x 0 ) := A vektort az f függvény x 0 nevezzük. pontbeli deriváltjának GEOMETRIAI JELENTÉS: a függvény f (x) f (x 0 ) növekményét az f (x 0 ), x x 0 lineáris függvény jól közelíti x 0 közelében; a függvény által meghatározott felületnek x 0 -ban van érintősíkja, mégpedig az hipersík az R k+1 x k+1 = f (x 0 ) + f (x 0 ), x x 0 térben. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 66 / 180

67 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.3 Többváltozós függvények differenciálhatósága Irány menti differenciálhatóság Legyen e R k egy egységvektor, azaz e = 1. Az f : D R k R függvényt az x 0 D belső pontban az e irány mentén differenciálhatónak nevezzük, ha létezik a D e f (x 0 ) := lim t 0 f (x 0 + te) f (x 0 ) t (véges) határérték, melyet az f függvény e iránymenti deriváltjának nevezünk az x 0 pontban. D e f (x 0 ) jelentése: az f függvény változási sebessége az e irányában. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 67 / 180

68 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.3 Többváltozós függvények differenciálhatósága Parciális derivált Legyen i {1, 2,..., k}, és legyen u i R k az i-edik tengely irányába mutató egységvektor (az u i vektor i-edik koordinátája 1, a többi 0). Az f : D R k R függvénynek az x 0 D belső pontban létezik az i-edik változója szerinti parciális deriváltja, ha differenciálható az u i irányban. Jelölése: i f (x 0 ) := D ui f (x 0 ). Egyéb jelölések: f x i (x 0 ) és f xi (x 0 ) Parciális differenciálhatóság Az f : D R k R függvényt az x 0 D belső pontban parciálisan differenciálhatónak nevezzük, ha i f (x 0 ) minden i = 1, 2,..., k esetén létezik. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 68 / 180

69 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.3 Többváltozós függvények differenciálhatósága Parciális derivált kiszámítása Mivel x i = x 0,i + t helyettesítéssel i f (x 0 ) = lim t 0 f (x 0,1,..., x 0,i + t,..., x 0,k ) f (x 0,1,..., x 0,i,..., x 0,k ) t f (x 0,1,..., x i,..., x 0,k ) f (x 0,1,..., x 0,i,..., x 0,k ) = lim, x i x 0,i x i x 0,i így az i-edik változó szerinti parciális deriváltat úgy számítjuk ki, hogy az i-edik változó szerint deriválunk, miközben a többi változót konstansnak tekintjük. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 69 / 180

70 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.3 Többváltozós függvények differenciálhatósága Irány menti derivált kiszámítása Ha f :D R n R az x 0 D belső pontban (totálisan) differenciálható, akkor bármely e R k egységvektor iránya mentén is differenciálható x 0 -ban, és D e f (x 0 ) = f (x 0 ), e. Ha e = u i az i-edik tengely irányába mutató egységvektor, akkor i f (x 0 ) = D ui f (x 0 ) = f (x 0 ), u i, így e = (e 1, e 2,..., e k ) = e 1 u 1 + e 2 u e k u k alapján D e f (x 0 ) = 1 f (x 0 )e f (x 0 )e k f (x 0 )e k. Ezért (totális) differenciálhatóság = parciális differenciálhatóság. Az is következik, hogy f (x 0 ) = ( 1 f (x 0 ),..., k f (x 0 )), így az f (x 0 ) (totális) derivált (vektor) koordinátái a parciális deriváltak. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 70 / 180

71 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.3 Többváltozós függvények differenciálhatósága (Totális) differenciálhatóság = folytonosság Ha f : D R k R az x 0 D belső pontban (totálisan) differenciálható, akkor f folytonos x 0 -ban. parciális differenciálhatóság folytonosság parciális derivált folytonossága = (totális) differenciálhatóság Ha az f : D R k R függvénynek az x 0 D belső pont egy környezetében folytonos parciális deriváltjai vannak (ekkor azt mondjuk, hogy a függvény folytonosan parciálisan differenciálható e környezetben), akkor f az x 0 pontban (totálisan) differenciálható (így folytonos is). Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 71 / 180

72 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.3 Többváltozós függvények differenciálhatósága Láncszabály: összetett függvény differenciálhatósága Ha mindegyik j = 1, 2,..., l esetén a g j : D R k R függvények differenciálhatók az x 0 D belső pontban, és f : E R l R differenciálható az y 0 := g(x 0 ) E belső pontban, ahol a g : D R l függvény értelmezése x D esetén g(x) := (g 1 (x), g 2 (x),..., g l (x)), akkor létezik olyan ε > 0, hogy g(k (x 0, ε)) E, így a h : K (x 0, ε) R, h(x) := f (g(x)) ha x K (x 0, ε) összetett függvény differenciálható az x 0 pontban, és l i h(x 0 ) = j f (g(x 0 )) i g j (x 0 ) ha i = 1, 2,..., k. j=1 Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 72 / 180

73 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.4 Magasabbrendű parciális deriváltak Magasabbrendű parciális deriváltak Tegyük fel, hogy az f : D R k R függvénynek az x 0 D belső pont egy környezetében létezik az i-edik változó szerinti i f parciális deriváltja. Ha ez parciálisan differenciálható a j-edik változó szerint, úgy a deriválást elvégezve kapjuk a j i f (x 0 ) := j ( i f (x 0 )) második parciális deriváltját f -nek az x 0 pontban az i-edik és j-edik változók szerint (ebben a sorrendben!). Hasonlóan, ha a j i f (x) derivált létezik x 0 egy környezetében és ez parciálisan differenciálható az l-edik változó szerint, úgy a deriválást elvégezve kapjuk a l i j f (x 0 ) := l ( i j f (x 0 )) harmadik parciális deriváltat. Hasonlóan értelmezhetjük a negyed- és magasabbrendű parciális deriváltakat is. Egyéb jelölések a magasabbrendű parciális deriváltakra: 2 f x j x i (x 0 ), illetve f xi,x j (x 0 ). Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 73 / 180

74 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.4 Magasabbrendű parciális deriváltak Példa. Számítsuk ki az f : R 2 R, f (x, y) := x 2 + y 2 e xy függvény összes első- és másodrendű parciális deriváltját, és hasonlítsuk össze a 1 2 f (x, y) és 2 1 f (x, y) vegyes deriváltakat. Young tétel: a vegyes parciális deriváltak függetlensége a deriválás sorrendjétől Ha az f : D R k R függvénynek az x 0 D belső pont egy környezetében valamely m 2 esetén az összes m-edik parciális deriváltja létezik és az x 0 pontban azok folytonosak, akkor az f függvény m-edik parciális deriváltjai az x 0 pontban a differenciálás sorrendjétől függetlenek. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 74 / 180

75 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.5 Többváltozós függvények szélsőértéke Azt mondjuk, hogy az f : D R k R függvénynek az x 0 D pontban lokális/helyi maximuma (minimuma) van, ha ε > 0, hogy f (x 0 ) f (x) (f (x 0 ) f (x)) x K (x 0, ε) D esetén. szigorú lokális/helyi maximuma (minimuma) van, ha ε > 0, hogy f (x 0 ) > f (x) (f (x 0 ) < f (x)) x K (x 0, ε) D, x x 0 esetén. globális/abszolút maximuma (minimuma) van, ha f (x 0 ) f (x) (f (x 0 ) f (x)) x D esetén. szigorú globális/abszolút maximuma (minimuma) van, ha f (x 0 ) > f (x) (f (x 0 ) < f (x)) x D, x x 0 esetén. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 75 / 180

76 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.5 Többváltozós függvények szélsőértéke A szélsőérték létezésének elegendő feltétele Korlátos, zárt halmazon folytonos függvény felveszi a függvényértékek infimumát és szuprémumát függvényértékként, ami azt jelenti, hogy a függvénynek van minimuma és maximuma (az illető korlátos, zárt halmazon). A szélsőérték létezésének szükséges feltétele Ha az f : D R k R függvénynek az x 0 D belső pontban lokális szélsőértéke van, és léteznek f első parciális deriváltjai x 0 -ban, akkor 1 f (x 0 ) = 2 f (x 0 ) = = k f (x 0 ) = 0. (E feltételnek eleget tevő x 0 pontokat az f függvény stacionárius pontjainak nevezzük.) Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 76 / 180

77 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.5 Többváltozós függvények szélsőértéke A szélsőérték létezésének másodrendű elegendő feltétele Tegyük fel, hogy az f : D R k R összes második parciális deriváltja folytonos az x 0 D belső pont egy környezetében, továbbá 1 f (x 0 ) = 2 f (x 0 ) = = k f (x 0 ) = 0. 1 Ha a k k Q : R k R, Q(h) = Q(h 1,..., h k ) := j i f (x 0 )h i h j j=1 i=1 kvadratikus függvény pozitív definit, azaz Q(h) > 0 ha h R k és h 0, akkor f -nek szigorú lokális minimuma van x 0 -ban. 2 Ha Q negatív definit, azaz Q(h) < 0 minden h R k, h 0 esetén, akkor f -nek szigorú lokális maximuma van x 0 -ban. 3 Ha Q indefinit, azaz Q(h) felvesz pozitív és negatív értéket is, akkor f -nek nincs szélsőértéke x 0 -ban. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 77 / 180

78 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.5 Többváltozós függvények szélsőértéke A szélsőérték létezésének másodrendű elegendő feltétele determinánsok segítségével Tegyük fel, hogy az f : D R k R összes második parciális deriváltja folytonos az x 0 D belső pont egy környezetében, továbbá 1 f (x 0 ) = 2 f (x 0 ) = = k f (x 0 ) = 0. Legyen l (l = 1,..., k) az A := ( i j f (x 0 )) i=1,...,k; j=1,...,k R k k szimmetrikus mátrix bal felső l l-s sarokmátrixának determinánsa (sarokfőminora), azaz 1 := 1 2 f (x 0), 2 := 2 1 f (x 0) 1 2 f (x 0 ) 1 2 f (x 0 ) 2 2f (x 0),..., k := A. 1 Ha l > 0 minden l = 1,..., k esetén, akkor f -nek szigorú lokális minimuma van x 0 -ban. 2 Ha ( 1) k j > 0 minden j = 1,..., k esetén, akkor f -nek szigorú lokális maxmuma van x 0 -ban. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 78 / 180

79 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.5 Többváltozós függvények szélsőértéke A szélsőérték létezésének másodrendű elegendő feltétele determinánsok segítségével kétváltozós függvény esetén Tegyük fel, hogy az f : D R 2 R összes második parciális deriváltja folytonos az x 0 D belső pont egy környezetében, továbbá 1 f (x 0 ) = 2 f (x 0 ) = 0. Legyen 1 és 2 az A := ( i j f (x 0 )) i=1,2; j=1,2 R 2 2 szimmetrikus mátrix bal felső sarokmátrixainak determinánsa (sarokfőminorai), azaz 1 := 1 2 f (x 0), 2 := 2 1 f (x 0) 1 2 f (x 0 ) 1 2 f (x 0 ) 2 2f (x 0). 1 Ha 1 > 0 és 2 > 0, akkor f -nek szigorú lokális minimuma van x 0 -ban. 2 Ha 1 < 0 és 2 > 0, akkor f -nek szigorú lokális maxmuma van x 0 -ban. 3 Ha 2 < 0, akkor f -nek nincs szélsőértéke x 0 -ban. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 79 / 180

80 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.5 Többváltozós függvények szélsőértéke Példa. f : R 2 R, f (x, y) := x 3 + y 3 3xy lokális szélsőértékeinek meghatározása. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 80 / 180

81 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.5 Többváltozós függvények feltételes szélsőértéke Többváltozós függvények feltételes szélsőértéke Legyenek f : D R k R és g i : D R k R, i = 1,..., l, l < k, adott függvények. Azt mondjuk, hogy az f függvénynek az x 0 D pontban a g 1 (x) = 0, g 2 (x) = 0,..., g l (x) = 0 feltételek mellett lokális/helyi feltételes maximuma (minimuma) van, ha van olyan ε > 0, hogy f (x 0 ) f (x) (f (x 0 ) f (x)) teljesül minden olyan x D K (x 0, ε) esetén, melyre g 1 (x) = = g l (x) = 0. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 81 / 180

82 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.5 Többváltozós függvények feltételes szélsőértéke A feltételes szélsőérték létezésének szükséges feltétele Legyenek g i : D R k R, i = 1,..., l, l < k, adott függvények. Tegyük fel, hogy az f : D R függvénynek az x 0 D belső pontban a g 1 (x) = 0, g 2 (x) = 0,..., g l (x) = 0 feltételek mellett lokális feltételes szélsőértéke van, az f és g i, i = 1,..., l első parciális deriváltjai folytonosak x 0 egy környezetében, továbbá a 1 g 1 (x 0 ) k g 1 (x 0 ) g l (x 0 ) k g l (x 0 ) mátrixnak van nemzérus l-edrendű aldeterminánsa. Akkor van olyan λ 0 = (λ 0,1,..., λ 0,l ) R l pont, hogy az L : D R l R, függvényre L(x, λ) := f (x) + λ 1 g 1 (x) + + λ l g l (x) 1 L(x 0, λ 0 ) = = k L(x 0, λ 0 ) = 0. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 82 / 180

83 13. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 13.5 Többváltozós függvények feltételes szélsőértéke A λ 1,..., λ m számokat Lagrange-féle multiplikátoroknak nevezzük, az L függvényt pedig a feltételes szélsőérték probléma Lagrange-függvényének nevezzük. A feltételes szélsőérték probléma megoldása úgy történik, hogy a 1 L(x, λ) = 2 L(x, λ) = = k L(x, λ) = g 1 (x) = = g l (x) = 0 k + l egyenletből álló egyenletrendszert megoldjuk az x = (x 1,..., x k ) D, λ = (λ 1,..., λ l ) R l ismeretlenekre; a kapott x 0 = (x 0,1,..., x 0,k ) megoldások adják a feltételes szélsőérték lehetséges helyeit. Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 83 / 180

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal 11 DETERMINÁNSOK 111 Mátrix fogalma, műveletek mátrixokkal Bevezetés A közgazdaságtanban gyakoriak az olyan rendszerek melyek jellemzéséhez több adat szükséges Például egy k vállalatból álló csoport minden

Részletesebben

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij.. Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Diszkrét Matematika II.

Diszkrét Matematika II. Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Informatikai Kar I. félév Előadó: Hajdu Lajos Losonczi László, Pap Gyula (DE) Gazdasági matematika I. I. félév 1 / 124 Félévközi kötelező

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László, Pap Gyula (DE) Gazdasági matematika I. 1 / 123 Kötelező irodalom: LOSONCZI LÁSZLÓ,

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

1. Geometria a komplex számsíkon

1. Geometria a komplex számsíkon 1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz

Részletesebben

Előadásvázlat a Lineáris algebra II. tárgyhoz

Előadásvázlat a Lineáris algebra II. tárgyhoz Előadásvázlat a Lineáris algebra II. tárgyhoz Kovács Zoltán 2005. január 4. Tartalomjegyzék 1. Euklideszi vektorterek 3 1.1. Bilineáris és kvadratikus formák, skaláris szorzatok................ 3 1.2.

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Lineáris algebra. Közgazdász szakos hallgatóknak a Matematika A2a Vektorfüggvények tantárgyhoz tavaszi félév

Lineáris algebra. Közgazdász szakos hallgatóknak a Matematika A2a Vektorfüggvények tantárgyhoz tavaszi félév Lineáris algebra Közgazdász szakos hallgatóknak a Matematika Aa Vektorfüggvények tantárgyhoz 9. tavaszi félév Tartalomjegyzék. Komplex számok és polinomok.................... 4.. A komplex számok bevezetése,

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 29.

Matematika szigorlat, Mérnök informatikus szak I máj. 29. Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Matematika MSc Építőmérnököknek. Szerző: Simon Károly

Matematika MSc Építőmérnököknek. Szerző: Simon Károly Matematika MSc Építőmérnököknek Szerző: Simon Károly Matematika MSc Építőmérnököknek A jegyzet nagyobb részét Dr. Simon Bakos Erzsébet gépelte Latex szövegszerkesztőben. Tartalomjegyzék 1. Az A-ben tanult

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

Lineáris algebra. négyzetes mátrix: n x n-es mátrix oszlop mátrix, oszlop vektor: egyetlen oszlopból áll

Lineáris algebra. négyzetes mátrix: n x n-es mátrix oszlop mátrix, oszlop vektor: egyetlen oszlopból áll Lineáris algebra Def: Def: Mátrix: egy téglalap alakú számtáblázat, minden helyén valós, vagy komplex szám áll A = [a i j n x m n: A sorainak száma, m: A oszlopainak száma négyzetes mátrix: n x n-es mátrix

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Ez a fejezet az eddig tanult lineáris algebra tananyag alkalmazásaként megmutatja,

Ez a fejezet az eddig tanult lineáris algebra tananyag alkalmazásaként megmutatja, 8 Fejezet Differenciálszámítás Ez a fejezet az eddig tanult lineáris algebra tananyag alkalmazásaként megmutatja, hogy hogyan vihető át a derivált fogalma többváltozós függvényekre Látni fogjuk, hogy a

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Kétváltozós függvény szélsőértéke

Kétváltozós függvény szélsőértéke Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben