5. Lineáris rendszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5. Lineáris rendszerek"

Átírás

1 66 MAM43A előadásjegyzet, 2008/ Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő együtthatókat egy 2 2-es mátrixban, az x,x 2 ismeretleneket, illetve az egyenlet jobb oldalát pedig 2-dimenziós vektorokban tárolhatjuk, azaz legyen a a A = 2 x b a 2 a, x = 22 x, b = 2 b 2 Egy 2 2-es mátrix és egy kétdimenziós vektor szorzatát az a a 2 x a x a 2 a 22 x = + a 2 x 2 2 a 2 x + a 22 x 2 képlettel definiáljuk Ezért az 5-52 egyenletrendszert vektoriálisan az Ax = b 53 alakban írhatjuk fel Az első egyenletet a 22 -szereséből kivonva a második egyenlet a 2 -szeresét, kapjuk, hogy azaz, ha a a 22 a 2 a 2 0, akkor Hasonlóan kiszámítható, hogy A fenti képletek nevezőiben található a a 22 a 2 a 2 x = b a 22 b 2 a 2, x = b a 22 b 2 a 2 a a 22 a 2 a 2 x 2 = b 2a b a 2 a a 22 a 2 a 2 deta = a a 22 a 2 a 2 kifejezést az A mátrix determinánsának hívjuk Itt a mátrix főátlójában levő elemek szorzatából vonjuk le a mellékátlóban levő elemek szorzatát A determináns jelölésére szokás még a deta = a a 2 a 22 a 2 jelölést is használni Hasonlóan, egy 3 3-as mátrix és egy 3-dimenziós A = a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 x = x x 2 x 3

2 5 Lineáris rendszerek 67 vektor szorzatát a Ax = a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 x x 2 x 3 képlettel definiáljuk Ebben az esetben az 53 egyenlet az lineáris egyenletrendszert jelöli, ahol = a x + a 2 x 2 + a 3 x 3 = b a 2 x + a 22 x 2 + a 23 x 3 = b 2 a 3 x + a 32 x 2 + a 33 x 3 = b 3 b = Ebben az esetben az A mátrix determinánsát a b b 2 b 3 a x + a 2 x 2 + a 3 x 3 a 2 x + a 22 x 2 + a 23 x 3 a 3 x + a 32 x 2 + a 33 x 3 deta = a a 22 a 33 + a 2 a 23 a 3 + a 3 a 2 a 32 a 3 a 22 a 3 a a 23 a 32 a 2 a 2 a 33 formulával definiáljuk Ezt a képletet úgy jegyezhetjük meg például, hogy leírjuk az A mátrix első két oszlopát a mátrix mellé: a a 2 a 3 a a 2 a 2 a 22 a 23 a 2 a 22, a 3 a 32 a 33 a 3 a 32 és az így kapott kibővített mátrix fóátlóiban levő elemek szorzatainak összegéből levonjuk a mellékátlókban levő elemek összegét A mátrixok szorzását az általános esetben az alábbiak szerint értelemezzük: Legyen A egy n m dimenziós mátrix, B pedig egy m k dimenziós mátrix Ekkor az A és B mátrixok szorzata egy olyan n k dimenziós mátrix, amelynek ij-edik elemét a c ij = m a il b lj l= képlettel definiáljuk Egy négyzetes, n n dimenziós mátrix determinánsának fogalmát a 3 3-as esethez hasonlóan definiálhatjuk Azt az n n-es mátrixot, amelynek főátlójában csupa -es, az összes többi elemében pedig csupa 0 áll, n-dimenziós egységmátrixnak hívjuk és I-vel jelöljük Egy A n n-es mátrixot invertálható mátrixnak nevezünk, ha létezik egy A n n-es mátrix, amelyre AA = A A = I teljesül Ekkor az A mátrixot az A mátrix inverzének hívjuk 5 Tétel Tetszőleges n n-es A mátrixra az alábbi állítások ekvivalensek Az A mátrix invertálható 2 deta 0 3 Az Ax = b lineáris egyenletrendszernek minden b-re létezik egyértelmű megoldása Ha az Ax = b egyenletrendszernek létezik megoldása, akkor a megoldás az x = A b alakban felírható

3 68 MAM43A előadásjegyzet, 2008/ Tétel Az Ax = 0 homogén lineáris egyenletrendszernek akkor és csak akkor létezik nemtriviális x 0 megoldása, ha deta = 0 Az alábbi tételben összefoglaljuk a determináns néhány fontos tulajdonságát 53 Tétel Legyen A, B n n-es mátrixok Ekkor deta = 0, ha A egy sora vagy oszlopa azonosan nulla; 2 deta = 0, ha A két sora oszlopa azonos; 3 detab = deta detb; 4 deta = /deta; 5 Ha B-t úgy kapjuk az A mártixból, hogy annak valamely sorát oszlopát megszorozzuk egy c konstanssal, akkor detb = c deta 6 Ha B-t úgy kapjuk az A mártixból, hogy annak két sorát oszlopát felcseréljük, akkor detb = deta 7 Ha B-t úgy kapjuk az A mártixból, hogy annak egyik sorához oszlopához egy másik sor oszlop c-szeresét c R tetszőleges hozzáadjuk, akkor detb = deta 8 Jelölje A ij azt az n n -es mátrixot, amelyet az A mátrixból annak i-edik sora és j-edik oszlopa elhagyásával kapunk Ekkor a determináns i-edik sora szerinti sorfejtése deta = a j-edik oszlop szerinti sorfejtése pedig n i+j a ij deta ij, j= deta = n i+j a ij deta ij i= Azt mondjuk, hogy a H C n halmaz altér C n -ben, ha zárt a lineáris kombináció képzésre, azaz, ha x,y H, c,c 2 C, akkor c x + c 2 y H Azt mondjuk, hogy az x,,x m C n vektorok lineárisan függetlenek, ha valamely c,,c m C-re c x + + c m x m = 0, akkor c = = c m = 0 Azt mondjuk, hogy a H C n altér m-dimenziós, ha létezik x,,x m H lineárisan független vektorok, amelyre H = {c x + + c m x m : c,,c m C}, azaz a x,,x m vektorok lineáris kombinációi előállítják H bármely elemét Legyen A egy n n-es mátrix, I az n n-es egységmátrix A pλ := deta λi n-edfokú polinomot az A karakterisztikus polinomjának nevezzük, p gyökeit az A mátrix sajátértékeinek, az Aξ = λξ illetve az ezzel ekvivalens A λiξ = 0 egyenlet egy ξ 0 megoldását az A mátrix λ-hoz tartozó sajátvektorának nevezzük Ha λ k-szoros gyöke p-nek, akkor azt mondjuk, hogy λ algebrai multiplicitása k A sajátértékek és sajátvektorok lineáris algebrából ismert néhány fontos tulajdonságát a következő tételben foglaltuk össze

4 5 Lineáris rendszerek Tétel Legyen A egy n n-es valós mátrix i Az A mátrix λ sajátértékhez tartozó sajátvektorai lineáris alteret alkotnak C n -ben ii Ha λ valós, akkor a hozzá tartozó ξ sajátvektor választható valós vektornak iii Ha λ,,λ s páronként különböző sajátértékei A-nak, akkor a hozzá tartozó ξ,,ξ s sajátvektorok lineárisan függetlenek iv Ha A szimmetrikus mátrix, akkor sajátértékei valós számok, és megadható sajátvektorokból álló bázis C n -en v Ha A-nak létezik λ = α + iβ komplex sajátértéke a ξ = u + iv sajátvektorral u,v R n, akkor u és v lineárisan független vi Ha A-nak λ = α + iβ komplex sajátértéke a ξ = u + iv sajátvektorral, akkor λ = α iβ is sajátértéke a ξ = u iv sajátvektorral Az A mátrix λ sajátértékéhez tartozó sajátvektorok lineáris alterét más szóval a λ sajátérték sajátalterének nevezzük A λ sajátérték sajátalterének dimenzióját, azaz a λ-hoz tartozó lineárisan független sajátvektorok maximális számát a λ sajátérték geometriai multiplicitásának nevezzük Ismert, hogy egy sajátérték algebrai multiplicitása mindig nagyobb egyenlő, mint a geometriai multiplicitása Az előző tétel iv pontja szerint szimmetrikus mátrixok sajátértékének geometriai multiplicitása mindig megegyezik az algebrai multiplicitásával Amint azt az alábbi példák mutatják, nem szimmetrikus mátrixok esetében a geometriai multiplicitás lehet egyenlő, de lehet kisebb is, mint az algebrai multiplicitás 55 Példa Tekintsük az A = mátrixot Ennek karakterisztikus polinomja 5 λ 3 pλ = det 5 7 λ = λ 2 2λ + 20, ezért A sajátértékei λ = 2 és λ 2 = 0 Ekkor természetesen mindkét sajátérték egyszeres algebrai multiplicitású és egyben a geometriai multiplicitásuk is Tekintsük az 5 λ 3 ξ λ ξ = 2 sajátvektor egyenletet Először nézzük a λ = 2 sajátértéket Ezt behelyettesítve a fenti egyenletbe kapjuk 3ξ 3ξ 2 = 0 5ξ + 5ξ 2 = 0 A két egyenlet összefüggő, ezért az egyik egyenlet elhagyható Marad például az első egyenlet: 3ξ 3ξ 2 = 0 Ennek természetesen végtelen sok megoldása van: ξ = ξ 2 Egy lehetséges megoldás például ξ = Most vegyük a λ 2 = 0 sajátértéket Ebben az esetben a sajátvektor egyenlet amelynek egy lehetséges megoldása 5ξ 3ξ 2 = 0 5ξ 3ξ 2 = 0, ξ 2 = 3 5

5 70 MAM43A előadásjegyzet, 2008/ Példa Tekintsük az A = mátrixot Ennek karakterisztikus polinomja λ 0 pλ = det 5 λ 0 5 λ = λ 3 λ 2 λ + = λ 2 λ λλ = λ 2 λ + Így A sajátértékei λ = és λ 2 =, ahol λ egyszeres, λ 2 pedig kétszeres gyök, azaz λ algebrai multiplicitása, λ 2 algebrai multiplicitása pedig 2 A sajátvektor egyenlet most λ 0 5 λ 0 5 λ ξ ξ 2 ξ 3 = 00 Először vegyük a λ = sajátértéket Erre a fenti egyenletből kapjuk ξ + ξ 3 = 0 5ξ + 2ξ 2 + 5ξ 3 = 0 ξ + ξ 3 = 0 Az első és az utolsó egyenlet azonos, így az egyiket elhagyhatjuk: ξ + ξ 3 = 0 5ξ + 2ξ 2 + 5ξ 3 = 0 Ez a két egyenlet már független az egyik nem konstansszorosa a másiknak Így a három ismeretlen közül, ha az egyiknek az értékét rögzítjük, akkor a másik változó már egyértelműen meghatározott lesz Legyen például ξ 3 =, ekkor ξ = 5ξ + 2ξ 2 = 5 amelyből ξ = és ξ 2 = 5, azaz a λ = sajátértékhez tartozó egy lehetséges sajátvektor ξ = 5 0 Most tekintsük a λ 2 = sajátértéket Ebben az esetben ξ + ξ 3 = 0 5ξ + 5ξ 3 = 0 ξ ξ 3 = 0 Látható, hogy a második és a harmadik egyenlet is az első többszöröse, így mindkettő elhagyható: ξ + ξ 3 = 0

6 5 Lineáris rendszerek 7 Ekkor ξ = ξ 3 és ξ 2 pedig tetszőleges Így például a 0 ξ 2 = és ξ 3 = vektor a λ 2 sajátértékhez tartozó sajátvektora A-nak, és ezek a vektorok lineárisan függetlenek is az egyik nem konstansszorosa a másiknak Ezért a λ 2 sajátértékhez tartozó sajátaltér 2 dimenziós, azaz λ 2 algebrai multiplicitása és a geometriai multiplicitása is 2 57 Példa Tekintsük az A = mátrixot Ennek karakterisztikus polinomja 4 λ 5 pλ = det 4 5 λ 0 2 λ = λ 3 3λ 2 9λ + 27 = λλ 2 9 3λ 2 9 = λ 2 9λ 3 = λ 3 2 λ + 3 Ezért A sajátértékei λ = 3 és λ 2 = 3, ahol λ egyszeres, λ 2 pedig kétszeres gyök, azaz λ algebrai multiplicitása, λ 2 algebrai multiplicitása pedig 2 A sajátvektorok számításához tekintsük a 4 λ λ 0 2 λ ξ ξ 2 ξ 3 = 00 sajátvektor egyenletet Először nézzük a λ = 3 sajátértéket Erre a fenti egyenletből kapjuk ξ + ξ 2 + 5ξ 3 = 0 4ξ + 8ξ 2 + 0ξ 3 = 0 ξ + ξ 2 + 5ξ 3 = 0 Az első és az utolsó egyenlet azonos, így elhagyhatjuk az utolsót: ξ + ξ 2 + 5ξ 3 = 0 7ξ + 4ξ 2 + 5ξ 3 = 0 Két egyenlet maradt, így a sajátaltér egydimenziós Legyen például ξ 3 =, ekkor ξ + ξ 2 = 5 7ξ + 4ξ 2 = 5, amelyből ξ = 5 és ξ 2 = 0, azaz a λ = 3 sajátértékhez tartozó egy lehetséges sajátvektor 5 ξ = 0 0

7 72 MAM43A előadásjegyzet, 2008/2009 Most vegyük a λ 2 = 3 sajátértéket Erre kapjuk 7ξ + ξ 2 + 5ξ 3 = 0 4ξ + 2ξ 2 + 0ξ 3 = 0 ξ + ξ 2 ξ 3 = 0 A második egyenlet az első kétszerese, így elhagyható: 7ξ + ξ 2 + 5ξ 3 = 0 ξ + ξ 2 ξ 3 = 0 A maradék két egyenlet már független, Így megint, ha ξ 3 = c, akkor a 7ξ + ξ 2 ξ + ξ 2 = 5c = c egyenlet egyértelműen megoldható: ξ = c és ξ 2 = 2c Így a λ 2 = 3 sajátértékhez tartozó tetszőleges sajátvektor felírható a 2 ξ 2 = c alakban, azaz a λ 2 sajátértékhez tartozó sajátaltér csak dimenziós, tehát λ 2 algebrai multiplicitása ugyan 2, de geometriai multiplicitása csak 52 Lineáris differenciálegyenlet-rendszerek Legyen I R egy nyílt intervallum, t 0 I, a ij,f j : I R i,j =,,n függvények, és tekintsük az x t = a tx t + + a n tx n t + f t x nt = a n tx t + + a nn tx n t + f n t n-dimenziós előrendű differenciálegyenlet-rendszert a hozzá tartozó x t 0 = z,, x n t 0 = z n kezdeti feltételekkel együtt Ekkor a fenti feladatot röviden az és az x = Atx + ft, t I, 54 vektoriális alakban írhatjuk fel, ahol A: I R n n, f : I R n, és xt 0 = z 55 At = a ij t n n, xt = x t,,x n t T, ft = f t,,f n t T, z = z,,z n T Az egész szakaszban feltesszük, hogy A és f folytonos függvények Tekintsük az 54 egyenlet homogén megfelelőjét: x = Atx, t I 56 A 326 Tételt erre a lineáris esetre alkalmazva kapjuk az alábbi eredményt

8 5 Lineáris rendszerek Tétel Ha A: I R n n és f : I R n folytonos függvények, akkor az kezdeti érték feladatnak minden z R n vektorra létezik egyértelmű megoldása az I intervallumon Most is könnyen látható, hogy a homogén egyenlet megoldásainak lineáris kombinációja szintén megoldása a homogén egyenletnek 59 Tétel Az 56 homogén lineáris egyenlet megoldásainak halmaza lineáris tér Az {x,,x n } halmazt az 56 homogén egyenlet fundamentális megoldáshalmazának vagy a megoldások alaprendszerének nevezzük, ha x,,x n megoldásai az 56 egyenletnek és lineárisan független függvények I-n Helyezzük el az x vektor értékű függvény képletét egy mátrix első oszlopában, az x 2 függvényt a második oszlopában, és így tovább, az x n függvényt az n-edik oszlopában A kapott mátrixot x t,,x n t jelöli Ennek a mátrixnak a determinánsát az x,,x n megoldások Wronski-determinánsának nevezzük: Megmutathatók az alábbi állítások Wt = detx t,,x n t 50 Tétel Az x,,x n függvények lineárisan függetlenek az I intervallumon, akkor és csak akkor, ha a Wronski-determinánsuk nem azonosan nulla I-n 5 Tétel Legyen x,,x n olyan megoldásai az 56 egyenletnek, amelyek az x t 0 = z,, x n t 0 = z n 57 kezdeti értékekhez tartoznak Ekkor az x,,x n függvények akkor és csak akkor lineárisan függetlenek az I intervallumon, ha a z,,z n vektorok lineárisan függetlenek, azaz Wt Tétel Az 56 egyenlet megoldásainak halmaza n-dimenziós lineáris tér 53 Konstans együtthatós homogén lineáris rendszerek Legyen A R n n, és tekintsük az konstans együtthatós homogén lineáris rendszert Keressük az 58 egyenlet megoldását az x = Ax, t R 58 xt = e λt ξ alakban, ahol ξ valós vagy komplex vektor Ekkor x t = λe λt ξ,

9 74 MAM43A előadásjegyzet, 2008/2009 ezért visszahelyettesítve az 58 egyenletbe kapjuk, hogy ami pontosan akkor teljesül, ha λe λt ξ = Ae λt ξ, A λiξ = 0, azaz λ sajátértéke A-nak, ξ pedig a λ-hoz tartozó sajátvektora A-nak Az 52 Tétel szerint tehát elegendő n darab lineárisan független megoldást találni, mert ekkor ezek lineáris kombinációjaként az összes megoldás felírható Különböző eseteket különböztetünk meg eset: páronként különböző sajátértékek Tegyük fel, hogy λ,,λ n páronként különböző sajátértékei, ξ,,ξ n pedig a λ,,λ n sajátértékekhez tartozó sajátvektorai A-nak Lineáris algebrából ismert lásd az 54 Tételt, hogy ekkor ξ,,ξ n lineárisan független vektorok Kaptuk ekkor, hogy x t = e λ t ξ,, x n t = e λnt ξ n, t R 59 megoldásai az 58 egyenletnek Másrészt Wx,,x n 0 = detx 0,,x n 0 = detξ,,ξ n 0, hiszen ξ,,ξ n lineárisan függetlenek Ezért x,,x n lineárisan függetlenek, azaz 59 egy alaprendszere az 58 homogén egyenletnek Ebben az esetben az 58 egyenlet általános megoldása xt = c e λ t ξ + + c n e λnt ξ n Ha minden sajátérték valós, akkor az 59 alaprendszer valós függvényekből áll, de ha van komplex sajátértéke az együtthatómátrixnak, akkor az 59 függvények között komplex függvények is vannak A következő esetben azt mutatjuk majd meg, hogy ezeket a kompex megoldásokat mindig helyettesíteni lehet valós megoldásokkal 53 Példa Oldjuk meg az egyenletet az x = x0 = x 50 kezdeti értéket használva! Az együtthatómátrix sajátértéke λ = 2 és λ 2 = 0, a megfelelő sajátvektorok ξ =, T és ξ 2 = 3, 5 T Ezért az egyenlet általános megoldása xt = c e 2t + c 2 e 0t 3 5, 5 azaz komponensenként kiírva a megoldást A kezdeti feltételt alkalmazva x t = c e 2t + 3c 2 e 0t x 2 t = c e 2t 5c 2 e 0t c + 3c 2 = c 5c 2 = 0, amelynek megoldása c = 5/8 és c 2 = /8 Ezért a kezdeti érték feladat megoldása xt = 5 8 e2t + 8 e0t 3 5, 52

10 5 Lineáris rendszerek 75 azaz x t = 5 8 e2t e0t x 2 t = 5 8 e2t 5 8 e0t 2 eset: komplex sajátértékek Tegyük fel, hogy λ = α + iβ komplex sajátértéke A-nak, ξ = u + iv pedig a λ-hoz tartozó komplex sajátvektor Itt u a ξ vektor koordinátái valós részét, v pedig a képzetes részeit tartalmazó vektor Ekkor tudjuk, hogy λ = α iβ is sajátértéke A-nak és a hozzá tartozó sajátvektor pedig ξ = u iv Kapjuk, hogy xt = e λt ξ = e α+iβt u + iv = e αt cos βt + isin βtu + iv = e αt cos βtu sin βtv + icos βtv + sin βtu komplex értékű megoldása az 58 egyenletnek Most is, mint a skaláris lineáris egyenleteknél, könnyen látható, hogy a komplex megoldás valós ill képzetes része megoldása az 58 egyenletnek Azaz x t = e αt cos βtu sin βtv és x 2 t = e αt cos βtv + sin βtu megoldások, és az is igazolható, hogy x t és x 2 t mindig lineárisan függetlenek Így az általános megoldás képletében a e λt ξ és e λt ξ komplex megoldások helyettesíthetők az x,x 2 megoldásokkal 54 Példa Oldjuk meg az x = x, x0 = feladatot! Az együtthatómátrix sajátértéke λ = 6+3i és λ 2 = 6 3i, a megfelelő sajátvektorok ξ = 5, + 3i T és ξ 2 = 5, 3i T Az egyenlet egy komplex megoldása tehát e 6+3it 5 + 3i = e 6t 5 cos 3t + isin 3t + 3i = e 6t 5cos 3t + 5isin 3t cos 3t 3sin 3t + i3cos 3t + sin 3t Ezért az egyenlet általános megoldása xt = c e 6t 5cos 3t cos 3t 3sin 3t + c 2 e 6t 5sin 3t 3cos 3t + sin 3t A kezdeti feltételt alkalmazva 5c = 2 c + 3c 2 =,

11 76 MAM43A előadásjegyzet, 2008/2009 amelynek megoldása c = 2/5 és c 2 = /5 Ezért a kezdeti érték feladat megoldása xt = e 6t 2cos 3t 2 5 cos 3t 6 5 sin 3t + e 6t sin 3t 3 5 cos 3t + 5 sin 3t = e 6t 2cos 3t + sin 3t cos 3t sin 3t 3/a eset: többszörös sajátérték A többszörös sajátérték esetét csak a 3-dimenziós esetben vizsgáljuk Az általánosabb eset hasonló, de jóval több eset fordul elő Először azt tesszük fel, hogy A-nak λ 3-szoros sajátértéke, de a λ sajátértékhez található ξ,ξ 2,ξ 3 3 db lineárisan független sajátvektor Ekkor x t = e λt ξ, x 2 t = e λt ξ 2, x 2 t = e λt ξ 3 három lineárisan független megoldása az egyenletnek, hiszen az x 0 = ξ, x 2 0 = ξ 2, x 3 0 = ξ 3 vektorok lineárisan függetlenek Így az általános megoldás alakja xt = e λt c ξ + c 2 ξ 2 + c 3 ξ 3 Egy második esetben tegyük fel, hogy A sajátértékei λ és λ 2, ahol λ kétszeres, λ 2 pedig egyszeres sajátérték, és λ -hez található két lineárisan független sajátvektor: ξ és ξ 2 A λ 2 - höz tartozó sajátvektort jelölje ξ 2 Ekkor is könnyen ellenőrizhető, hogy az egyenlet általános megoldása xt = e λ t c ξ + c 2 ξ 2 + c 3 e λ 2t ξ 2 55 Példa Oldjuk meg az x = egyenletet! Az 56 Példában láttuk, hogy az együtthatómátrixnak λ = egyszeres, λ 2 = pedig kétszeres sajátértéke A λ egy sajátvektora ξ =, 5, T, a λ 2 geometriai multiplicitása 2, és a hozzá tartozó ξ 2 =,0, T és ξ 3 =,, T sajátvektorok lineárisan függetlenek Ezért az egyenlet általános megoldása 0 xt = c e t 5 + c 2 e t + c 3 e t x Kétdimenziós esetben is hasonlóan írjuk fel a megoldás képletét, ha a kétszeres sajátértékhez két kineárisan független sajátvektor található 56 Példa Tekintsük az x = egyenletet Az együtthatómátrix sajátértéke 2, ami kétszeres A 2-höz tartozó sajátvektok 0 0 például és Ezért az egyenlet általános megoldása x [ ] xt = e 2t 0 0 c + c 2 = e 2t c c 2

12 5 Lineáris rendszerek 77 3/b eset: többszörös sajátérték Tegyük fel újra, hogy λ algebrai multiplicitása legalább 2, de geometriai multiplicitása csak Legyen ξ a λ-hoz tartozó sajátvektor Ekkor e λt ξ megoldás, de szükségünk van még egy, a λ sajátértékhez kapcsolódó, az előbbitől lineárisan független megoldásra A skaláris egyenletekre alkalmazott próbafüggvény módszerénél tapasztaltak alapján természetes egy újabb megoldást a te λt ξ + e λt η 53 alakban keresni Ezt behelyettesítve az 58 egyenletbe e λt ξ + λte λt ξ + λe λt η = Ate λt ξ + Ae λt η adódik Itt pontosan akkor kapunk azonosságot, ha a te λt és az e λt függvények együtthatói megegyeznek az egyenlet két oldalán: azaz ekvivalens alakban λξ = Aξ ξ + λη = Aη, A λiξ = 0 54 A λiη = ξ 55 Ekkor az 54 egyenlet szerint ξ a λ-hoz tartozó sajátvektora A-nak Az 55 egyenletet teljesítő η vektort az A mátrix λ sajátértékhez tartozó általánosított sajátvektorának nevezzük Nyilvánvalóan egy η általánosított sajátvektor nincs benne a λ sajátérték sajátalterében, hiszen egyébként teljesítené az 54 egyenletet, azaz az 55 egyenlet bármely η megoldása lineárisan független a ξ sajátvektortól Megmutatható a következő tétel 57 Tétel Legyen λ egy olyan sajátértéke az A mátrixnak, amelynek geometriai multiplicitása kisebb, mint az algebrai multiplicitása Ekkor az 55 egyenletnek létezik legalább egy η megoldása, amely nem eleme az A mátrix összes sajátvektorai által generált lineáris altérnek 58 Példa Tekintsük az x = 3 egyenletet Ennek karakterisztikus polinomja λ pλ = det 3 λ = λ 2 4λ + 4 = λ 2 2, x ezért a λ = 2 sajátérték algebrai multiplicitása kétszeres Tekintsük az λ ξ 00 3 λ ξ = 2 sajátvektor egyenletet A λ = 2 sajátértéket behelyettesítve a fenti egyenletbe kapjuk ξ + ξ 2 = 0 ξ + ξ 2 = 0 Ennek egy lehetséges megoldása például ξ =,

13 78 MAM43A előadásjegyzet, 2008/2009 és látható, hogy minden másik sajátvektor ennek konstansszorosa, azaz a λ = 2 sajátérték geometriai multiplicitása A megoldás képletéhez ezért szükségünk van az általánosított sajátvektor felírására Tekintsük a λ 3 λ η η 2 = ξ ξ 2 általánosított sajátvektor egyenletet Behelyettesítve λ és ξ értékétm kapjuk, hogy η + η 2 = η + η 2 = Látható, hogy az egyik egyenlet elhagyható, így végtelen sok η adható meg Egy lehetséges megoldás a 0 η = vektor Ezért az 53 képlet szerint a te λt ξ + e λt η = te 2t + e 2t 0 = e 2t t t + megoldása az egyenletnek Ez látható, hogy lineárisan független az első megoldástól, ezért az egyenlet általános megoldása xt = c e 2t + c 2 e 2t t t + = e 2t c + c 2 t c + c 2 t + alakban írható fel 59 Példa Oldjuk meg az x = egyenletet! Az 57 Példában láttuk, hogy az együtthatómátrixnak λ = 3 egyszeres, λ 2 = 3 pedig kétszeres sajátértéke A λ egy sajátvektora ξ = 5, 0, T, a λ 2 geometriai multiplicitása pedig csak, és ξ 2 =,2, T egy lehetséges sajátvektora Szükségünk van tehát a harmadik megoldás képletéhez a λ 2 = 3-hoz tartozó η általánosított sajátvektorra Az 55 egyenletet alkalmazzuk, ahol a jobb oldalon a ξ = ξ 2 vektort használjuk: 7η + η 2 + 5η 3 = 4η + 2η 2 + 0η 3 = 2 η + η 2 η 3 = A második egyenlet elhagyható, hiszen az első egyenlet kétszerese: x 7η + η 2 + 5η 3 = η + η 2 η 3 = A kapott két egyenlet már független Legyen például η = 0, ekkor η 2 + 5η 3 = η 2 η 3 =,

14 5 Lineáris rendszerek 79 amelynek megoldása η 2 = és η 3 = 0, azaz η = 0 0 Az egyenlet általános megoldása tehát [ ] xt = c e 3t 0 + c 2 e 3t + c 3 te 3t + e 3t 520 Példa Tekintsük az x = egyenletet Az együtthatómátrix karakterisztikus polinomja 5 λ 2 pλ = det 5 λ 2 2 λ x = λ 3 + 2λ 2 48λ + 64 = λ 4 3 Így A-nak λ = 4 háromszoros algebrai multiplicitású sajátértéke A sajátvektor egyenlet Most elhagyható két egyenlet is Marad ξ + ξ 2 + 2ξ 3 = 0 ξ + ξ 2 + 2ξ 3 = 0 ξ ξ 2 2ξ 3 = 0 ξ + ξ 2 + 2ξ 3 = 0 Két szabadsági fokunk van, tehát találhatunk két lineárisan független megoldását az egyenletnek Ilyen például 20 ξ = és ξ 2 = 0 Szükségünk van tehát általánosított sajátvektorra is a harmadik megoldás képletéhez Ennek egyenlete η + η 2 + 2η 3 = ξ η + η 2 + 2η 3 = ξ 2 η η 2 2η 3 = ξ 3, ahol ξ = ξ,ξ 2,ξ 3 T egy sajátvektora az együtthatómátrixnak Látható, hogy az egyenlet jobb oldalára sem a ξ, sem a ξ 2 vektor nem írható, hiszen ezekre nem oldható meg az egyenletrendszer Keressük tehát a jobb oldalt ξ = c ξ + c 2 ξ 2 alakban Ekkor az η + η 2 + 2η 3 = c 2c 2 η + η 2 + 2η 3 = c η η 2 2η 3 = c 2

15 80 MAM43A előadásjegyzet, 2008/2009 egyenletrendszert kapjuk Ez pontosan akkor oldható meg, ha c 2c 2 = c és c 2c 2 = c 2, azaz c = c 2, például c = és c 2 = Ekkor ξ =, így az általánosított sajátvektor egyenlete Most is csak egy egyenlet marad amelynek egy lehetséges megoldása például η + η 2 + 2η 3 = η + η 2 + 2η 3 = η η 2 2η 3 = η + η 2 + 2η 3 =, η = 0 Ezért az egyenlet általános megoldása [ 0 xt = e 4t c + c c 3 t + c 3 0 ] 3/c eset: többszörös sajátérték Tegyük fel újra, hogy a 3 3-as A mátrix λ sajátértékének algebrai multiplictása 3, geontban leírtak szerint tekintsük az 55 általánosított sajátérték egyenletnek létezik egy η megoldása, de tegyük fel, hogy az az 55 egyenletnek nincs másik, az elsőtől lineárisan független megoldása Ekkor szükségünk van még egy, a λ-hoz tartozó megoldásra Keressük ezt az xt = 2 t2 e λt ξ + te λt η + e λt ω alakban Könnyen ellenőrizhető, hogy a fenti xt függvény pontosan akkor megoldása az 58 egyenletnek, ha A λiξ = 0, A λiη = ξ, A λiω = η A fenti ω vektort az A mátrix λ sajátértékhez tartozó másodrendű általánosított sajátvektorának nevezzük 52 Példa Tekintsük az x = x

16 5 Lineáris rendszerek 8 egyenletet! Számítsuk ki az együtthatómátrix sajátértékeit: 7 λ pλ = det 8 4 λ 4 7 λ = λ 3 + 8λ 2 08λ + 26 = λ 6 3, így λ = 6 háromszoros sajátértéke az együtthatómátrixnak A sajátvektoregyenlet ξ ξ 2 =, ξ 3 0 amiből Legyen például ξ 3 =, ekkor ξ ξ 2 ξ 3 = 0 8ξ 2ξ 2 + 4ξ 3 = 0 ξ ξ 2 = 8ξ 2ξ 2 = 4, amelynek megoldása ξ = és ξ 2 = 2 A megfelelő sajátvektor tehát ξ = 2, a sajátérték geometriai multiplicitása tehát csak Szükségünk van általánosított sajátvektorra, amelynek egyenlete: η η 2 = 2, η 3 azaz η η 2 η 3 = 8η 2η 2 + 4η 3 = 2 η + η 2 + η 3 = Most is elhagyható a harmadik egyenlet, de az első két egyenlet már független: η η 2 η 3 = 8η 2η 2 + 4η 3 = 2 Ennek egy lehetséges megoldása η = 0, η 2 = és η 3 = 0, azaz 0 η =, 0 de ettől lineárisan független második megoldása már nincs az egyenletnek Ezért keresünk másodrendű általánosított sajátvektort is: ω ω 2 = ω 3 0

17 82 MAM43A előadásjegyzet, 2008/2009 Az egyenletrendszernek létezik megoldása, hiszen a harmadik egyenlet elhagyható: Egy megoldás például ω ω 2 ω 3 = 0 8ω 2ω 2 + 4ω 3 = ω = Az egyenlet általános megoldása tehát { 0 xt = e 6t c 2 + c 2 [t /6 /6 0 ] + c 3 [ t t /6 /6 0 ]} 54 Fundamentális mátrix és Cauchy-mátrix Tegyük fel, hogy az x = Atx, t I, 56 homogén lineáris egyenletnek ismerjük egy x t,, x n t, t I fundamentális rendszerét A Ψt = x t,,x n t, t I mátrix értékű függvényt az 56 rendszer fundamentális mátrixának vagy más szóval alapmátrixának hívjuk Ekkor Wx,,x n = detψt a megoldások Wronski-determinánsa A Wronski-determináns tulajdonságaiból következik, hogy Ψt invertálható minden t I-re Jelölje Ψ t a Ψt mátrix inverzét Az 56 egyenlet általános megoldása felírható az xt = c x + + c n x n alakban Ezt a Ψt fundamentális mátrix segítségével röviden az xt = Ψtc 57 alakban írhatjuk fel, ahol c = c,,c n T egy tetszőleges konstans vektor Ha az 56 egyenlethez tekintjük az xt 0 = z 58 kezdeti feltételt, akkor az kezdeti érték feladat megoldását az 57 formulában azon c vektor adja, amelyre z = Ψt 0 c, azaz c = Ψ t 0 z Ezt visszahelyettesítve az 57 képletbe kapjuk, hogy az kezdeti érték feladat megoldásának képlete xt = ΨtΨ t 0 z, t I 59

18 5 Lineáris rendszerek 83 Egyszerű számolással kapjuk, hogy Ψ t = x t,,x n t = Atx t,,atx n t = Atx t,,x n t = AtΨt A fundamentális mátrix fenti tulajdonságait összefoglalhatjuk a következő tételben: 522 Tétel Legyen Ψt, t I egy fundamentális mátrixa az 56 rendszernek Ekkor i Ψt invertálható minden t I-re; ii az 56 egyenlet általános megoldásának képlete xt = Ψtc, t I, c R n ; iii az kezdeti érték feladat megoldásának képlete xt = ΨtΨ t 0 z, t I; iv a fundamentális mátrix teljesíti a Ψ t = AtΨt mátrix differenciálegyenletet 523 Példa Tekintsük újra az 53 Példában vizsgált 50 egyenletet Ennek általános megoldását megadtuk az 5 képletben Az ebben szereplő két megoldást elhelyezve egy mátrix oszlopaiban kapjuk a e 2t 3e Ψt = 0t e 2t 5e 0t mátrixot, amely egy lehetséges fundamentális mátrixa az 50 egyenletnek 524 Példa Könnyen ellenőrizhető, hogy az 54 feladatban vizsgált egyenlet egy fundamentális mátrixa 5e Ψt = 6t cos 3t 5e 6t sin 3t e 6t cos 3t 3sin 3t e 6t 3cos 3t + sin3t Mivel végtelen sok fundamentális rendszer választható a megoldások teréből, ezért egy homogén lineáris rendszernek végtelen sok fundamentális mátrixa létezik Egy speciális fundamentális mátrix az a Φt-vel jelölt fundamentális mátrix, amelyre a Φ0 = I kezdeti feltétel teljesül, azaz amelynek oszlopvektorai azok az x t,,x n t megoldásai az 56 egyenletnek, amelyek az x 0 = e,, x n 0 = e n kezdeti feltételekhez tartoznak Itt e j a j-edik standard bázisvektor R n -ben, azaz j-edik koordinátája, az összes többi pedig 0 Erre a speciális fundamentális mátrixra az 59 formula az xt = Φtz, t I 520 képletre egyszerűsödik 525 Példa Tekintsük újra az 53 és 523 Példákban vizsgált 50 egyenletet Írjuk fel most a rendszer Φt fundamentális mátrixát! Ehhez azt a két megoldását használjuk az 50 egyenletnek, amelyek az x 0 0 = illetve x =

19 84 MAM43A előadásjegyzet, 2008/2009 kezdeti feltételekhez tartoznak x -et meghatároztuk az 53 Példában lásd az 52 képletet: x t = 5 8 e2t e0t 5 x 2 meghatározásához az 5 általános megoldás képletébe helyettesítjük be a kezdeti feltételt: c + 3c 2 = 0 c 5c 2 =, amelyből c = 3/8 és c 2 = /8 adódik, azaz x 2 t = 3 8 e2t 8 e0t 3 5 Ezért a keresett fundamentális mátrix 5 8 Φt = e2t e0t 3 8 e2t 3 8 e0t 5 8 e2t 5 8 e0t 3 8 e2t e0t Megmutatható a következő állítás: 526 Tétel Legyen Ψt, t I egy fundamentális mátrixa az 56 egyenletnek, P R n n egy invertálható konstans mátrix Ekkor a Ψt = ΨtP 522 mátrix is fundamentális mátrixa az 56 egyenletnek Fordítva, ha Ψt, Ψt t I két fundamentális mátrixa az 56 egyenletnek, akkor létezik olyan P R n n invertálható konstans mátrix, hogy 522 teljesül Az 59 képlet motiválja a következő definíciót: az Ut,t 0 = ΨtΨ t 0 mátrixot az 56 egyenlet Cauchy-mátrixának nevezzük Az 526 tétel segítségével könnyen megmutatható, hogy különböző fundamentális mátrixokra felírt Cauchy-mátrixok azonosak, azaz az 56 egyenlet Cauchy-mátrixa egyértelműen definiált Legyen ugyanis Ψt egy másik fundamentális mátrix Ekkor 522 teljesül, ezért Ψt Ψ t 0 = ΨtPΨt 0 P = ΨtPP Ψ t 0 = ΨtΨ t 0 A következő tételben összefoglaltuk a Cauchy-mátrix néhány alapvető tulajdonságát: 527 Tétel Legyen Ut,t 0 az 56 rendszer Cauchy-mátrixa Ekkor i Ut,t 0 invertálható minden t,t 0 I-re, és U t,t 0 = Ut 0,t; ii Ut,t 0 = Ut,sUs,t 0 minden t,t 0,s I-re; iii az kezdeti érték feladat megoldása xt = Ut,t 0 z, t I; iv t Ut,t 0 = AtUt,t 0, Ut 0,t 0 = I

20 5 Lineáris rendszerek 85 Bizonyítás: i Az állítás következik a Ut,t 0 Ut 0,t = ΨtΨ t 0 Ψt 0 Ψ t = ΨtΨ t = I számolásból ii U definícióját felhasználva kapjuk: Ut,sUs,t 0 = ΨtΨ sψsψ t 0 = ΨtΨ t 0 = Ut,t 0 iii Az 522 Tétel iii pontjából következik iv Az 522 Tétel iv pontja szerint t Ut,t 0 = Ψ tψ t 0 = AtΨtΨ t 0 = AtUt,t 0 55 Mátrix exponenciális függvény Valós vagy komplex x-re az e x függvény egy lehetsége definíciója az e x = + x + x xk k! + hatványsorral történhet Ennek mintájára egy n n-es A mátrixra definiáljuk az e A mátrix exponenciális kifejezést az e A = I + A + A Ak + k! formális végtelen sorral Megmutatható, hogy ez a sor konvergens Definiálhatjuk ezért a Φt = e At A k t k = k! k=0 523 mátrix függvényt Megmutatható,hogy ez a végtelen sor konvergens minden t-re, sőt differenciálható, és Φ t = k Ak t k A k t k A k t k = A = A = AΦt k! k! k! A definíció alapján k= k= Φ0 = e A0 = I Az e At mátrix exponenciális függvény tulajdonságait a következő tételben foglalhatjuk össze k=0 528 Tétel Az e At mátrix exponenciális függvényre i e At e As = e At+s minden t,s R-re; ii e At invertálható, és inverze e At ; iv e A0 = I; v e At differenciálható minden t-re, és d dt eat = Ae At ;

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Állandó együtthatós lineáris rekurziók

Állandó együtthatós lineáris rekurziók 1. fejezet Állandó együtthatós lineáris rekurziók 1.1. A megoldás menete. Mese. Idézzük fel a Fibonacci-számokat! Az F n sorozatot a következő módon definiáltuk: legyen F 0 = 0, F 1 = 1, és F n+2 = F n+1

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát.

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát. 1. Vektorok 1.1. Alapfogalmak, alapműveletek 1.1.1. Elméleti összefoglaló Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL 1.Példa: Oldjuk meg a következő lineáris egyenletrendszert: 1. Paramétert nem tartalmazó eset x 1 + 3x 2-2x 3 = 2-2x 1-5x 2 + 4x 3 = 0 3x 1

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév 1 Vizsga Lineáris algebra tárgyból 2012/13 akadémiai év, I. félév TARTALOM: 1. Elméleti anyag (melyet a vizsgára meg kell tanulni)...2. old. 2. A vizsga lebonyolítása, osztályozás...3. old. 2.1 Vizsga

Részletesebben

Diszkrét matematika II., 1. el adás. Lineáris leképezések

Diszkrét matematika II., 1. el adás. Lineáris leképezések 1 Diszkrét matematika II., 1. el adás Lineáris leképezések Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. február 6 Gyakorlati célok Ezen el adáson,

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Szöveges feladatok és Egyenletek

Szöveges feladatok és Egyenletek Szöveges feladatok és Egyenletek Sok feladatot meg tudunk oldani következtetéssel, rajz segítségével és egyenlettel is. Vajon mikor érdemes egyenletet felírni? Van-e olyan eset, amikor nem tanácsos, vagy

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Százalék, ötvözet, keverék számolás

Százalék, ötvözet, keverék számolás Százalék, ötvözet, keverék számolás 1) Egy pár cipő ára 270 Lei. Mivel nagyon fogyott, megemelték az árát 20%-kal. De így már nem fogyott annyira és úgy döntöttek, hogy leszállítják az árát 20%-kal. Mennyi

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

1. Előadás: Az alapfeladat. 1. Az optimalizálás alapfeladata és alapfogalmai

1. Előadás: Az alapfeladat. 1. Az optimalizálás alapfeladata és alapfogalmai Optimalizálási eljárások MSc hallgatók számára 1. Előadás: Az alapfeladat Előadó: Hajnal Péter 2015. tavasz L.V. Kantorovics (1912-1986) Az optimalizálás a matematika legkülönfélébb területeinek találkozási

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1 Newton módszer A húrmódszernél és a szelőmódszernél az F(x) függvény gyökének közelítéséhez a függvény húrját használtuk. Hatásosabb a módszer akkor, ha érintőkkel dolgozunk. Def.: Legyen x 0 az F(x) =

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

véletlen vektorokból álló sorozatok, amelyeknek a kovariancia mátrixai

véletlen vektorokból álló sorozatok, amelyeknek a kovariancia mátrixai 1. A probléma megfogalmazása. KÁLMÁN-FÉLE SZŰRŐK E jegyzet témája az úgynevezett Kálmán-féle szűrők vizsgálata. A feladat a következő. Adott egy x(0),x(1),..., több változós (együttesen) normális, más

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben