MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek"

Átírás

1 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához! a) Oldja meg a valós számok halmazán az alábbi egenletet! 6 (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egenletrendszert! lg lg (9 pont) lg lg lg 1 a) 1. eset: 6 0, 6 ennek valós gökei és 3 Ezek megoldásai az eredeti egenletnek. eset: 6 0, 6 ennek nincs valós megoldása Tehát az egenlet megoldásai a 3 és a. b) 0 és 1 a logaritmus értelmezése miatt A logaritmus azonosságait használva lg lg lg lg 1 ( pont) Az lg függvén szigorú monoton nő A második egenletből kifejezzük -et, behelettesítve az elsőbe kapjuk, hog Ennek valós gökei és 0,75 Az 1 miatt 0,75 nem eleme az értelmezési tartománnak Ezért csak és íg egenletnek lehetséges. A ; számpár megoldása az Összesen: 14 pont

2 ) a) Mel valós számok elégítik ki az alábbi egenlőtlenséget? (4 pont) b) Az alábbi f és g függvént is a 3;6 intervallumon értelmezzük. f 3 és g 0,5,5. Ábrázolja közös koordináta-rendszerben az f és g függvént a 3;6 intervallumon! Igazolja számítással, hog a két grafikon metszéspontjának mindkét koordinátája egész szám! (4 pont) c) Oldja meg az alábbi egenlőtlenséget a valós számok halmazán! 0,5 3,5 (6 pont) a) Elvégezve a köbre emelést: 3 3 b) ( pont) összevonva és rendezve: 1 a megoldáshalmaz tehát a 1;1 intervallum f függvén heles ábrázolása ( pont) g függvén heles ábrázolása a metszéspont koordinátái 1; c) A megoldandó egenlőtlenség ekvivalens a 3 0,5,5 egenlőtlenséggel A bal oldal nem negatív a jobb oldal 5-nél nagobb -ekre negatív Az egenlőtlenség megoldásait a 3;6 intervallumon a b) részben ábrázolt f és g függvénekről leolvashatjuk A megoldáshalmaz a 3;1 intervallum ( pont) Összesen: 14 pont

3 3) Oldja meg a következő egenletrendszert, ha és valós számok, továbbá 0, 1 és 0, 1. 4) log log sin 3 sin 4 1 (13 pont) 1 Áttérve azonos alapú logaritmusra: log log ( pont) Mivel eg pozitív számnak és a szám reciprokának összege pontosan akkor, ha a szám 1 ( pont) ezért log 1 azaz 1 Behelettesítve a második egenletbe: sin5 1, azaz sin5 Innen 5 k 6 5 vag 5 l 6 ahol k és l A megoldások íg: 1 1 k k 30 5 és l 6 5 l A kapott értékek kielégítik az egenletet Összesen: 13 pont a) Ábrázolja a derékszögű koordinátarendszerben az f : 0;5, f 4 3 függvént! (5 pont) b) Tekintsük az 1 k paraméteres egenletet, ahol k valós paraméter. Vizsgálja a megoldások számát a k paraméter függvénében! (7 pont) c) Ábrázolja a megoldások számát megadó függvént a k 6;6 intervallumon! ( pont) d) Adja meg a c)-beli függvén értékkészletét! ( pont)

4 f a) Az 1parabola tengelpontja ; 1 az tengelt az 1;0 és Jó ábrázolás, leszűkítés a 3;0 pontokban metszi 0;5 intervallumra Az abszolút érték figelembe vétele Heles ábra: b) A megoldások számát az f teljes grafikonja és az k egenes közös pontjainak száma adja ( pont) Ha k 1, akkor két közös pontja van Ha k 1, akkor három közös pontja van Ha 0 k 1, akkor nég közös pontja van Ha k 0, akkor két közös pontja van Ha k 0, akkor nincs közös pont c) Heles ábra d) Értékkészlete: ( pont) R 0;;3;4 ( pont) f Összesen: 16 pont

5 5) Oldja meg az alábbi egenletrendszert a valós számpárok halmazán! 3 3 log log 9 (16 pont) cos cos 0 A logaritmus miatt és 1-től különböző pozitív számok lehetnek Az első egenlet bal oldalát alakítsuk át a logaritmus azonosságát használva: 3 3 log log log 3 log log log (3 pont) Íg az első egenlet: log log A log és a log egmás reciprokai, és összegük ( pont) Ez pontosan akkor teljesül, ha mindkettő 1-gel egenlő, amiből azt kapjuk, hog ( pont) Beírva a második egenletbe: cos cos 0 0, ahonnan cos 1 ( pont) Ez akkor és csak akkor teljesül, ha k, azaz k, ahol k (3 pont) Összevetve az, 0 feltétellel, k, k ( pont) Összesen: 16 pont 6) Eg város sportklubjának 640 fős tagságát felnőttek és diákok alkotják. A tagság 55%-a sportol rendszeresen. A rendszeresen sportoló tagok számának és a sportklub teljes taglétszámának az arána szor akkora, mint a rendszeresen sportoló felnőttek számának arána a felnőtt klubtagok számához viszonítva. A rendszeresen sportolók arána a felnőtt tagságban fele akkora, mint amekkora ez az arán a diákok között. Hán felnőtt és hán diák tagja van ennek a sportklubnak? (13 pont) Jelölje f a sportklub felnőtt tagjainak számát. Ekkor a diákok száma a sportklubban 640 f. A rendszeresen sportolók száma 640-nek a az 55%-a, 0, fő. 8 A rendszeresen sportolók arána a teljes tagságban 0,55. Ennek a 11 -ed 8 része, vagis 0,55 0,4 a rendszeresen sportolók arána a felnőttek 11 között. ( pont) A rendszeresen sportolók arána a diákok között ennek az aránszámnak a kétszerese, vagis 0,8 A rendszeresen sportoló felnőttek száma 0,4 f A rendszeresen sportoló diákok száma 0,8 640 f

6 A rendszeresen sportolók száma e két létszám összege: 0,4 f 0,8 640 f 35 ( pont) Innen f 400 és 640 f 40 A felnőtt tagok száma 400, a diákok száma 40 Ellenőrzés Összesen: 13 pont 7) Eg egetem hallgatójának tanulmáni lapjáról összesítették az angol és német nelvvizsgák számát. Kiderült, hog a német nelvvizsgával nem rendelkezők 70%-ának, a német nelvvizsgával rendelkezők 30%-ának nincs angol nelvvizsgája. Az angol nelvvizsgával nem rendelkezők 60%-ának nelvvizsgája sincs. a) Ezek közül a hallgatók közül hánan rendelkeznek angol és hánan német nelvvizsgával? (1 pont) b) A hallgatók hán százaléka rendelkezett angol és német nelvvizsgák mindegikével? (4 pont) a) Szemléltessük a feltételeket ábrával, ahol a hallgatók közül főnek nincs német nelvvizsgája és főnek van német nelvvizsgája, nincs német nelvvizsgája ( fő) van német nelvvizsgája nincs angol nelvvizsgája nincs sem német, sem angol nelvvizsgája van német, de nincs angol nelvvizsgája van angol nelvvizsgája nincs német, de van angol nelvvizsgája német és angol nelvvizsgája is van A feladat heles értelmezése (komplementer halmazok) A feladat feltétele alapján az fő 70%-ának, vagis 0,7 főnek nincs sem német, sem angol nelvvizsgája és a fő 30%-ának vagis főnek van német, de nincs angol nelvvizsgája 0,7 0, Tehát nincs angol nelvvizsgája ,4 főnek Íg a feladat feltétele szerint a ,4 fő 60%-ának, vagis 0, ,4 főnek nincs sem német, sem angol nelvvizsgája 0,7 0, ,4 Innen 4140 ( pont) A német nelvvizsgával rendelkezők száma: fő Nincs angol nelvvizsgája , főnek Van angol nelvvizsgája főnek b) A német vizsgával rendelkezők 6440 fő 30%-a, (vagis 193 fő) nem vizsgázott angolból

7 vagis a német nelvvizsgával rendelkezők 70%-a angolból is vizsgázott, ezek száma 4508 fő , A hallgatók 4,6 %-ának van angolból és németből is vizsgája Összesen: 16 pont 8) Eg áruházban eg mosóport négféle kiszerelésben árusítanak. Az első kiszerelés 50%-kal drágább a harmadiknál, és 0%-kal kevesebb mosópor van benne, mint a másodikban. A második 50%-kal több mosóport tartalmaz, mint a harmadik, és 5%-kal többe kerül, mint az első. a) Az első három kiszerelés közül melikben a legalacsonabb a mosópor egségára? (13 pont) A negedik fajta kiszerelést úg állították össze, hog annak dobozán a feltüntetett egségár megegezett az első három kiszerelés átlagos egségárával. b) Ha a legolcsóbb kiszerelésű dobozon 600 Ft egségárat tüntettek fel, akkor hán forint egségár szerepel a negedik fajta dobozon?(3 pont) a) (1 pont) ár 1,5 1,5 1,5 1,875 tömeg 1,5 0,8 1, 1,5 1,5 1,875 egségár 1, 1,5 ár tömeg 1,5 1,5 Tehát a harmadik kiszerelés egségára a legalacsonabb b) Ha a legolcsóbb kiszerelés egségára 600 Ft, a másik kettőé ennek a 15%-a, azaz Ft A három kiszerelés átlagos egségára: A negedik kiszerelésen 700 Ft egségár szerepel Összesen: 16 pont 9) A mosogatógépünkön háromféle program van. Eg mosogatáshoz az A program 0%-kal több elektromos energiát, viszont 10%-kal kevesebb vizet használ, mint a B program. A B program 30%-kal kevesebb elektromos energiát és 5%-kal több vizet használ mosogatáshoz, mint a C program. Mindhárom program futtatásakor 40 Ft-ba kerül az alkalmazott mosogatószer. Eg mosogatás az A programmal 151 Ft-ba, B programmal 140 Ft-ba kerül. Mennibe kerül a C programmal a mosogatás? (14 pont)

8 A B program Ft értékű elektromos energiát és Ft értékű vizet használ eg mosogatás alkalmával Ekkor Az A program 1, Ft értékű elektromos energiát, és 0,9 Ft értékű vizet használ eg mosogatáskor A költségekre vonatkozó egenlet: 1, 0, A következő egenletrendszert kapjuk -re és -ra: (1) 100 () 1, 0,9 111 Az egenletrendszert megoldva: 70, 30 (3 pont) A feltételek alapján a C program futtatása során az elektromos energia ára: 100 0,7 ( pont) a víz ára: 4 Ft 1,5 ( pont) A mosogatószer árát is figelembe véve, a C programmal eg mosogatás 164 Ft-ba kerül Összesen: 14 pont 10) Jelölje H a 5, 3 egenlőtlenség pozitív egész megoldásainak halmazát. Jelölje továbbá B azon pozitív egész b számok halmazát, 6 amelekre a logb kifejezés értéke is pozitív egész szám. Elemeinek felsorolásával adja meg a H, a B, a H B és a B\ H halmazt! (11 pont) A gökös kifejezés értelmezési tartomán vizsgálata alapján: 5,. Az egenlőtlenség elvégzése során: 5, 9 3,8 Tehát azok a pozitív számok elemei H halmaznak, melek 3,8 -nál nagobbak és 5,-nél kisebbek: H 1;;3; 4;5 k 6 6 Ha logb k, akkor b, ami 64. ( pont) A k kitevő pozitív egész, ezért a b olan pozitív egész szám lehet, melnek valamel pozitív egész kitevős hatvána 64-gel egenlő: ( pont) B ; 4; 8; 64. Ezért H B ;4 \ 8;64 B H Összesen: 11 pont

9 11) 1 a) Igazolja, hog a, a 0 és a 3 is göke a egenletnek, és az egenletnek ezeken kívül más valós göke nincs! (5 pont) b) Oldja meg az alábbi egenletet a valós számok halmazán! 3 cos 5cos 3cos 0 (6 pont) c) Mutassa meg, hog a egenletnek nincs valós göke! (5 pont) a) Eg szorzat akkor és csak akkor nulla, ha valamelik ténezője nulla! Az 0 valóban gök. A többi gököt a megmaradt másodfokú egenletből kapjuk meg: A két gök: és 3, azaz a megadott három szám valóban göke az eredeti egenletnek. Másodfokú egenletnek legfeljebb két különböző valós göke lehet, ezért több gök nincsen. b) Vezessünk be új ismeretlent: cos! 3 A egenletnek keressük a valós gökeit, meleket az a) feladatrészből tudhatunk is: 1 0, 1, 3 3. Mivel a cos kifejezés értéke -1 és 1 között mozoghat csak, ezért a 3 nem jó megoldás. A cos 0 egenlet megoldása: 1 k, ahol k ( pont) 1 A cos egenlet megoldásai:,3 m, ahol m 3 ( pont) c) Az egenlet bal oldalán kiemelhető: Az eponenciális függvén értékkészlete a pozitív valós számok halmaza, íg 0 nem lehetséges. Másodfokúra visszavezethető a megmaradt egenlet: vag 1. Az eponenciális függvén már említett értékkészlete miatt ezek nem valós gökei, íg valóban nincs megoldása az egenletnek. Összesen: 16 pont

10 1) Két valós szám összege 9. Ha az egikből elveszünk 15-öt, a másikhoz pedig hozzáadunk 15-öt, az íg kapott két szám szorzata éppen ötszöröse lesz az eredeti két szám szorzatának. Melik lehet ez a két szám? (13 pont) Jelölje azt a számot, amelet 15-tel csökkentünk, pedig a másikat (3 pont) 5 Az első egenletből például -t kifejezve és a második egenletbe (9 ) behelettesítve: A műveleteket elvégezve: ( pont) Rendezve: Az egenlet megoldásai a -6 és a 7,5 ( pont) Ha a 15-tel csökkentendő szám a 6, akkor a másik szám a 35 Ha a 15-tel csökkentendő szám a 7,5, akkor a másik szám a 1,5 Ellenőrzés a szöveg alapján: Ha a két szám a -6 és a 35, akkor az összegük 9, a szorzatuk -10 A megváltoztatott számok a -1 és az 50, ezek szorzata -1050, ami valóban az 5-szöröse a -10-nek. Ha a két szám a 7,5 és az 1,5, akkor az összegük 9, a szorzatuk 41,5. A megváltoztatott számok a 1,5 és a 16,5, ezek szorzata 06,5, ami valóban 5-szöröse a 41,5-nek. Összesen: 13 pont 13) A tavaszi idén utolsó bajnoki mérkőzésén a Magas Fiúk Kosárlabda Klubjának (MAFKK) teljes csapatából heten léptek pálára. A mérkőzés után az edző elkészítette a hét játékos egéni statisztikáját. Az alábbi táblázat mutatja a játékosok dobási kísérleteinek számát és az eges játékosok dobószázalékát egészre kerekítve. (A dobószázalék megmutatja, hog a dobási kísérleteknek hán százaléka volt sikeres.) Játékos mezszáma Dobási kísérletek száma Dobószázalék a) Számítsa ki, hog menni volt a csapat dobószázaléka ezen a mérkőzésen! (5 pont)

11 Az őszi idén kezdete előtt eg hónappal a MAFKK csapatához csatlakozott eg 195 cm magas játékos, íg a csapattagok magasságának átlaga a korábbi átlagnál 0,5 cm-rel nagobb lett. Pár nap múlva eg 0 cm magas játékos is a csapat tagja lett, emiatt a csapattagok magasságának átlaga újabb 1 cm-rel nőtt. b) Hán tagja volt a MAFKK-nak, és mekkora volt a játékosok magasságának átlaga a két új játékos csatlakozása előtt? (11 pont) a) Az eges játékosok sikeres dobásainak száma rendre: 1, 0, 6,, 3, és 8. ( pont) A csapat dobási kísérleteinek a száma a mérkőzésen 50, a sikeres dobások száma volt. A csapat dobószázaléka 44. b) A két új játékos csatlakozása előtt a csapat tagjainak száma a tagok magasságának átlaga pedig cm volt, 0. (Az első játékos belépése előtt a csapattagok magasságának összege volt, 195 az új játékos után 195 lett, tehát) 0,5. ( pont) 1 Az előzőhöz hasonló gondolatmenettel kapjuk, hog a második új játékos belépését követően 1,5. ( pont) Az egenletek rendezése után a 0,5 194,5 egenletrendszerhez jutunk. ( pont) 1, és 189,5. ( pont) A csapat tagjainak száma 10, az átlagos magasságuk pedig 189,5 cm volt. Ellenőrzés. Összesen: 16 pont 14) Oldja meg az alábbi egenletrendszert a rendezett valós számpárok halmazán! a) b) (7 pont) (7 pont)

12 a) 0 és 0 esetén A két egenlet összeadásával: 1 6, amiből (négzetre emelés és rendezés után) adódik. Az egenlet gökei: 4 és A 9 nem megoldása a 6 egenletnek. Tehát 4, és íg 4. Ellenőrzés b) Értelmezési tartomán: és 3. Az első egenletből A második egenletből: Behelettesítve: 7 10 Ellenőrzés Összesen: 14 pont 15) Oldja meg a 4;6 alaphalmazon az alábbi egenleteket, illetve egenlőtlenséget! a) 5 3 (3 pont) b) (6 pont) c) cos cos 1 0 (7 pont) b) 5 3 esetén esetén Ilen elemei nincsenek az alaphalmaznak, ezért az eredeti egenlet megoldáshalmaza az üres halmaz. c) Négzetre emelve: Négzetre emelve és rendezve: , 6 Ellenőrzés 6 hamis gök, a heles megoldás csak a 6

13 d) A cos cos 1 0 (cos-ben másodfokú) egenlet teljesül, ha cos 1 vag cos 0,5. ( pont) (A megadott egenlőtlenség cos-ben másodfokú tagjának egütthatója pozitív, ezért) 1 cos 0,5. 1 cos minden esetén (íg az alaphalmaz minden elemére is) igaz. (4;6 ; miatt) a koszinuszfüggvén a [4;6] alaphalmazon szigorúan monoton növekedő, és itt cos 0,5, ha 5,4 ezért az egenlőtlenség megoldáshalmaza ; 3 Összesen 16 pont

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 005.október 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok

Részletesebben

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát! Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

EXPONENCIÁLIS EGYENLETEK

EXPONENCIÁLIS EGYENLETEK Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok

Részletesebben

Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja

Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja Bolai János Matematikai Társulat Rátz László Vándorgűlés 06. Baja Záródolgozat dr. Nag Piroska Mária, Dunakeszi Dunakeszi, 06.07.. A Vándorgűlésen Erdős Gábor az általános iskolai szekcióban tartott szemináriumot

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonan szolgálhatnak fontos információval

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

Függvények. 1. Nevezetes függvények A hatványfüggvény

Függvények. 1. Nevezetes függvények A hatványfüggvény Függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

MATEMATIKA ÉRETTSÉGI október 14. EMELT SZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenleteket! a)

MATEMATIKA ÉRETTSÉGI október 14. EMELT SZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenleteket! a) MATEMATIKA ÉRETTSÉGI 014. október 14. EMELT SZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenleteket! a) sin x sin x cos x b) lg x lg x 5 5 4 5 (7 pont) a) Az egyenlet jobb oldalát azonosság

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE

Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Számsorozatok SOKSZÍNÛ MATEMATIKA A KITÛZÖTT FELADATOK EREDMÉNYE. A számsorozat fogalma, példák sorozatokra. A pozitív páros számok sorozatának n-edik

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT 1) MATEMATIKA ÉRETTSÉGI 010. október 19. EMELT SZINT a) Mely valós számok elégítik ki az alábbi egyenlőtlenséget? 3 3 1 1 8 b) Az alábbi f és g függvényt is a f 3 és g 0,5,5 I. 3;6. intervallumon értelmezzük.

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

1. Lineáris transzformáció

1. Lineáris transzformáció Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT MATEMATIKA ÉRETTSÉGI 008. október. EMELT SZINT ) Oldja meg a valós számok halmazán az alábbi egyenleteket: a) b) lg 8 0 6 I. (5 pont) (5 pont) a) A logaritmus értelmezése alapján: 80 ( vagy ) Egy szorzat

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2014. október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2014. október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2014. október 14. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 14. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

12.6. ÉRETTSÉGI GYAKORLÓ FELADATSOROK

12.6. ÉRETTSÉGI GYAKORLÓ FELADATSOROK MEGOLDSOK. ÉVFOLYAM.6. ÉRETTSÉGI GYAKORLÓ FELADATSOROK KÖZÉPSZINTÛ FELADATSOROK. Feladatsor I. rész megoldások. ( + ).. A háromszög köré írható kör sugara,6 cm.. Körtébõl 9 kg-ot, almából 8 kg-ot, banánból

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

Analízis I. jegyzet. László István. 2008. november 3.

Analízis I. jegyzet. László István. 2008. november 3. Analízis I. jegzet László István 2008. november 3. Tartalomjegzék 1. Halmazok 5 1.1. Halmaz fogalma............................ 5 1.2. Halmaz megadása........................... 6 1.2.1. Eplicit megadás.......................

Részletesebben

Matematika A 10. szakiskolai évfolyam 1. modul Elsőfokú kétismeretlenes egyenletrendszerek megoldása

Matematika A 10. szakiskolai évfolyam 1. modul Elsőfokú kétismeretlenes egyenletrendszerek megoldása Matematika A 10. szakiskolai évfolam 1. modul Elsőfokú kétismeretlenes egenletrendszerek megoldása Készítette Csákvári Ágnes Matematika A 10. szakiskolai évfolam 1. modul: Elsőfokú kétismeretlenes egenletrendszerek

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Negyedik epochafüzet

Negyedik epochafüzet Negedik epochafüzet Matematika 9. évfolam Tulajdonos:... Tartalom Ismétlés I.... Algebrai kifejezések... Egenletek, egenlőtlenségek... 6 Algebrai törtek, szorzattá alakítás... 8 Törtes egenletek, egenlőtlenségek...

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné dr. Simon Judit. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné dr. Simon Judit. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gula Parócza József Szászné dr Simon Judit MATEMATIKA 9 Az érthetõ matematika tankönv feladatainak megoldásai A megoldások olvasásához Acrobat Reader program szükséges, amel ingenesen

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

VI. Kétismeretlenes egyenletrendszerek

VI. Kétismeretlenes egyenletrendszerek Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím Tanárok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Tizenharmadik, átdolgozott kiadás. Mozaik Kiadó Szeged, 2012

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Tizenharmadik, átdolgozott kiadás. Mozaik Kiadó Szeged, 2012 Kosztoláni József Kovács István Pintér Klára Urbán János Vincze István tankönv 9 Tizenharmadik, átdolgozott kiadás Mozaik Kiadó Szeged, 0 KOMBINATORIKA, HALMAZOK. Mi mit jelent a matematika nelvén? AKÁR

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam 01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat

Részletesebben

MATEMATIKA EMELT SZINT% ÍRÁSBELI VIZSGA. 2014. október 14. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA. Az írásbeli vizsga idtartama: 240 perc

MATEMATIKA EMELT SZINT% ÍRÁSBELI VIZSGA. 2014. október 14. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA. Az írásbeli vizsga idtartama: 240 perc I. rész II. rész a feladat sorszáma maximális pontszám 1. 12 2. 11 3. 14 4. 14 16 elért pontszám maximális pontszám 51 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 dátum javító

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Egyenletek, egyenlőtlenségek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Egyenletek, egyenlőtlenségek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Egyenletek, egyenlőtlenségek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben