A VÉGESELEM-MÓDSZER ALAPJAI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A VÉGESELEM-MÓDSZER ALAPJAI"

Átírás

1 A VÉGESEEM-MÓDSZER AAPJAI

2 A projekt címe: Egségesített Jármű- és mobilgépek képés- és tananagfejlestés A megvalósítás érdekében létrehoott konorcium réstvevői: KECSKEMÉI FŐISKOA BUDAPESI MŰSZAKI ÉS GAZDASÁGUDOMÁNYI EGYEEM AIPA AFÖDI IPARFEJESZÉSI NONPROFI KÖZHASZNÚ KF. Fővállalkoó: EVICE KF.

3 Budapesti Műsaki és Gadaságtudománi Egetem Kölekedésmérnöki Kar Írta: VÖRÖS GÁBOR FORBERGER ÁRPÁD ektorálta: BORBÁS AJOS A VÉGESEEM-MÓDSZER AAPJAI Egetemi tananag 0

4 COPYRIGH: 0-07 Dr. Vörös Gábor Forberger Árpád Budapesti Műsaki és Gadaságtudománi Egetem Kölekedésmérnöki Kar EKORÁA: Dr. Borbás ajos Creative Commons NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) A serő nevének feltüntetése mellett nem kereskedelmi céllal sabadon másolható terjesthető megjelentethető és előadható de nem módosítható. ISBN KÉSZÜ: a pote Kiadó gondoásában FEEŐS VEZEŐ: Votisk Zsusa ÁMOGAÁS: Késült a ÁMOP-4...A/-0/ sámú Egségesített jármű- és mobilgépek képés- és tananagfejlestés című projekt keretében. KUCSSZAVAK: Rugalmasságtan alapegenletei virtuális munka elve alakváltoási energia végeselem módser merevségi mátri tömegmátri geometriai merevség rácsos serkeet rúdelemek másodrendű rúdelmélet síkfeladatok. ÖSSZEFOGAÁS: A elmúlt évtiedekben a végeselem módser (VEM) a mérnöki terveés modelleés és a simuláció nélkülöhetetlen esköe lett. E a jeget elsősorban a alapképésben (BSc) rést vevőknek sól eért a feltételeett előtanulmánok a statika silárdságtan dinamika a matematikai analíis alapjai köönséges és parciális differenciál egenletek továbbá a mátrisámítás. A elméleti megalapoó beveető fejeetek röviden bemutatják a lineáris rugalmasságtan lokális és globális modelljeit a rugalmasságtani alapegenleteket és a virtuális munka elvét és végeselem módser elmodulás módser alapgondolatát a legfontosabb menniségek elemmátriok leveetését. A jeget résletesen tárgalja a mérnöki gakorlatban fontos rúd véges elemeket a síkbeli rácsos serkeeteknél alkalmaott csuklós végpontú elemet és a hajlított gerenda elemet. öbb kidolgoott sámpélda segíti a végeselem eljárás algoritmusának és a különböő analíisek statika dinamika stabilitás megismerését és megértését. A áró fejeet a síkfeladatok végeselem modelleési lehetőségeit ismerteti. A jeget végén található függelék a végeselem algoritmusokban alapvetően fontos mátrisámítási ismereteket foglalja össe. Célunk a mérnöki elsősorban a járműmérnöki területen tevékenkedő elméletileg jól felkésült végeselem softver felhasnálók kiképése.

5 artalom Beveetés... 7 Fontosabb menniségek jelölése...0 A rugalmasságtan alapegenletei.... okális egenletek..... Alakváltoások geometriai egenletek Fesültségi állapot egensúli egenletek Anagtörvén Peremfeltételek okális egenletek össefoglalása Példa: Sík leme mogása.... Globális modell a virtuális munka elve Példa: Raklap terhelése Példa: Rugalmas kötél lehajlása Példa: áncrendser mogásegenlete Silárd test alakváltoási energia növekméne A virtuális munka elve A teljes potenciál sélsőérték elve Kedeti fesültségi állapot Rúdelemek egenletei A Euler Bernoulli rúdelmélet A virtuális munka elve A Raleigh-Rit módser Példa: Rúd megosló terheléssel Dinamikai feladatok sabad lengések Példa: Hajlító lengés Nomott rúdelemek kihajlása Példa: Egenes rúd kihajlása Példa: A másodrendű elmélet A imoshenko féle rúdelmélet Példa: Nírási elmodulás A níró terület A St Venant féle csavarási modell Csavarási másodrendű nomaték A csavaró/níró köéppont A virtuális munka elve A végeselem-módser egenletei Elemek mátriok Interpoláció Elem mátriok Kinematikai peremfeltételek ámaserők és belső erők sámítása Végeselem analíis ineáris statika...75 Forberger Árpád Vörös Gábor BME

6 6 A VÉGESEEM-MÓDSZER AAPJAI 4.. Másodrendű statika Kritikus terhelés Sabad lengések sajátfrekvenciák Másodrendű dinamika Gerjestett mogások Rúdserkeetek végeselem modelljei Csuklós végpontú rúdelem Elem mátriok Síkbeli rácsos serkeet Példa: Síkbeli rácsos serkeet Hajlított rúdelem Elmodulás interpoláció Elem mátriok A rúdelem igénbevételei Példa: Statikus terhelés Példa: Kritikus terhelés Példa: Sabad lengések Síkbeli rúdserkeet Példa: Keret hőterhelése A imoshenko rúdelem A St Venant féle csavarási modell érbeli keretserkeet ransformációk... 6 Síkfeladatok Síkfesültségi állapot Sík alakváltoási állapot Síkfeladatok végeselem modelljei ineáris háromsögelem Példa: Sík leme peremterhelése ineáris négsög elem Magasabbrendű elemek Háromsög elemek Négsög elemek A. Függelék Mátrisámítás Forberger Árpád Vörös Gábor BME

7 Beveetés A elmúlt évtiedekben a végeselem módser (VEM) a modelleés és a simuláció nélkülöhetetlen esköe lett. E a jeget elsősorban egetemi hallgatóknak sól de gakorló mérnököknek is hasnos és a lineáris mechanikai rendserekre alkalmaható módser egséges és résletes leírását adja. A rugalmasságtani alapelvek és a elméleti háttér ismertetésének célja a hog a olvasók nag bitonsággal hasnálják értékeljék és minősítsék a kereskedelmi forgalomban beserehető végeselem eljárást is alkalmaó programrendsereket. A elmúlt köel két évsáad során a klassikus mechanika területén több a mérnöki gakorlatban hasnálható numerikus eljárást dolgotak ki. Eek eg csoportja a lokális egenletek a kontinuum viselkedését leíró parciális differenciálegenlet rendserek követlen megoldására solgált mint például a véges differencia módser. A numerikus eljárások eg másik rése a globális elvek a energetikai sélsőérték - stacioner érték - elvek direkt megoldását een belül a Raleigh-Rit módser különböő válfajait alkalmata. Een módserek alkalmaása a bonolultabb alakú testek alkatrések esetén igen komol nehéségekbe ütköik. A végeselem eljárás alapgondolatát a foltonos rendsereknek a diskrét véges sabadságfokú elemek rendserével történő helettesítését már régóta hasnálják a fiikai és mérnöki feladatok numerikus megoldására. Erre jellemő példa a egenes rudakból álló tartóserkeetek visgálati módsere ami többek köött Mawell (864) Castigliano (879) vag Mohr (868) munkáságának rése. A legelső ismert publikáció ami a bonolult tartománok réstartománokra bontását aokon belül pedig lineáris interpolációt és a energetikai sélsőérték elveket egütt alkalmata Cuorant (943) nevéhe fűődik aki a nem kör kerestmetsetű rudak sabad csavarási feladatát a potenciális energia sélsőérték elve alapján visgálta úg hog a tetsőleges alakú kerestmetsetet olan háromsög réstartománokra bontotta meleken belül a megoldás lineárisan váltoik. A minőségi váltoás feltételeit a digitális sámítástechnikai esköök fejlődése és séleskörű elterjedése tette lehetővé. A végeselem módsert a ma ismert formájában Clough urner és serőtársaik [] publikálták. (956 Boeing and Bell Aerospace) Náluk jelentek meg elősör a végeselem (finite element) csomópont (node) és csomóponti váltoó fogalmak és kifejeések is. A első alkalmaás kifejlestésének célja repülőgép sárnserkeetek dinamikai és silárdsági visgálata volt. A módser nilvánvaló sikere és hatékonsága továbbá a sámítástechnikai esköök fejlődése intenív kutatásokat indított be aminek eredméneként ma már a végeselem eljárást a mérnöki fiika legkülönböőbb területein hasnálják alkalmas többek köött lineáris és nemlineáris mechanikai áramlástani hőtechnikai akustikai jelenségek modelleésére időben állandó vag traniens folamatok simulációjára. Matematikusok tistáták a eljárás konvergenciájával pontosságával kapcsolatos problémákat és eel egütt több ma már klassikusnak sámító könv jelent meg mint például Forberger Árpád Vörös Gábor BME

8 8 A VÉGESEEM-MÓDSZER AAPJAI Zienkiewic [8] és Premieniecki [5] művei amelek még ma is korserűnek és hasnosnak bionulnak. A 980-as években megjelentek a első magar nelvű [0] [4] [5] egetemi jegetek és sakkönvek is. Mindeek eredméneként napjainkra a mérnöki terveő - elemő munka résévé váltak a végeselem eljárást valamilen sinten alkalmaó softverek. Eek köött vannak a sok elemtípust és analíis lehetőséget tartalmaó általános célú végeselem programrendserek melek a legkülönböőbb mérnöki feladatok megoldására is alkalmasak (NASRAN ANSYS MARC COSMOS ABACUS stb.). Igen hasnosak a serkeettípusra orientált rendserek melekkel csak eg féle serkeetet például ipari csőveetékeket (CAEPIPE) vag acél vasbeton váserkeeteket (FemDesign AXIS) lehet terveni visgálni. A kereskedelmi forgalomban beserehető progranrendserek megbíható intelligens hasnálatáho és a kisámított eredmének értékeléséhe a rendser keelésének ismeretén túl alapos saktudásra is sükség van aminek hiánában a felhasnálónak a softver csak eg árt titokatos dobo. A végeselem eljárást eredetileg serkeetek mechanikai visgálatokho alkalmaták és ebben a jegetben is a lineáris rugalmasságtani feladatokon kerestül mutatjuk be a módser elemeit. A jeget elsősorban a alapképésben (BSc) rést vevőknek sól eért a feltételeett előtanulmánok a statika silárdságtan dinamika a matematikai analíis alapjai köönséges és parciális differenciál egenletek továbbá a mátrisámítás. A beveetést követő első fejeet röviden bemutatja a lineáris rugalmasságtan lokális és globális modelljeit a rugalmasságtani alapegenleteket és a virtuális munka elvét. Ennek csak a a célja hog a előtanulmánok során megserett ismereteket egséges sóhasnálat és jelölésrendser alkalmaásával felidéük. A második fejeet résletesebben foglalkoik a járműserkeetekben fontos rúdelméletekkel a mérnöki gakorlatban általánosan hasnált Euler-Bernoulli elmélettel a nírás hatását pontosabban leíró imoshenko féle rúdmodellel. Ugane a fejeet résletei és több numerikus példával illustrálja a virtuális munka elvének egik köismert direkt numerikus megoldási módserét a Raleigh-Rit módsert. Eek a megoldott feladatok segíthetik a virtuális munka elvének és a direkt numerikus módserek - beleértve a végeselem eljárást is - matematikai hátterének megértését. A harmadik fejeet a virtuális munka elvére alapuló végeselem módser - elmodulás módser - alapgondolatát a legfontosabb menniségek elemmátriok bemutatását és leveetését foglalja össe. A negedik fejeet a rúdserkeetek végeselem modelleését ismerteti. Résletes leírás található a síkbeli rácsos serkeeteknél alkalmaott csuklós végpontú elemről valamint a hajlított gerenda elemről. öbb kidolgoott sámpélda segíti a végeselem eljárás algoritmusának és a különböő analíisek - statika dinamika stabilitás - megismerését. Forberger Árpád Vörös Gábor BME

9 . BEVEZEÉS 9 A ötödik fejeet a síkfeladatok végeselem modelleési lehetőségeit ismerteti. A jeget végén található függelék a végeselem algoritmusokban alapvetően fontos mátrisámítási ismereteket foglalja össe. öbb kidolgoott feladat és a sok ábra támogatja a bemutatott elméletek megértését és a alkalmaási késség fejlestését mivel eg jó ábra felér több sá magaráó sóval. E a jeget nem eg enciklopédia ami a végeselem módser keretében hasnálatos vag ismert technikákat résletesen ismerteti továbbá nem cél a végeselem programfejlestői ismeretek átadása. Célunk a mérnöki elsősorban a járműmérnöki területen tevékenkedő elméletileg jól felkésült softver felhasnálók kiképése. Forberger Árpád Vörös Gábor BME

10 0 A VÉGESEEM-MÓDSZER AAPJAI Fontosabb menniségek jelölése A rúdelem kerestmetsete C rúd kerestmetset köéppontja C rugalmas anag jellemőinek mátria E rugalmassági modulus G csústató rugalmassági modulus G nag alakváltoások másodfokú rése H nag alakváltoások mátria I I rúd kerestmetset fő másodrendű nomatékok J csavarási másodrendű nomaték K rendser lineáris merevségi mátria k e K G M m e M t M M N N i N p P p p q elem lineáris merevségi mátria rendser geometriai merevségi mátria rúdelem hossa rendser tömegmátria elem tömegmátria rúd csavaró igénbevételei rúd hajlító igénbevételei rúd húó igénbevétele interpolációs (forma) függvének interpolációs (forma) függvénmátri felületi terhelés rendser csomóponti terhelések mátria megosló terhelés térfogati megosló terhelés kerestmetset níró/csavaró köéppontja transformáció mátria Forberger Árpád Vörös Gábor BME

11 . BEVEZEÉS U alakváltoási energia u elmodulás mátri u v w rúd tengel elmodulásai u u u elmodulás koordináták V V rúd níró igénbevételei W k külső erők munkája csavaró/níró köéppont koordináták kritikus (stabilitásvestési) terhelés soró níró fesültségek 0 σ kedeti fesültségek mátria γ γ γ Δ i Δ Δ G ε ε * ε ε ε θ θ θ ξ Π ρ σ σ σ σ Φ j ω j fajlagos sögváltoások csomóponti sabadságfokok mátria hőmérséklet váltoása Hőmérsékletváltoás gradiense kis alakváltoások mátria nem mechanikai hatásokból követkeő alakváltoás fajlagos núlások forgás koordináták dimeniótlan hoss koordináta teljes potenciál tömegsűrűség fesültségek mátria normál fesültségek sajátvektorok (lengéskép stabilitásvestés alakja) sajátfrekvenciák Forberger Árpád Vörös Gábor BME

12 A rugalmasságtan alapegenletei Ebben a fejeetben bemutatjuk a lineáris rugalmasságtan alapvető menniségeit és röviden össefoglaljuk a alapegenleteket. A klassikus rugalmasságtannal résletesen foglalkoó könvekből további fontos résleteket lehet megismerni érdemes megemlíteni például a jól ismert imoshenko - Goodier [6] vag a magar nelvű [0] [3] könveket. A külső terhelés hatására a silárd test moog és megváltotatja a alakját et jellemi a elmodulás vektor és a alakváltoások. Uganakkor kialakul a belső erőrendser a fesültségi állapot. A mechanikai sámítások célja hog meghatároa een menniségek a terhelések és a elmodulás alakváltoás és fesültségi állapot kapcsolatát. A külső terhelés lehet statikus időben állandó vag nagon lassan váltoó kváistatikus. Gorsan váltoó terhelés hatására a serkeeti válasok - mogás fesültségek stb. - is időben váltonak et neveük dinamikai hatásnak. A test mogása a alakváltoás mértéke jellege függ a anagi tulajdonságoktól. A test rugalmas ha a külső terhelések megsüntetése után aonnal vissaneri eredeti alakját és lineárisan rugalmas ha terhelés és a alakváltoás visona eg lineáris aránossággal írható le. A képléken alakváltoások jellemője hog a serkeet tehermentesítése után maradó alakváltoásokat éslelhetünk. ovábbi fontos anagtulajdonság a aniotrópia. A test aniotrop ha eg pontban a anagjellemők különböő iránokban mérve váltonak. A kompoit sálerősítésű anagok a fa jellemően aniotrop tulajdonságúak. A iotóp testeknél a anagjellemők irántól függetlenek. Ha a anagjellemők a test különböő pontjaiban aonosak akkor a test homogén ellenkeő estben inhomogén. Eg kontinuummechanikai feladat matematikai modelljét két módon lehet megfogalmani: parciális differenciálegenletekkel vag globális érvénű határoott integrál formájú elvek alakjában. A előbbit lokális (angolul strong form) a másodikat globális (angolul weak form) matematikai modellnek nevehetjük. A globális modell alapvető fontosságú a numerikus módserek een belül a végeselem módser alkalmaásánál. E a jeget a lineárisan rugalmas homogén és iotrop anagú kismértékű mogásokat és kis alakváltoásokat végő serkeetekkel foglalkoik.. okális egenletek Ebben a fejeetben röviden áttekintjük a silárd test mogásának leírására alkalmas lokális formájú egenleteket. A lokális egenletek algebrai és parciális differenciál egenletek melek eg anagi pont kis körneetének mechanikai viselkedését alakváltoását fesültségi állapotát írják le. Forberger Árpád Vörös Gábor BME

13 . A RUGAMASSÁGAN AAPEGYENEEI 3 0 t A p t A u r V P q p u P. ábra. A silárd test terhelései és mogása A visgált silárd test - kontinuum - a tér V rését foglalja el. Külső A felületének A p résén a felületi p megosló terhelések a A u jelű résén pedig a mogás kénserfeltételek adottak. A mechanikai terhelések - a p felületi és a q térfogaton megosló terhelések valamint egéb külső hatások (pl. hőmérsékletváltoás) követketében a test pontjai elmodulnak alakja megváltoik és belső erők jönnek létre... Alakváltoások geometriai egenletek Eg P anagi pont elmodulását a eredeti heletéhe visonítva a u elmodulás vektorral adhatjuk meg aminek a koordináta tengelek iránába mutató komponensei u u és u (. ábra). Általában eek a koordináták a anagi pont eredeti heletét megadó térkoordináták és a idő függvénei: u(t): u u u u (0.) A áttekinthetőség kedvéért kedjük a alakváltoások visgálatát a síkban történő mogás elemésével. A.. ábrán jelölt OABC pontok elmodulnak és a deformált anagi elem sarokpontjainak új helete O A B C les. A alakváltoás a somsédos anagi pontok köötti távolságok és a sögek váltoását jelenti. A mérnöki gakorlatban hasnálatos fajlagos núlás definíciója hossváltoás ds d ds (0.) ere det i hoss d d Forberger Árpád Vörös Gábor BME

14 4 A VÉGESEEM-MÓDSZER AAPJAI d C O B A u d d u α O C u d d u d α A B u d u d. ábra. Elemi kocka alakváltoása A γ fajlagos sögváltoás a eredetileg merőleges ds és ds anagi vonalelemek köötti sög megváltoása (a. ábrán γ = α + α ) ami poitív ha a deformált alakaton a sög hegessög les. A áttekinthetőség kedvéért kedjük a elmodulások és a alakváltoás jellemők visgálatát a síkban történő mogás elemésével. A. ábrán jelölt OABC pontok elmodulnak és a deformált anagi elem sarokpontjainak új helete O A B C les. A eredetileg d hossúságú O A sakas hossa: u u u ds u u ds d d d d majd felhasnálva a fajlagos núlás (0.) definícióját u u u Ha a fajlagos núlás kicsi akkor a baloldalon a másodrendű tag nagságrendi megfontolás alapján elhagható és ekkor u u u.. Forberger Árpád Vörös Gábor BME

15 . A RUGAMASSÁGAN AAPEGYENEEI 5 Ha a elmodulás vektor koordinátái és a deriváltjai is kicsik akkor a másodfokú tagokat a jobb oldalon is elhaghatjuk: u. Most sámítsuk ki a eredetileg merőleges d és d iránok köötti deréksög megváltoását! A. ábra jelöléseivel: sin sin sin cos sin cos u d u d u d u d ds ds. ds ds Ismét felhasnálva a fajlagos núlás (0.) és a fajlagos sögváltoás definícióit átrendeés után: sin u u u u u u. Ha a fajlagos núlások és a sögváltoások is kicsik akkor a másodrendű tagok a egenlet bal oldalán elhanagolhatóak u u u u u u továbbá ha a elmodulás koordináták és deriváltjaik is kicsik akkor a másodfokú tagokat a jobb oldalon is elhaghatjuk: u u. Eek után ha a.. ábrán a síkra merőleges u elmodulással is sámolunk belátható hog a hat alakváltoási jellemő - három iránú núlás és három sögváltoás - a úgneveett Green-agrange féle H alakváltoások tenorának koordinátái a követkeő formában írhatók fel: ahol ε a alakváltoások lineáris H ε G (0.3) Forberger Árpád Vörös Gábor BME

16 6 A VÉGESEEM-MÓDSZER AAPJAI ε u u u u u u u u u és G a quadratikus rése: (0.4) G G G G G G G G G G u u u u u u u u u G u u u u u u u u u G (0.5) u u u u u u G u u u Mérnöki serkeeteknél ha a fajlagos núlások nagságrendje 0-3 vag még kisebb akkor a (0.3) geometriai egenletekből a másodfokú tagok elhaghatók H ε (0.6) A (0.3) H és a (0.4) ε alakváltoási jellemők fontos tulajdonsága hog értékük érus ha a test ugan moog de alakja köben nem váltoik. Et neveük merevtest (serű) mogásnak. A (0.) definícióval a alakváltoási jellemőket a kedeti állapotho (konfigurációho) tartoó és térkoordinátákkal és a kedeti méretekhe visonítva határouk meg. Et a kontinuummechanika agrange féle a leírás módjának neveik semben a Euler féle leírással ahol a alakváltoásokat a anagi pont pillanatni heletét megadó koordinátákkal és a deformált méretekhe visonítva adjuk meg. E utóbbi eljárás elsősorban a foladékmechanikában hasnálatos. Kis alakváltoások estén a kedeti és a pillanatni konfiguráció jó köelítéssel egbeesik és a (0.5) lineáris geometriai egenletet hasnálhatjuk... Fesültségi állapot egensúli egenletek A külső terhelések hatására a testben belső erőrendser fesültségi állápot alakul ki amit eg anagi pont körneetében kilenc - amiből hat különböő - fesültség komponens ad meg. A.3. ábrán láthatóak eg elemi méretű kiskocka három koor- Forberger Árpád Vörös Gábor BME

17 . A RUGAMASSÁGAN AAPEGYENEEI 7 dináta síkokkal párhuamos oldallapjaira ható fesültségek a síkra merőleges normál és a páronként aonos síkban lévő níró fesültségek..3 ábra. Fesültségi állapot koordinátái A testből bármilen módon kivágott elemi résre a egensúl feltétel teljesül. A.3 ábrán látható kiskocka köepén átmenő tengelekre felírható nomatéki egensúli feltételek követkeméne a níró fesültségek dualitása: = = =. A kilenc fesültség koordináta köül a hat különböőt írjuk fel a követkeő mátri formában: σ (0.7) A iránú vetületi egensúli egenlet a.4 ábra jelöléseivel ahol a d d és d oldalméretű elemi test oldallapjaira csak a iránú fesültség komponenseket és a q térfogati erőhatást rajoltuk be a követkeő formában írható fel: ddd d dd d dd qddd 0 q 0. Forberger Árpád Vörös Gábor BME

18 8 A VÉGESEEM-MÓDSZER AAPJAI d d τ σ d d q d τ d.4 ábra. Elemi kocka egensúla A másik két vetületi egenlet hasonló módon írható fel. Végül a három vetületi egensúli egenlet a q térfogaton megosló erővel egütt a követkeő les: q 0 q 0 q 0. (0.8) Gorsan mogó testek visgálatánál a terhelések köött figelembe kell venni a tehetetlenségi erőket is. A d Alambert elv serint a statikai egensúli feltételek formálisan érvénesek maradnak ha a testre ható erőrendsert kiegésítjük a tehetetlenségi erőkkel. Például eg mogó m tömegű pontserű testre F ma = 0 a formális egensúli egenlet ahol a jelöli a gorsulást. Ennek megfelelően dinamikai feladatokho a (0.8)egenletben a testre ható erőrendsert ki kell egésíteni a térfogaton megosló tehetetlenségi erővel: q u qu q u (0.9) q u ahol ρ a test tömegsűrűsége és ü a elmodulás idő serinti második deriváltja a gorsulás vektor. Mogás köben a test mérete váltoik. A kedeti alakváltoás előtti felületekre vonatkotatott fesültségek a úgneveett II. Piola-Kirchhoff féle fesültségtenor koordinátái ami általában eltér a mogás köben váltoó felületre vonatkotatott Forberger Árpád Vörös Gábor BME

19 . A RUGAMASSÁGAN AAPEGYENEEI 9 valódi fesültségektől. Aonban ha a mogások és a alakváltoások kicsik és a (0.5) köelítés alkalmaható a kétféle fesültség értelmeés köötti eltérés is elhanagolható. A alakváltoási és fesültségi állapot pontos leírásának módjairól résletesebb leírás található a [6] [0] [] és [3] könvekben...3 Anagtörvén A anagtörvén a fesültségek és a alakváltoások köötti kapcsolatot adja meg. Rugalmas testre e a kapcsolat egértékű. ineárisan rugalmas testek anagtörvéne a Hooke törvén ami a kis alakváltoások esetén a követkeő lineáris mátri egenlet formájában írható fel: * * * * * σ Cεε Cεσ C * (0.0) * * A C eg simmetrikus 66 méretű mátri ami at jelenti hog a legáltalánosabb aniotrop tulajdonságú rugalmas testnek anagjellemője lehet. A iotóp rugalmas testnek csak két független anagjellemője van és ekkor a C anagjellemő mátri is egserűbb serkeetű: c c c E c c c c c c c E C c c3 0 0 (0.) c3 0 E c3 G c3 ahol E a rugalmassági modulus G a csústató rugalmassági modulus és ν a Poisson vag kontrakciós téneő. Érdemes megemlíteni hog össenomhatatlan testekre ν = 05 és ilenkor mindig (ε + ε + ε ) = 0. A (0.0) anagtörvén invere: Forberger Árpád Vörös Gábor BME

20 0 A VÉGESEEM-MÓDSZER AAPJAI * ε C σ ε ν ν ν ν ν ν b ν E b b b C Egserűen ellenőríhető hog C - C = I ahol I a 66 méretű egségmátri. (0.) A (0.0) anagtörvénben ε * a nem követlen mechanikai hatások követketében kialakuló alakváltoások mátria. Ilen lehet például a hőmérsékletváltoásból vag valamilen más technológiai okból - sáradás fáisátalakulás stb. - bekövetkeő alakváltoás. Iotrop minden iránban aonos hőtágulási tulajdonság esetén * ε (0.3) ahol α a lineáris hőtágulási egüttható és Δ a test hőmérsékletének váltoása...4 Peremfeltételek A mechanikai egenletek fontos elemei a peremfeltételek. A testet határoló külső A felület minden pontjában meg kell adni vag a mogások vag a felületi terhelések értékét. A peremfeltételek heles megadása a modellalkotás egik legfontosabb rése. A kinematikai peremfeltételekkel a A felület A u résén a test megtámastását esetleg a eges felületrések előírt mogását adjuk meg: u u u u u u u u P A. (0.4) u A felüljelés előírt mogás értéket jelent. Rögített pontokban vag felületréseken a előírt értékek érusok. A dinamikai peremfeltételek a test külső A felületének A p résére működő terhelések és a belső erőrendser a fesültségi állapot kapcsolódásának törvénserűséget írják le. Forberger Árpád Vörös Gábor BME

21 . A RUGAMASSÁGAN AAPEGYENEEI c n -τ p a -τ -σ.5 ábra. etraéder egensúla A.5 ábrán a A p felületen lévő anagi pont körneetét ábráoltuk ahol a tetraéder ferde oldallapja a A p felület rése. Jelölje a koordinátatengelekre merőleges oldalak és a negedik oldal területét n pedig a negedik oldal kifelé mutató normális egségvektorát: bc ac ab n / n n / n =. n / Eek a össefüggések egserű geometriai sámításokkal igaolhatóak. A tetraédernek a test belsejében lévő felületeire a fesültség komponensek a A p felületen lévő oldalára pedig a p felületi terhelés működik. Írjuk fel a iránú erőhatások egensúlát kifejeő vetületi egenletet: p 0. Átrendeés után figelembe véve a n normális vektor koordinátáira felírt eredméneket is megkapjuk a alábbi három dinamikai peremfeltétel köül a elsőt ahol a további két feltételt - a és iránú egensúli egenletekből - hasonló módon írhatjuk fel: b n n n p n n n p n n n p. (0.5) A test terheletlen sabad felsíne a A p felület rése ahol a előírt külső terhelés p = 0. Forberger Árpád Vörös Gábor BME

22 A VÉGESEEM-MÓDSZER AAPJAI..5 okális egenletek össefoglalása Amint at a előőekben láthattuk a kontinuummechanika és een belül a lineáris rugalmasságtan lokális egenleteit három csoportba sorolhatjuk: a (0.4) geometriai egenletek a alakváltoások és a test mogásának kapcsolatát adják meg a Newton aiómából követkeő (0.7) egensúli egenletek vag mogásegenletek a külső és belső erők kapcsolatát írják le és a harmadik egenlet csoport a fesültségek és alakváltoások kapcsolata a anagtörvén (0.9). Eekhe tartonak még a (0.) és (0.3) peremfeltételek. Általában eg serkeetmechanikai feladat megoldásáho mind a három egenletcsoportot fel kell hasnálni. (Kivételnek sámítanak a statikailag határoott feladatok ahol a egensúli egenletek önmagukban elegendőek a külső és belső erők köötti össefüggések felírásáho) A alábbi tábláatból látsik hog a lokális megfogalmaásban a ismeretlenek és egenletek darabsáma aonos. Egenletek sáma Ismeretlenek sáma Geometriai egenletek 6 Elmodulás vektor u u u Alakváltoási tenor ε ε ε γ γ γ 3 6 Egensúli egenletek 3 Fesültségi tenor 6 Anagtörvén 6 Össesen 5 5 A pontos megoldást amel a össes egenletet és peremfeltételt kielégíti a mérnöki gakorlatban előforduló esetek döntő résénél nem lehet meghatároni. Ilenkor van sükség a köelítő numerikus módserekre amelek többnire a globális integrál formában kifejeett elvekre például a virtuális munka elvére épülnek...6 Példa: Sík leme mogása Ismerjük a.6 A ábrán váolt aa méretű és t vastagságú lemeben a (0.) u elmodulás vektor koordinátáit: u k u k / u k mm 5 00 mm 5 mm 0 MPa ν 05. a t E Rajoljuk meg a leme deformálódott alakját és sámítsuk ki a oldallapokra és a leme térfogatára ható erőrendsert ami et a alakatot létrehota. Forberger Árpád Vörös Gábor BME

23 . A RUGAMASSÁGAN AAPEGYENEEI 3 A.6 B ábra mutatja a leme deformálódott alakját ahol a = a = a koordinátájú sarokpont elmodulásai: u ka 0 0 mm u ka / 0 0 mm u 0. A: B: ka a ka / a a.6 ábra. Sík leme alakváltoása (nem arános válat) A terhelések meghatároásáho előbb a alakváltoásokat majd a fesültségeket kell kisámítani. A geometriai egenletekből: u u u u k -k k 0 és a (0.0) Hooke törvénből a érustól különböő fesültség koordináták: E E c c k c c k E Gk k. A (0.5) dinamikai peremfeltételekből meghatárohatjuk a leme oldallapjaira ható felületi nomásterheléseket. A = a oldallap kifelé mutató normális egségvektorának koordinátái: n = 0 n = n = 0 és a (0.5) peremfeltételből een a lapon: Ek Ek p 0 6 p a3 MPa p 0. Hasonló módon a = 0 lapon n = 0 n = - n = 0 Ek p 0 6 p 0 p 0 a = a lapon n = n = 0 n = 0 Forberger Árpád Vörös Gábor BME

24 4 A VÉGESEEM-MÓDSZER AAPJAI Ek Ek p 0 3 p a6 MPa p 0 és végül a = -a lapon n = - n = 0 n = Ek p 6 MPa 0 p a p. Eek a perem terhelések láthatóak a.7 ábrán. A lemere ható térfogati erőt a (0.8) egensúli egenletekből sámíthatjuk ki: q 0 0 q 0 Ek Ek q 0 q 0 q 0 0 q 0. Ebből a térfogati erőhatás egetlen nem érus koordinátája: Ek 3 q 06 N/mm. -6 MPa 6 MPa -3 MPa -3 MPa 3 MPa 06 N/mm 3 6 MPa 6 MPa -6 MPa 6 MPa.7 ábra. Sík leme terhelése Végeetül ellenőrihetjük hog a.7 ábrán megadott erőrendser valóban egensúli.. Globális modell a virtuális munka elve Eg erő munkája a erő és a iránába eső elmodulás sorata. Pontosabban eg F erő a vele párhuamos ds mogás köben dw Fds munkát vége. Ha e a F mint eg külső erő terhelés valamilen mechanikai rendserre működik akkor a rendser mogása alakváltoása köben a belső erők is végenek munkát ami Forberger Árpád Vörös Gábor BME

25 . A RUGAMASSÁGAN AAPEGYENEEI 5 munkavégő képesség energia formájában tárolódik a rendserben. Et a energiát gakran alakváltoási energiának is neveik. s δs F.8. ábra. Húóerő munkája belső energia A külső erő munkája és a energia váltoásának visonát visgáljuk elősör a.8. ábrán látható igen egserű mechanikai rendseren. A rúdra a F erő működik és ismerjük a egensúli heletet megadó megoldást: a belső erő (rúderő) R = F és a megnúlás s = kr. Ebből a egensúli heletből - képeletben - modítsuk ki a rendsert eg kicsi ds elmodulással. Et a kis elmodulást virtuális elmodulásnak neveük. A külső erőnek a virtuális elmoduláson végett dw k = Fds virtuális munkája megegeik a rugóerő virtuális munkájával ami a belső vag alakváltoási energia du = Rds megváltoása aa du - dw k = 0. E nílván csak akkor iga ha a eredeti állapot egensúli volt aa R = F. ehát a egensúli heletre jellemő hog 0 dπ d U W Π s etrémum k (0.6) más sóval a Π(s) teljes potenciál a s elmodulás függvéne és a egensúli heletben sélsőértéke van: dπ dπ dπ ds 0 0 ds ds. A (0.6) a virtuális munka elve amit most a követkeő formában lehet megfogalman: a a elmodulás aminél a teljes potenciál megváltoása érus teljesíti a egensúli feltételeket. Fontos megjegeni hog e a megállapítás akkor is iga ha rugó nemlineáris k = k(s) vag a s eredő megnúlásnak van maradó núlás rése is. Ha a.8. ábra serinti rugó lineárisan rugalmas akkor a k értéke állandó és akkor a belső erő virtuális munkája vag más sóval a alakváltoási energia megváltoása s du Rdsksdsdk. Forberger Árpád Vörös Gábor BME

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév) STATIKA A minimum test kérdései a gépésmérnöki sak hallgatói résére (2003/2004 tavasi félév) Statika Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése (1) 3. A merev test fogalma (1) 4. A

Részletesebben

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL Koák Imre Seidl Görg FEJEZETEK SZILÁRDSÁGTNBÓL KÉZIRT 008 0 Tartalomjegék. fejeet. tenorsámítás elemei.. Beveető megjegések.. Függvének.3. másodrendű tenor fogalmának geometriai beveetése 5.4. Speciális

Részletesebben

3. Szerkezeti elemek méretezése

3. Szerkezeti elemek méretezése . Serkeeti elemek méreteése.. Serkeeti elemek méreteési elvei A EC serint a teherbírási határállapotok ellenőrése során a alábbi visgálatokat kell elvégeni: - Kerestmetseti ellenállások visgálata, ami

Részletesebben

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

Dr. Égert János Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN

Dr. Égert János Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN UNIVESITAS-GYŐ Nonprofit ft Gőr 9 SZÉCHENYI ISTVÁN EGYETEM GYŐ Írta: Dr Égert János Dr Nag Zoltán

Részletesebben

σ = = (y', z' ) = EI (z') y'

σ = = (y', z' ) = EI (z') y' 178 5.4.. Váltoó kerestmetsetű rudak tsta hajlítása Enhén váltoó kerestmetsetű, tsta hajlításra génbevett rúdnál a eges pontok fesültség állapota - a váltoó kerestmetsetű rudak tsta nomásáho vag húásáho

Részletesebben

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki

Részletesebben

Projektív ábrázoló geometria, centrálaxonometria

Projektív ábrázoló geometria, centrálaxonometria Projektív ábráoló geometria, centrálaonometria Ennél a leképeésnél a projektív teret seretnénk úg megjeleníteni eg képsíkon, hog a aonometrikus leképeést (paralel aonometriát) speciális esetként megkaphassuk.

Részletesebben

Acélszerkezetek méretezése Eurocode 3 szerint

Acélszerkezetek méretezése Eurocode 3 szerint Acélserkeetek méreteése Eurocode 3 serint Gakorlati útmutató Dunai Lásló, Horváth Lásló, Kovács auika, Varga Géa, Verőci Béla, Vigh L. Gergel (a Útmutató jelen késültségi sintjén a Tartalomjegékben dőlt

Részletesebben

MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG

MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG Dr. Óvári Gula 1 - Dr. Urbán István 2 MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KILKÍTÁS 3 cikk(soroatban)ben a merev sárnú repülőgépek veérsík rendserinek terveését és építését követheti nomon lépésről

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

Acélszerkezetek méretezése Eurocode 3 szerint

Acélszerkezetek méretezése Eurocode 3 szerint Aélserkeetek méreteése Euroode serint Gakorlati útmutató rásos tartó síkja h t t r h t Serők: Dunai Lásló, Horváth Lásló, Kovás auika, Verői Béla, Vigh L. Gergel Verió: 9.9.. Tartalomjegék. Beveetés....

Részletesebben

1. MÁSODRENDŰ NYOMATÉK

1. MÁSODRENDŰ NYOMATÉK Gak 01 Mechanka. Szlárdságtan 016 01 Segédlet MECHNK. TNNYG SMÉTLÉSE Tartalom 1. MÁSODRENDŰ NYOMTÉK... 1. RÁCSOS TRTÓ.... GÉNYEVÉTEL ÁRÁK... 5. TÉREL TRTÓK GÉNYEVÉTEL ÁRÁ... 8 Ez a Segédlet a 015, 016

Részletesebben

5. Szerkezetek méretezése

5. Szerkezetek méretezése . Serkeeek méreeése Hajlío, ömör gerinű gerendaarók és oso selvénű nomo rúd méreeési példái..1. Tömör gerinű gerendaarók méreeése.1.1. elegen hengerel gerendaarók Sükséges ismereek: - Keresmesei ellenállások

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

Mechanika II. Szilárdságtan

Mechanika II. Szilárdságtan echanika II. Szilárdságtan Zalka Károl / q / B Budapest, 05 Zalka Károl, 05, e-kiadás Szabad ezt a kiadvánt sokszorosítani, terjeszteni és elektronikus vag bármel formában tárolni. Tilos viszont a kiadvánt

Részletesebben

Leggyakoribb fa rácsos tartó kialakítások

Leggyakoribb fa rácsos tartó kialakítások Fa rácsostartók vizsgálata 1. Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék Leggakoribb fa rácsos tartó kialakítások Változó magasságú Állandó magasságú Kis mértékben változó magasságú

Részletesebben

alkalmazott hő-h szimuláci

alkalmazott hő-h szimuláci Buderus Rosenberg sakmai napok Visegrád, 008.május.6-7. A légtechnikai l fejlestések sek során alkalmaott hő-h és áramlástani simuláci ciós s eljárások Sekeres GáborG Okl.gépésmérnök Beeetés Numerikus

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

VASBETON LEMEZEK. Oktatási segédlet v1.0. Összeállította: Dr. Bódi István - Dr. Farkas György. Budapest, 2001. május hó

VASBETON LEMEZEK. Oktatási segédlet v1.0. Összeállította: Dr. Bódi István - Dr. Farkas György. Budapest, 2001. május hó BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar Hidak és Szerkezetek Tanszéke VASBETON LEMEZEK Oktatási segédlet v1.0 Összeállította: Dr. Bódi István - Dr. Farkas Görg Budapest, 001. május

Részletesebben

ÁRAMLÁSTAN ALAPJAI. minimum tételek szóbeli vizsgához. Powered by Beecy

ÁRAMLÁSTAN ALAPJAI. minimum tételek szóbeli vizsgához. Powered by Beecy ÁRAMLÁSTAN ALAPJAI minimum tételek sóbeli isgáho Powered b Beec Minimum tételek sóbeli isgáho 1. tétel. Írja fel a foltonossági tétel integrál alakját, és magaráa el, milen fiikai alapelet feje ki. Hogan

Részletesebben

MAGYAR SZABVÁNY MSZ EN 12354-6

MAGYAR SZABVÁNY MSZ EN 12354-6 4. augustus MGYR SZBVÁNY MSZ EN 1354-6 Épületakustika. Épületek akustikai minőségének beslése a elemek teljesítőképessége alapján 6. rés: Hangelnelés árt térben MSZ EN 1354-6 sabván 4. augustus 1-jén köétett

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit. modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően

Részletesebben

Az alkalmazott matematika tantárgy oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében

Az alkalmazott matematika tantárgy oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében DIMENZIÓK 35 Matematikai Közlemének III. kötet, 5 doi:.3/dim.5.5 Az alkalmazott matematika tantárg oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében Horváth-Szováti Erika NME EMK

Részletesebben

5. ROBOTOK IRÁNYÍTÓ RENDSZERE. 5.1. Robotok belső adatfeldolgozásának struktúrája

5. ROBOTOK IRÁNYÍTÓ RENDSZERE. 5.1. Robotok belső adatfeldolgozásának struktúrája TARTALOM 5. ROBOTOK IRÁNYÍTÓ RENDSZERE... 7 5.. Robotok belső adatfeldolgozásának struktúrája... 7 5.. Koordináta transzformációk... 5... Forgatás... 5... R-P-Y szögek... 5... Homogén transzformációk...

Részletesebben

MEGVALÓSÍTHATÓSÁGI TANULMÁNY TARTALMI KÖVETELMÉNYEI

MEGVALÓSÍTHATÓSÁGI TANULMÁNY TARTALMI KÖVETELMÉNYEI MEGVALÓSÍTHATÓSÁGI TANULMÁNY TARTALMI KÖVETELMÉNYEI TARTALOMJEGYZÉK VEZETŐI ÖSSZEFOGLALÓ... 4 1. A PROJEKT LÉNYEGI ÖSSZEFOGLALÁSA... 5 2. HELYZETÉRTÉKELÉS... 6 2.1. A PROJEKT GAZDASÁGI, TÁRSADALMI ÉS KÖRNYEZETI

Részletesebben

hajlító nyomaték és a T nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál.

hajlító nyomaték és a T nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál. 5 RÚDELADATOK 51 íkgörbe rudk Grhof 1 -féle elmélete íkgörbe rúd: rúd köépvonl ( ponti ál) íkgörbe e P n e t Jelöléek: A köépvonl mentén pontokt ívkoordinátávl onoítjuk Pl P pont A P pontbn (P pontho trtoó

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok KÁLMÁN P.-TÓT.: ullámok/4 5 5..5. (kibőíe óraála) lekromágneses hullámok elekromágneses elenségek árgalásánál láuk, hog áloó mágneses erőér elekromos erőere (elekromágneses inukció), áloó elekromos erőér

Részletesebben

Lánctalpas szerkezetek különböző típusú irányváltó mechanizmusának kinematikai tárgyalása. Kari Tudományos Diákköri Konferencia

Lánctalpas szerkezetek különböző típusú irányváltó mechanizmusának kinematikai tárgyalása. Kari Tudományos Diákköri Konferencia Sapientia Erdélyi Magyar Tudományegyetem Műsaki és Humántudományok Kar Marosvásárhely Lánctalpas serkeetek különböő típusú irányváltó mechanimusának kinematikai tárgyalása Kari Tudományos Diákköri Konferencia

Részletesebben

FELÜLETI FESZÜLTSÉGI ÁLLAPOT MEGHATÁROZÁSA NYÚLÁSMÉRÉSSEL, ELMOZDULÁSMÉRÉS

FELÜLETI FESZÜLTSÉGI ÁLLAPOT MEGHATÁROZÁSA NYÚLÁSMÉRÉSSEL, ELMOZDULÁSMÉRÉS FLÜLTI FSZÜLTSÉGI ÁLLAPOT MGHATÁROZÁSA NYÚLÁSMÉRÉSSL, LMOZDULÁSMÉRÉS Lbortóriumi mérési gkorlt getemi mesterképésben (MSc) rést vevő mérnökhllgtók sámár Össeállított: Acél Ákos egetemi tnársegéd 1. Silárdságtni

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

MECHANIKA-SZILÁRDSÁGTAN 12. hét gyakorlati anyaga (kidolgozta : dr. Nagy Zoltán egy.adjunktus, Bojtár Gergely egy.tanársegéd)

MECHANIKA-SZILÁRDSÁGTAN 12. hét gyakorlati anyaga (kidolgozta : dr. Nagy Zoltán egy.adjunktus, Bojtár Gergely egy.tanársegéd) ZÉHENY TVÁN EGYETE LKLZOTT EHNK TNZÉK EHNK-ZLÁRÁGTN 1. hét gakorlati anaga (kidolgota : dr. Nag Zoltán eg.adjunktus, ojtár Gergel eg.tanársegéd) 1.1 feladat : Primatikus rudak össetett igénbevételei (

Részletesebben

Acélszerkezetek I. Gyakorlati óravázlat. BMEEOHSSI03 és BMEEOHSAT17. Jakab Gábor

Acélszerkezetek I. Gyakorlati óravázlat. BMEEOHSSI03 és BMEEOHSAT17. Jakab Gábor Acélszerkezetek I. BMEEOHSSI0 és BMEEOHSAT17 Gakorlati óravázlat Készítette: Dr. Kovács Nauzika Jakab Gábor A gakorlatok témája: 1. A félév gakorlati oktatásának felépítése. A szerkezeti acélanagok fajtái,

Részletesebben

ANTIANYAG-VIZSGÁLATOK A CERNBEN

ANTIANYAG-VIZSGÁLATOK A CERNBEN ANTIANYAG-VIZSGÁLATOK A CERNBEN Barna ániel KFKI RMKI, Budapest Universit of Toko, Japán Antianag A kvantumfiika egik nag eredméne a antirésecskék léteésének megjósolása volt. A irac által beveetett egenletnek,

Részletesebben

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN Fiia Modern fiia GY KRSZTPOLARIZÁCIÓS JLNSÉG BMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN DMONSTRATION OF AN OPTICAL CROSS- POLARIZATION FFCT IN A STUDNT LABORATORY Kőhái-Kis Ambrus, Nag Péter 1 Kecseméti

Részletesebben

492 Lantos-Kiss-Harmati: Szabályozástechnika gyakorlatok. 7. Gyakorlat

492 Lantos-Kiss-Harmati: Szabályozástechnika gyakorlatok. 7. Gyakorlat 49 Lanos-Kiss-Harmai: Sabáloásechnika gakorlaok 7. Gakorla 7. anermi gakorla Idenifikációs algorimusok A korábbi gakorlaok során a sabáloási körben a sakas árvielé a legöbbsör adonak éeleük fel vag fiikai

Részletesebben

1. El szó. Kecskemét, 2005. február 23. K házi-kis Ambrus

1. El szó. Kecskemét, 2005. február 23. K házi-kis Ambrus . Elsó olgoat témájául solgáló utatásoat egrést még a buaesti Silártestfiiai Kutatóintéet munatársaént etem maj eg utatással fejlestéssel foglaloó magáncég (& Ultrafast asers Kft.) olgoójaént jelenleg

Részletesebben

Lepárlás. 8. Lepárlás

Lepárlás. 8. Lepárlás eárlás 8. eárlás csefolós elegek szétválasztására leggakrabban használt művelet a leárlás. Míg az egszeri leárlás desztilláció néven is ismerjük az ismételt leárlás vag ismételt desztillációt rektifikálásnak

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

Vasbetonszerkezetek II. STNA252

Vasbetonszerkezetek II. STNA252 Szilárdságtan és Tartószerkezet Tanszéke Vasbetonszerkezetek II. STNA5 Pécs, 007. november STNA5 Szerző: Kiss Rita M. Műszaki rajzoló: Szabó Imre Gábor ISBN szám: Kézirat lezárva: 007. november 30. STNA5

Részletesebben

Növényi produkció mérése mikrometeorológiai módszerekkel. Ökotoxikológus MSc, 2015. április 21.

Növényi produkció mérése mikrometeorológiai módszerekkel. Ökotoxikológus MSc, 2015. április 21. Növényi prodkció mérése mikrometeorológiai módserekkel Ökotoikológs MSc, 015. április 1. Felsín légkör kölcsönhatások A legalapvetőbb kölcsönhatás a felsín és a légkör köött: a sél, és annak súrlódása

Részletesebben

Acélszerkezeti mintapéldák az Eurocode szabványhoz,

Acélszerkezeti mintapéldák az Eurocode szabványhoz, Budapesi Műsaki Egeem Acélserkeeek Tansék Acélserkeei minapéldák a Eurocode sabvánho, angol nelvű minapéldák alapján Fordíoa: Hegedűs Krisián Javíoa: Dr. Iváni Miklós. javío váloa 999. május 5. . Eurocode

Részletesebben

Néhány érdekes függvényről és alkalmazásukról

Néhány érdekes függvényről és alkalmazásukról Néhán érdekes függvénről és alkalmazásukról Bevezetés Meglehet, a középiskola óta nem kedveltük az abszolútérték - függvént; most itt az ideje, hog változtassunk ezen. Erre az adhat okot, hog belátjuk:

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK

18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK 18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK Kertesi Gábor Világi Balázs Varian 21. fejezete átdolgozva 18.1 Bevezető A vállalati technológiák sajátosságainak vizsgálatát eg igen fontos elemzési eszköz,

Részletesebben

Statika. Armuth Miklós, Karácsonyi Zsolt, Bodnár Miklós. Nyugat-magyarországi Egyetem TÁMOP-4.1.2.A/1-11/1-2011-0067

Statika. Armuth Miklós, Karácsonyi Zsolt, Bodnár Miklós. Nyugat-magyarországi Egyetem TÁMOP-4.1.2.A/1-11/1-2011-0067 ! Nugat-magarországi Egetem Armuth Miklós, Karácsoni Zsolt, Bodnár Miklós Statika Műszaki metaadatázis alapú fenntartható e-learning és tudástár létrehozása TÁMOP-4.1..A/1-11/1-011-0067 GSPulisherEngine

Részletesebben

Bevezetés. Bevezetés. Bevezetés. Történeti áttekintés. Bevezetés

Bevezetés. Bevezetés. Bevezetés. Történeti áttekintés. Bevezetés Beveetés Valós és képeletbeli objektumok (pl. tárgak képei, függvének) sintéise sámítógépes moelljeikből (pl. pontok, élek, lapok) Beveetés Történeti áttekintés Horoható softverek, sabvánok Interaktív

Részletesebben

2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLASZOK EGYETEMI MÉRNÖKHALLGATÓK SZÁMÁRA

2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLASZOK EGYETEMI MÉRNÖKHALLGATÓK SZÁMÁRA 2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLSZK EGYETEMI MÉRNÖKHLLGTÓK SZÁMÁR (1) Mi a mechanika tága? nagi endseek (testek) heletváltotatással jáó mogásainak és a eeket létehoó hatásoknak (e knek) a visgálata. heletváltoást

Részletesebben

BMEEOHSAT17 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

BMEEOHSAT17 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK A C É L S Z E R K E Z E T E K I. BMEEOHSAT17 segédlet a BME Építőmérnöki Kar hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi ejlesztése HEFOP/004/3.3.1/0001.01

Részletesebben

GEODÉZIA ÉS KARTOGRÁFIA

GEODÉZIA ÉS KARTOGRÁFIA GEODÉZIA ÉS KARTOGRÁFIA 57. ÉVFOLYAM 5 5. SZÁM A Eötvös-nga mérések geodéa célú hasnosításának helete Magarorságon Dr. Völges Lajos egetem docens,, dr. Tóth Gula egetem docens, dr. Csapó Géa saktanácsadó

Részletesebben

KÁOSZ EGY TÁLBAN Tóthné Juhász Tünde Karinthy Frigyes Gimnázium (Budapest) Gócz Éva Lónyai Utcai Református Gimnázium

KÁOSZ EGY TÁLBAN Tóthné Juhász Tünde Karinthy Frigyes Gimnázium (Budapest) Gócz Éva Lónyai Utcai Református Gimnázium válaszolására iránuló, még folamatban lévô (a dekoherencia és a hullámcsomag kollapszusa tárgkörökbe esô) elméleti próbálkozások ismertetésétôl. Ehelett inkább a kísérletek elôfeltételét képezô kvantumhûtés

Részletesebben

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot 5 modul: Silárdságtai Állapotok 53 lck: A fsültségi állapot A lck célja: A taaag flhasálója mgismrj a fsültségi állapot fogalmait valamit mg tudja határoi g lmi pot körték fsültségi állapotát Kövtlmék:

Részletesebben

Acélszerkezetek. 2. előadás 2012.02.17.

Acélszerkezetek. 2. előadás 2012.02.17. Acélszerkezetek 2. előadás 2012.02.17. Méretezési eladat Tervezés: új eladat Keresztmetszeti méretek, szerkezet, kapcsolatok a tervező által meghatározandóak Gazdasági, műszaki, esztétikai érdekek Ellenőrzés:

Részletesebben

PMSTNB 260 segédlet a PTE PMMK építő mérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

PMSTNB 260 segédlet a PTE PMMK építő mérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ SRUKURÁLIS ALAPOK V É G E S E L E M E S M O D E L L E Z É S PMSNB 6 segédlet a PE PMMK építő mérnök hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

Részletesebben

Az Eötvös-inga mérések geodéziai célú hasznosításának helyzete Magyarországon

Az Eötvös-inga mérések geodéziai célú hasznosításának helyzete Magyarországon A Eötvös-nga mérések geodéa célú hasnosításának helete Magarorságon Dr. Völges Lajos egetem docens,, dr. Tóth Gula egetem docens, dr. Csapó Géa saktanácsadó 3 Sabó Zoltán saktanácsadó 3, BME Általános-

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE

Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Számsorozatok SOKSZÍNÛ MATEMATIKA A KITÛZÖTT FELADATOK EREDMÉNYE. A számsorozat fogalma, példák sorozatokra. A pozitív páros számok sorozatának n-edik

Részletesebben

Téma: A szerkezeti acélanyagok fajtái, jelölésük. Mechanikai tulajdonságok. Acélszerkezeti termékek. Keresztmetszeti jellemzők számítása

Téma: A szerkezeti acélanyagok fajtái, jelölésük. Mechanikai tulajdonságok. Acélszerkezeti termékek. Keresztmetszeti jellemzők számítása 1. gakorlat: Téma: A szerkezeti acélanagok fajtái, jelölésük. echanikai tulajdonságok. Acélszerkezeti termékek. Keresztmetszeti jellemzők számítása A szerkezeti acélanagok fajtái, jelölésük: Ádán Dulácska-Dunai-Fernezeli-Horváth:

Részletesebben

T 049181 ZÁRÓJELENTÉS)

T 049181 ZÁRÓJELENTÉS) A talaj és gumiabroncs kapcsolatában lejátsódó dinamikus energiatransport folyamatok visgálata (OTKA T 49181 ZÁRÓJELENTÉS) 25-28. Dr. Kiss Péter SZIE-GÉK Össefoglalás: Terepen különösen puha talajon történő

Részletesebben

Kompozit lemezek stabilitásvizsgálata

Kompozit lemezek stabilitásvizsgálata Szilárdságtani anszék DK dolgozat 3. Kompozit lemezek stabilitásvizsgálata a Ritz-módszer alkalmazásával Készítette: Somogi István Károl Építőmérnök hallgató V. évfolam Konzulens: Kollár ászló egetemi

Részletesebben

Érzéstelenítő és altatószerek, hatásuk a környezetre

Érzéstelenítő és altatószerek, hatásuk a környezetre ismerd meg! Éréstelenítő és altatóserek, hatásuk a körneetre Ősidőkre veethető vissa a embereknek a a tapastalata, hog bionos növének levelét, termését rágva kellemes éretük, bódult állapotuk les. A édes

Részletesebben

Acélszerkezetek tervezése tűzhatásra Analízis és méretezés

Acélszerkezetek tervezése tűzhatásra Analízis és méretezés Előadás /6 2015. március 11., szerda, 9 50-11 30, B-2 terem Acélszerkezetek tervezése tűzhatásra Analízis és méretezés Detroit Marseille előadó: Dr. habil Papp Ferenc eg. docens Szabvánok MSZ EN 1990:2005

Részletesebben

10. OPTIMÁLÁSI LEHETŐSÉGEK A MŰVELET-ELEMEK TERVEZÉSEKOR

10. OPTIMÁLÁSI LEHETŐSÉGEK A MŰVELET-ELEMEK TERVEZÉSEKOR 10. OPIMÁLÁSI LEHEŐSÉGEK A MŰVELE-ELEMEK ERVEZÉSEKOR A technológiai terezés ezen szintén a fő feladatok a köetkezők: a forgácsolási paraméterek meghatározása, a szerszám mozgásciklusok (üresárati, munkautak)

Részletesebben

Mikrohullámú oszcillátorok 1 31 és AM zajának mérése a kettős TE m. módon működő diszkriminátor segítségével. fí 1 (T) (4) = AfK2 D

Mikrohullámú oszcillátorok 1 31 és AM zajának mérése a kettős TE m. módon működő diszkriminátor segítségével. fí 1 (T) (4) = AfK2 D A L E K S Z A N D R D. M E N J A J L O BME Mikrohullámú Híradástechnika Tansék Mikrohullámú oscillátorok 1 31 és AM ajának mérése a kettős TE m módon működő diskriminátor segítségével ETO 021.373.029.0:021.391.822.08

Részletesebben

MECHANIKA I. - STATIKA. BSc-s hallgatók számára

MECHANIKA I. - STATIKA. BSc-s hallgatók számára ECHNK. - STTK BSc-s hllgtók sámár ECHNK. - STTK Tnkönv és jeget BSc-s hllgtók résére - - Dr. Glmbos rges echnk. Sttk tnkönv és jeget BSc-s hllgtók résére Írt és serkestette: Dr. Glmbos rges és Sándor

Részletesebben

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban Szrkztk numrikus modllzés az éítőmérnöki gakorlatban intéztigazgató hltts, tanszékvztő, őiskolai docns a Magar Éítész Kamara tagja, a Magar Mérnöki Kamara tagja a ib Nmztközi Btonszövtség Magar Tagozatának

Részletesebben

PERDÜLETES PARADOXONOK (A)VAGY: PARADOXONOK A PERDÜLETRE

PERDÜLETES PARADOXONOK (A)VAGY: PARADOXONOK A PERDÜLETRE PERDÜLETES PARADOXONOK (A)VAGY: PARADOXONOK A PERDÜLETRE Radnai Gula, Tich Géza ELTE Anagfizikai tanszék Írásunkat egkori kollégánk és idôsebb barátunk, Párkáni László (1907 1982) emlékének ajánljuk, születésének

Részletesebben

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás 4-5. előadás A jövedelem- és árváltozások hatása a fogasztói döntésre ICC és Engel-görbe, PCC és egéni keresleti függvén. A iaci keresleti görbe származtatása. A fogasztói többlet. Kereslet-rugalmassági

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

Közgazdaságtan - 3. elıadás

Közgazdaságtan - 3. elıadás Közgazdaságtan - 3. elıadás A FOGYASZTÓI DÖNTÉS TÉNYEZİI 1 A FOGYASZTÓI DÖNTÉS ELEMEI Példa: Eg személ naponta 2000 Ft jövedelmet költhet el pogácsára és szendvicsre. Melikbıl mennit tud venni? 1 db pogácsa

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

A győri vár és város makettjének megvalósíthatósága Turisztikai attrakció Készítette: Szabó Gyula okl. ép. mérn. Lokálpatrióta

A győri vár és város makettjének megvalósíthatósága Turisztikai attrakció Készítette: Szabó Gyula okl. ép. mérn. Lokálpatrióta A győri vár és város makettjének megvalósíthatósága Turistikai attrakció Késítette: Sabó Gyula okl. ép. mérn. Lokálpatrióta Előmények: A győri vár makettjének felállítására történt már kísérlet városunkban,

Részletesebben

Rákóczi híd próbaterhelése

Rákóczi híd próbaterhelése Rákóczi híd próbaterhelése Dr. Kövesdi Balázs egyetemi docens, BME Dr. Dunai László egyetemi tanár, BME Próbaterhelés célja - programja Cél: Villamos forgalom elindítása előtti teherbírás ellenőrzése helyszíni

Részletesebben

Az egyenes rudak elemi szilárdságtanának egy problémaköréről 1. rész

Az egyenes rudak elemi szilárdságtanának egy problémaköréről 1. rész Előszó Az egenes rudak elemi szilárdságtanának eg problémaköréről rész Ezt a dolgozatot sok évvel ezelőtt írtam Benne eg olan problémakör kritikai vizsgá - latára vállalkoztam melnek itthon nem vag csak

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

Tartalomjegyzék. Tartalomjegyzék... 5. 1. Bevezetés... 8

Tartalomjegyzék. Tartalomjegyzék... 5. 1. Bevezetés... 8 Tartalomjegyék Tartalomjegyék... 5. Beveetés... 8. Daruk... 9.. A daruk általános jellemése és alkalmaási területe... 9.. A daruk fajtái... 9.3. A daruk felépítése... 3 3. Darukötelek és kötélveetési rendserek...

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7. Algorimuselméle Keresőfák, piros-fekee fák Kaona Gula Y. Sámíásudománi és Információelmélei Tansék Budapesi Műsaki és Gadaságudománi Egeem. előadás Kaona Gula Y. (BME SZIT) Algorimuselméle. előadás / Keresőfák

Részletesebben

ÖSZVÉRSZERKEZETEK. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés a BME Szilárdságtani és Tartószerkezeti Tanszéken. Dr.

ÖSZVÉRSZERKEZETEK. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés a BME Szilárdságtani és Tartószerkezeti Tanszéken. Dr. Dr. Kovás Nuik ÖSZVÉRSZERKEZETEK BE Silárdságtni és Trtóserkeeti Tnséken Dr. Kovás Nuik egyetemi doens BE, Hidk és Serkeetek Tnsék BE Silárdságtni és Trtóserkeeti Tnsék 01. Trtlom Dr. Kovás Nuik 1. Beveetés...

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

1. Lineáris leképezések

1. Lineáris leképezések Lineáris leképezések A lineáris leképezés fogalma Definíció (F5 Definíció) Legenek V és W vektorterek UGYANAZON T test fölött Az A : V W lineáris leképezés, ha összegtartó, azaz v,v 2 V esetén A(v +v 2

Részletesebben

1. gyakorlat. Oktatási segédlet hallgatók számára

1. gyakorlat. Oktatási segédlet hallgatók számára másik termék mennisége. gakorlat Transzformációs görbe, mikroökonómiai optimumfeladatok megoldásának alapmódszere Oktatási segédlet hallgatók számára Eg fontos közgazdasági alapmodell TLH, alternatív költség,

Részletesebben

Hengertartozékok Dugattyúrúd-felerősítések, sorozat CM2 Gömbcsuklószemes csatlakozók. Katalógus füzetek

Hengertartozékok Dugattyúrúd-felerősítések, sorozat CM2 Gömbcsuklószemes csatlakozók. Katalógus füzetek Hengertartoékok Dugattyúrúd-felerősítések, soroat CM2 Gömbcsuklósemes csatlakoók Katalógus füetek 2 Hengertartoékok Dugattyúrúd-felerősítések, soroat CM2 Gömbcsuklósemes csatlakoók Gömbcsuklósemes fej

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Tizenharmadik, átdolgozott kiadás. Mozaik Kiadó Szeged, 2012

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Tizenharmadik, átdolgozott kiadás. Mozaik Kiadó Szeged, 2012 Kosztoláni József Kovács István Pintér Klára Urbán János Vincze István tankönv 9 Tizenharmadik, átdolgozott kiadás Mozaik Kiadó Szeged, 0 KOMBINATORIKA, HALMAZOK. Mi mit jelent a matematika nelvén? AKÁR

Részletesebben

Analízis I. jegyzet. László István. 2008. november 3.

Analízis I. jegyzet. László István. 2008. november 3. Analízis I. jegzet László István 2008. november 3. Tartalomjegzék 1. Halmazok 5 1.1. Halmaz fogalma............................ 5 1.2. Halmaz megadása........................... 6 1.2.1. Eplicit megadás.......................

Részletesebben

Matematikai összefoglaló

Matematikai összefoglaló Mtemt össefoglló Vetoro Ngon so oln mennség vn, mel nem ellemehető egetlen sámml. A len mennségre legegserű és mnden áltl ól smert péld, vlmel pontn helete téren. Amor táéoódun és eg pont heletét meg ru

Részletesebben

a. Statikus terhelés N b. Legnagyobb statikus terhelés N... Oldal 19.6...

a. Statikus terhelés N b. Legnagyobb statikus terhelés N... Oldal 19.6... 19.1-19.38 Műsaki információk 1. ISO 91 minőségbitosítás, műsaki testek.............. Oldal 19.2....... 2. Tűvédelmi besorolás.................................... Oldal 19.3-19.4.. 3. Korróió elleni védelem..................................

Részletesebben

6. A RUGALMASSÁGTAN 2D FELADATAI

6. A RUGALMASSÁGTAN 2D FELADATAI 6 A UGALMASSÁGTAN D FELADATAI A D rövidítés jelentése: két dimeniós A D feldtok köös jellemői: - két sklár elmodulásmeő különöik nullától - minden mechniki menniség két helkoordinátától függ A D feldtok

Részletesebben

ANYAGMOZGATÓ FELRAKÓGÉP TERVEZÉSI LÉPÉSEI

ANYAGMOZGATÓ FELRAKÓGÉP TERVEZÉSI LÉPÉSEI Miskolci Egetem, Multidiszciplináris tudománok, 1. kötet (2011) 1. szám, pp. 205-212. ANYAGMOZGATÓ FELRAKÓGÉP TERVEZÉSI LÉPÉSEI Vitális Csaba gépészmérnök hallgató, e-mail: v431102@gmail.com Szabó Zoltán

Részletesebben

2. FELADATOK MARÁSHOZ

2. FELADATOK MARÁSHOZ 2. ELADATOK MARÁSHOZ 2.1. orgácsolási adatok meghatároása 2.1.1. Előtolás, ogásmélység meghatároása Határoa meg a percenkénti előtolás értékét. eladat = n = 2.1.1.1. 15 = 0.15 mm 50 1/min 2.1.1.2. 12 =

Részletesebben

4. Egyéni és piaci kereslet. 4.1 Ár-ajánlati görbe (PCC)

4. Egyéni és piaci kereslet. 4.1 Ár-ajánlati görbe (PCC) 4. Egéni és iaci kereslet z előző részben megvizsgáltuk azt, hog miként határozható meg eg fogasztó otimális fogasztási szerkezete, illetve azt is elemeztük, hog eg költségvetési egenes helzetére miként

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Záró monitoring jelentés

Záró monitoring jelentés Záró monitoring jelentés (megfeleltetés és szinopszis) 13. számú fejlesztési t ÁROP-3.A.2-2013-2013-0017 projekthez Verziószám: 3.0 verzió Budapest, 2014. október 31. 1 Tartalom 1. Vezetői összefoglaló...

Részletesebben

Lézeres távolságmérés

Lézeres távolságmérés Léeres távolságmérés mérési útmutató késült: IIT MoMic labor Lassó András. September 19. Háromdimeniós látórendserek működése Általános alapelvek A ipar gyors fejlődése olyan módserek kifejlestését kívánja

Részletesebben