A végeselem módszer alapjai. 2. Alapvető elemtípusok

Save this PDF as:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A végeselem módszer alapjai. 2. Alapvető elemtípusok"

Átírás

1 A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek, héjelemek stb. felhasználásával - Az elemek leírása a hagyományos szerkezeti felosztást követi, - A megfelelő elem kiválasztását a geometria, a peremfeltételek, a terhelésmodell és az anyagmodell is befolyásolja, - Lineárisan rugalmas elemek rövid áttekintése, kis alakváltozások feltételezése mellett Rúd elem - A hosszúság sokkal nagyobb, mint a keresztirányú méretek, - Axiális (tengelyirányú) húzó és nyomó terhelés felvételére alkalmas, - Az egyes elemek csuklókon keresztül kapcsolódnak egymáshoz így nyomaték továbbítására nem alkalmasak, - A keresztmetszet és az anyagjellemzők nagysága a rúd hossza mentén állandó, - Ez az elem egyenértékű egy 1D-s rugóval (a merevség a hossztengely irányában van értelmezve), - Az elmozdulás az elemen belül lineáris függvény szerint változik, így a feszültség és az alakváltozás az elemen belül állandó, - A terheléseket a csomópontoknál kell működtetni, - A vizsgált szerkezet minden egyes rúdját egy-egy rúd elemmel modellezzük, - A számítás eredményei az elmozdulások és a rúderők.

2 2.2 Gerenda elem - A hosszúság sokkal nagyobb, mint a keresztirányú méretek, - 3D-s rúdelem esetén minden csomópontnak 6 szabadságfoka van, - Az elem alkalmas az összes alap igénybevétel felvételére: húzás/nyomás, nyírás, hajlítás (hajlító nyomaték) és csavarás (csavaró nyomaték), - Az elmozdulás elemen belüli változását harmadfokú függvény írja le (egzakt megoldást ad, ha nincs megoszló terhelés), - Ha nincs megoszló terhelés, akkor a szerkezet minden egyes rúdja egy-egy gerenda elemmel modellezzük, - Minden olyan helyen, ahol pontszerű terhelés működik vagy a modellezett rúd jellemzői megváltoznak további csomópontot kell felvenni, - input adatok: anyagjellemzők és keresztmetszeti jellemzők, - eredmények: elmozdulások (elfordulásokat is beleértve), rúdirányú és nyíró erők, csavaró nyomatékok és hajlító nyomatékok, - a feszültségek a szuperpozíció tételének felhasználásával számíthatók D-s elemek - A terhelések ugyanabban a síkban működnek, mint amiben a geometria fekszik, - Sík feszültségi állapot: ha kicsi a vastagság, - Sík alakváltozási állapot: ha a vastagság nagyon nagy, - Bármely csomópont elmozdulása két elmozdulás összetevő segítségével megadható (három alakváltozási és három feszültség komponens), - Az elmozdulás elemen belüli változását a legegyszerűbb esetben lineáris függvénnyel közelítjük (állandó alakváltozás és feszültség), - Elem alak: háromszög és négyszög, - Pontossági problémák, különösen lineáris háromszög elem esetén, - Az elemen működő megoszló terhelést egyenértékű csomóponti koncentrált erők formájában veszi figyelembe a módszer.

3 2.4. 3D-s elemek - bármilyen geometria és terhelés esetén használható, - a legegyszerűbb elem a négy csomópontos tetraéder elem (négy darab háromszög felülettel rendelkezik); pontossági problémák, finom hálóra van szükség, - a 10 csomópontos (kvadratikus) tetraéder elem sokkal pontosabb eredményt ad, - a 8 csomópontos (hat felülettel rendelkező) hexahedron elemek jobbak, mint a 4 csomópontos tetraéder elemek, - 3D-ben nagyobb modellekkel kell dolgoznunk, több az elem és a csomópont, mint 2D-ben, nagyobb a feladat megoldásához szükséges CPU idő, - Az automatikus hálógenerálás során rendszerint tetraéder elemekkel történik a diszkretizálás, - A VE modell mérete a szimmetria kihasználásával (szimmetria feltételek definiálásával) csökkenthető Tengelyszimmetrikus elemek - 3D-s tengelyszimmetrikus test modellezésére használható, - Tengelyszimmetrikus terhelések és peremfeltételek, - Széleskörű alkalmazás (pl. nyomástartó edények), - Henger koordinátarendszer alkalmazása (r, φ, z), - A megoldás független a φ-koordinátától, - Elmozdulások az r z síkban, - A matematikai háttér közel áll a 2D-s elemeknél alkalmazotthoz (két elmozdulás komponens és négy alakváltozási és feszültség komponens), - A 2D-s elemek között találhatók rendszerint ezek az elemek.

4 2.6. Lemez elem - A geometria egy adott síkban fekszik, de a terhelés a síkra merőlegesen működik, - A lemez mérete a vastagsághoz viszonyítva nagyon nagy, - 2D-s feszültségállapot, azonban a komponensek lineárisan változnak a vastagság mentén, - Ha a lemez az x-y síkban fekszik, akkor w a középfelület elmozdulását definiálja, - A geometriát a síkban értelmezett geometria és a vastagság definiálja, - A héjelemnél alkalmazott matematikai leírás kerül alkalmazásra a lemezeknél és a héjszerkezeteknél is, - Több különböző matematikai leírás létezik a lemezekre és a héjakra vonatkozóan, - A membránhatás hiányzik a lineáris lemez elméletből, - rendszerint 5 DOF (szabadságfok), a z-tengely körüli forgás hiányzik, 2.7. Héjelem - hasonló a lemez elemhez, de görbült felületek is modellezhetők vele, - a vastagság nagyon kicsi a főméretekhez képest, - a csomópontoknak minimum 3 transzlációs és 2 rotációs szabadságfoka (a felület érintősíkjában) van.

5 A

6 Számítási lépések időfüggetlen végeselem analízis esetén 1. lépés: Elem viselkedését leíró mátrixok (elem merevségi mátrix) előállítása. 2. lépés: Elemek összekapcsolása, ami magában foglalja a szerkezet szintű mátrix (szerkezeti merevségi mátrix) elem mátrixokkal történő előállítását 3. lépés: Terhelések megadása. 4. lépés: Peremfeltételek megadása. 5. lépés: Az algebrai egyenleteket tartalmazó egyenletrendszer megoldása. 6. lépés: Gradiensek számítása (alakváltozás, hőmérséklet gradiens, stb).

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre

Részletesebben

TERMÉKSZIMULÁCIÓ I. 9. elıadás

TERMÉKSZIMULÁCIÓ I. 9. elıadás TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris

Részletesebben

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22. TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek

Részletesebben

CAD technikák Mérnöki módszerek gépészeti alkalmazása

CAD technikák Mérnöki módszerek gépészeti alkalmazása Mérnöki módszerek gépészeti alkalmazása XI. előadás 2008. április 28. MI A FEM/FEA? Véges elemeken alapuló elemzési modellezés (FEM - Finite Element Modeling) és elemzés (FEA - Finite Element Analysis).

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

CONSTEEL 8 ÚJDONSÁGOK

CONSTEEL 8 ÚJDONSÁGOK CONSTEEL 8 ÚJDONSÁGOK Verzió 8.0 2013.11.20 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új szelvénykatalógusok... 2 1.2 Diafragma elem... 2 1.3 Merev test... 2 1.4 Rúdelemek

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

időpont? ütemterv számonkérés segédanyagok

időpont? ütemterv számonkérés segédanyagok időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések

Részletesebben

Cölöpcsoport elmozdulásai és méretezése

Cölöpcsoport elmozdulásai és méretezése 18. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport elmozdulásai és méretezése Program: Fájl: Cölöpcsoport Demo_manual_18.gsp A fejezet célja egy cölöpcsoport fejtömbjének elfordulásának,

Részletesebben

MUNKAGÖDÖR TERVEZÉSE

MUNKAGÖDÖR TERVEZÉSE MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. mőszaki számítások: - analitikus számítások gyorsítása, az eredmények grafikus

Részletesebben

Újdonságok 2013 Budapest

Újdonságok 2013 Budapest Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget

Részletesebben

X = 0 B x = 0. M B = A y 6 = 0. B x = 0 A y = 1000 B y = 400

X = 0 B x = 0. M B = A y 6 = 0. B x = 0 A y = 1000 B y = 400 1. feladat Számítsuk ki a bejelölt rúderőket! Az erők N-ban, a hosszak m-ben, a nyomatékok Nm-ben értendők Első lépésként határozzuk meg a kényszererőket. Az S 1 rúderő számítása: Egyensúlyi egyenletek:

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.

Részletesebben

A V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I

A V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I GÉPÉSZMÉRNÖKI, INFORMATIKAI ÉS VILLAMOSMÉRNÖKI KAR ALKALMAZOTT MECHANIKA TANSZÉK A V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

Gyakorlat 03 Keresztmetszetek II.

Gyakorlat 03 Keresztmetszetek II. Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)

Részletesebben

Csatlakozás a végeselem modulhoz SolidWorks-ben

Csatlakozás a végeselem modulhoz SolidWorks-ben Csatlakozás a végeselem modulhoz SolidWorks-ben Meglévő alkatrész vagy összeállítás modellt ellenőrizhetünk különböző terhelési esetekben a CAD rendszer végeselem moduljával ( SolidWorks Simulation ).

Részletesebben

X i = 0 F x + B x = 0. Y i = 0 A y F y + B y = 0. M A = 0 F y 3 + B y 7 = 0. B x = 200 N. B y =

X i = 0 F x + B x = 0. Y i = 0 A y F y + B y = 0. M A = 0 F y 3 + B y 7 = 0. B x = 200 N. B y = 1. feladat a = 3 m b = 4 m F = 400 N φ = 60 fok Első lépésként alkossuk meg a számítási modellt. A kényszereket helyettesítsük a bennük ébredő lehetséges erőkkel (második ábra). Az F erő felbontásával

Részletesebben

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)

Részletesebben

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2010.04.09. VASBETON ÉPÜLETEK MEREVÍTÉSE Az épületeink vízszintes terhekkel szembeni ellenállását merevítéssel biztosítjuk. A merevítés lehetséges módjai: vasbeton

Részletesebben

Járműelemek. Rugók. 1 / 27 Fólia

Járműelemek. Rugók. 1 / 27 Fólia Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

Egy háromlábú állvány feladata. 1. ábra forrása:

Egy háromlábú állvány feladata. 1. ábra forrása: 1 Egy háromlábú állvány feladata Az interneten találtuk az alábbi versenyfeladatot 1. ábra Az egyforma hosszúságú CA, CB és CD rudak a C pontban gömbcsuklóval kapcsolódnak, az A, B, D végükön sima vízszintes

Részletesebben

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. Alkalmazott előjelszabályok Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. A kényszererők számításánál a következő a szabály: Az erők iránya a pozitív

Részletesebben

HELYI TANTERV. Mechanika

HELYI TANTERV. Mechanika HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze

Részletesebben

Vizsgára felkészülést segítő kérdések Gépszerkezettan I. (AGS1) tárgyból

Vizsgára felkészülést segítő kérdések Gépszerkezettan I. (AGS1) tárgyból Vizsgára felkészülést segítő kérdések Gépszerkezettan I. (AGS1) tárgyból 1/1. Foglalja össze a VEM alapelvét, sajátosságait! - diszkretizáció, - a szerkezet kisebb méretű, szabályos elemekre bontása, -

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM Rúdszerkezet sajátfrekvenciája ÓE-A05 alap közepes haladó

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2010.03.26. KERETSZERKEZETEK A keretvázak kialakulása Kezdetben pillér-gerenda rendszerő tartószerkezeti váz XIX XX. Század új anyagok öntöttvas, vas, acél, vasbeton

Részletesebben

Hajlított tartó: feladat Beam 1D végeselemmel

Hajlított tartó: feladat Beam 1D végeselemmel Hajlított tartó: feladat Beam 1D végeselemmel A feladatlapon szereplő példa megoldása. A megoldáshoz 1 dimenziós hajlított gerendaelemeket ("beam") használunk. Verzió: 2018.10.15. (%i1) kill(all)$ Az adatok

Részletesebben

Végeselem módszer 6. gyakorlat U gerenda

Végeselem módszer 6. gyakorlat U gerenda SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 6. gyakorlat U gerenda Feladat: U-gerenda modellezése lemezszerkezetként Adott Egy U180-as profilból készült gerenda az egyik végén

Részletesebben

Rugalmasan ágyazott gerenda. Szép János

Rugalmasan ágyazott gerenda. Szép János Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai

Részletesebben

Végeselem módszer 6. feladat (kidolgozta: Bojtár Gergely) Megoldás ANSYS14.5-tel Feladat: U-gerenda modellezése lemezszerkezetként

Végeselem módszer 6. feladat (kidolgozta: Bojtár Gergely) Megoldás ANSYS14.5-tel Feladat: U-gerenda modellezése lemezszerkezetként SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 6. feladat (kidolgozta: Bojtár Gergely) Megoldás ANSYS14.5-tel Feladat: U-gerenda modellezése lemezszerkezetként Adott Egy U180-as

Részletesebben

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2012.03.11. KERETSZERKEZETEK A keretvázak kialakulása Kezdetben pillér-gerenda rendszerű tartószerkezeti váz XIX XX. Század új anyagok öntöttvas, vas, acél, vasbeton

Részletesebben

Előadás /4 2015. február 25. (szerda) 9 50 B-2 terem. Nyomatékbíró kapcsolatok

Előadás /4 2015. február 25. (szerda) 9 50 B-2 terem. Nyomatékbíró kapcsolatok Előadás /4 2015. február 25. (szerda) 9 50 B-2 terem Nyomatékbíró kapcsolatok előadó: Papp Ferenc Ph.D. Dr.habil egy. docens EN 1993-1-8 1. Bevezetés 2. A tervezés alapjai 3. Kapcsolatok (csavarozott,

Részletesebben

Tartószerkezetek modellezése

Tartószerkezetek modellezése Tartószerkezetek modellezése 5. elıadás Tervezési folyamat Szerkezetek mérete, modellje Végeselem-módszer elve, alkalmazhatósága Tervezési folyamat, együttmőködés más szakágakkal: mérnök építész mőszaki

Részletesebben

Budapesti Műszaki és Gazdaságudományi Egyetem

Budapesti Műszaki és Gazdaságudományi Egyetem Szilárdságtan példatár Járműváz- és Könnyűszerkezetek Tanszék udapesti Műszaki és Gazdaságudományi Egyetem ii iii bstract Ez a példatár elsősorban a Közlekedésmérnöki és Járműmérnöki Kar Sc hallgatóinak

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

feszültségek ábrázolása a cső vastagsága mentén sugár irányban.

feszültségek ábrázolása a cső vastagsága mentén sugár irányban. SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem analízis 4. gyakorlat (kidolgozta: Aczél Ákos egyetemi tanársegéd, Bojtár Gergely egyetemi tanársegéd) Feladat: Sík-alakváltozás (vastag

Részletesebben

Mikrocölöp alapozás ellenőrzése

Mikrocölöp alapozás ellenőrzése 36. számú mérnöki kézikönyv Frissítve: 2017. június Mikrocölöp alapozás ellenőrzése Program: Fájl: Cölöpcsoport Demo_manual_en_36.gsp Ennek a mérnöki kézikönyvnek a célja, egy mikrocölöp alapozás ellenőrzésének

Részletesebben

FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA

FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA Vértes Katalin * - Iványi Miklós ** RÖVID KIVONAT Acélszerkezeti kapcsolatok jellemzőinek (szilárdság, merevség, elfordulási képesség) meghatározása lehetséges

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 4. gyakorlat. Széchenyi István Egyetem,

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 4. gyakorlat. Széchenyi István Egyetem, Gyakorlati útmutató a Tartók statikája I. tárgyhoz Fekete Ferenc 4. gyakorlat Széchenyi István Egyetem, 0..3. . Feladat Határozza meg a képen látható tartó A támaszra vonatkozó reakcióerő hatásábráját,

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei A véges elemes analízis (Finite Element Method) alapjai Folytonos közeg (kontinuum) mechanikai állapotának leírása Egy pont mechanikai állapotjellemzıi és egyenletek

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015. Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: A01 VEM Síkbeli húzott rúd ÓE-A01 alap közepes haladó VEM

Részletesebben

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minőség, élettartam A termék minősége

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan)

Tartószerkezetek I. (Vasbeton szilárdságtan) Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.

Részletesebben

Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére

Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére Néhány példa a C3D Műszaki Tanácsadó Kft. korábbi munkáiból

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

Hajlított elemek kifordulása. Stabilitásvesztési módok

Hajlított elemek kifordulása. Stabilitásvesztési módok Hajlított elemek kifordulása Stabilitásvesztési módok Stabilitásvesztés (3.3.fejezet) Globális: Nyomott rudak kihajlása Hajlított tartók kifordulása Lemezhorpadás (lokális stabilitásvesztés): Nyomott és/vagy

Részletesebben

TANTÁRGY ADATLAP és tantárgykövetelmények Cím:

TANTÁRGY ADATLAP és tantárgykövetelmények Cím: TANTÁRGY ADATLAP és tantárgykövetelmények Cím: MECHANIKA II. (Szilárdságtan) Tárgykód: PMKSTNE143 Heti óraszám 1 : 2 ea, 4/2 gy, 0 lab Kreditpont: 7 / 5 Szak(ok)/ típus 2 : Építőmérnök BSc., Gépészmérnök

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM befogott tartó ÓE-A15 alap közepes haladó CATIA V5 CAD,

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel A. Ismertesse az anyagok tűzveszélyességi, valamint az építmények kockázati osztályba sorolását! B. Ismertesse a szerelési

Részletesebben

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI DR. FARKAS GYÖRGY Professor emeritus BME Hidak és Szerkezetek Tanszék MMK Tartószerkezeti Tagozat Szakmai továbbképzés 2017 október 2. KÁBELVEZETÉS EGYENES

Részletesebben

Végeselem analízis 6. gyakorlat (kidolgozta: Bojtár Gergely)

Végeselem analízis 6. gyakorlat (kidolgozta: Bojtár Gergely) SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem analízis 6. gyakorlat (kidolgozta: Bojtár Gergely) Feladat: Zárt, vékony falú térbeli tartó héjmodellje Adott: Térbeli tartó Nt40/40 -es

Részletesebben

Határfeszültségek alapanyag: σ H = 200 N/mm 2, σ ph = 350 N/mm 2 ; szegecs: τ H = 160 N/mm 2, σ ph = 350 N/mm 2. Egy szegecs teherbírása:

Határfeszültségek alapanyag: σ H = 200 N/mm 2, σ ph = 350 N/mm 2 ; szegecs: τ H = 160 N/mm 2, σ ph = 350 N/mm 2. Egy szegecs teherbírása: ervezze meg az L10.10.1-es szögacélpár eltolt illesztését L100.100.1-es hevederekkel és Ø1 mm-es szegecsekkel. nyagminőség: 8, szegecs: SZ. atárfeszültségek alapanyag: 00 /mm, p 50 /mm szegecs: τ 160 /mm,

Részletesebben

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI TÉMAKÖRÖK Preisz Csaba mérnök-tanár Műszaki mechanika Statikai alapfogalmak - Erőrendszer fogalma - Vektorokkal végezhető alapműveleteket (erők felbontása,

Részletesebben

Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke

Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke 1 Tartalom Méretezési alapelvek Numerikus modellezés Analízis és

Részletesebben

Vizsgára felkészülést segít_ kérdések Gépszerkezettan I. (AGS1) tárgyból. 1/1. Foglalja össze a VEM alapelvét, sajátosságait!

Vizsgára felkészülést segít_ kérdések Gépszerkezettan I. (AGS1) tárgyból. 1/1. Foglalja össze a VEM alapelvét, sajátosságait! Vizsgára felkészülést segít_ kérdések Gépszerkezettan I. (AGS1) tárgyból 1/1. Foglalja össze a VEM alapelvét, sajátosságait! - diszkretizáció, - a szerkezet kisebb méret_, szabályos elemekre bontása, -

Részletesebben

Mozgatható térlefedő szerkezetek

Mozgatható térlefedő szerkezetek Mozgatható térlefedő szerkezetek TDK Konferencia 2010 Szilárdságtani és tartószerkezeti szekció Tartalomjegyzék 1 Absztrakt 2 Bevezetés 3 Az alakzat mozgásának görbületre gyakorolt hatása 4 Teljes összenyomódás

Részletesebben

Tartalom C O N S T E E L 1 3 Ú J D O N S Á G O K

Tartalom C O N S T E E L 1 3 Ú J D O N S Á G O K Tartalom 1. Lemez CAD funkciók fejlesztése... 2 2. cspi fejlesztések... 3 3. Hidegen alakított vékonyfalú makro szelvények... 4 4. Keresztmetszet rajzoló... 5 5. Hidegen alakított keresztmetszetek ellenőrzése...

Részletesebben

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu

Részletesebben

Végeselem módszer 1. gyakorlat

Végeselem módszer 1. gyakorlat SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 1. gyakorlat (kidolgozta: Dr. Pere Balázs egyetemi docens, Szüle Veronika, egyetemi tanársegéd) Feladat: síkbeli rácsos tartó y

Részletesebben

CONSTEEL 7 ÚJDONSÁGOK

CONSTEEL 7 ÚJDONSÁGOK CONSTEEL 7 ÚJDONSÁGOK Verzió 7.0 2012.11.19 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új makró keresztmetszeti típusok... 2 1.2 Támaszok terhek egyszerű külpontos pozícionálása...

Részletesebben

Leggyakoribb fa rácsos tartó kialakítások

Leggyakoribb fa rácsos tartó kialakítások Fa rácsostartók vizsgálata 1. Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék Leggakoribb fa rácsos tartó kialakítások Változó magasságú Állandó magasságú Kis mértékben változó magasságú

Részletesebben

1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra!

1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra! 1. Határozzuk meg az alábbi tartó vasalását majd ellenőrizzük a tartót használhatósági határállapotokra! Beton: beton minőség: beton nyomószilárdságnak tervezési értéke: beton húzószilárdságának várható

Részletesebben

MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER)

MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER) MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER) MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER) Szerzők: Dr. Mankovits Tamás Huri Dávid Lektor: Dr.

Részletesebben

Rugalmas, szálerősítésű, rétegelt, vékony kompozit forgáshéjak érzékenységi vizsgálata és alakoptimalizálása

Rugalmas, szálerősítésű, rétegelt, vékony kompozit forgáshéjak érzékenységi vizsgálata és alakoptimalizálása MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR Rugalmas, szálerősítésű, rétegelt, vékony kompozit forgáshéjak érzékenységi vizsgálata és alakoptimalizálása Ph.D. ÉRTEKEZÉS TÉZISEI Készítette: Csonka Béla okleveles

Részletesebben

Magasépítési öszvérfödémek numerikus szimuláció alapú méretezése

Magasépítési öszvérfödémek numerikus szimuláció alapú méretezése BME Hidak és Szerkezetek Tanszéke Magasépítési öszvérfödémek numerikus szimuláció alapú méretezése Seres Noémi DEVSOG Témavezetı: Dr. Dunai László Bevezetés Az elıadás témája öszvérfödémek együttdolgoztató

Részletesebben

203 00 00 00 Szerkezettan

203 00 00 00 Szerkezettan 1. oldal 1. 100870 203 00 00 00 Szerkezettan A faanyagokat környezeti hatások nem károsítják, nem igényelnek kezelést. 2. 100871 203 00 00 00 Szerkezettan A szálerõsítésû mûanyagok nagy szilárdságú szálakból

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 1621 ÉRETTSÉGI VIZSGA 2016. október 17. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok Dr. Szalai József Főiskolai adjunktus Tartalom Acélszerkezetek kapcsolatai Csavarozott kapcsolatok kialakítása Csavarozott kapcsolatok

Részletesebben

Számítógépes geometria (mester kurzus)

Számítógépes geometria (mester kurzus) 2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)

Részletesebben

Egy érdekes mechanikai feladat

Egy érdekes mechanikai feladat 1 Egy érdekes mechanikai feladat 1. ábra forrása: [ 1 ] A feladat Az 1. ábra szerinti rudazat A csomópontján átvezettek egy kötelet, melynek alsó végén egy m tömegű golyó lóg. A rudak egyező nyúlási merevsége

Részletesebben

Tartószerkezetek modellezése

Tartószerkezetek modellezése Tartószerkezetek modellezése 15. elıadás Kötél- és ponyvaszerkezetek Kötelek: Acél sodronykötél. Kötélszerkezetek acél sodronykötél: Elıny: - nagy szilárdság, - aránylag olcsó, - tetszıleges hosszban gyártható.

Részletesebben

XVII. econ Konferencia és ANSYS Felhasználói Találkozó

XVII. econ Konferencia és ANSYS Felhasználói Találkozó XVII. econ Konferencia és ANSYS Felhasználói Találkozó Hazay Máté, Bakos Bernadett, Bojtár Imre hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája

Részletesebben

FELADAT LEÍRÁSA MEGOLDÁS ANSYS-BAN

FELADAT LEÍRÁSA MEGOLDÁS ANSYS-BAN FELADAT LEÍRÁSA Határozzuk meg az alábbi ábrán látható tartó reakcióit, súlypontvonalának eltolódását ANSYS végeselemes szoftver használatával 2, illetve 3 gerendaelem alkalmazásával. Hasonlítsuk össze

Részletesebben

Toronymerevítık mechanikai szempontból

Toronymerevítık mechanikai szempontból Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját

Részletesebben

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6. statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek

Részletesebben

Végeselem módszer 2. gyakorlat

Végeselem módszer 2. gyakorlat 4,5 mm SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 2. gyakorlat (kidolgozta: Aczél Ákos egyetemi tanársegéd, Szüle Veronika egyetemi tanársegéd) Feladat: síkbeli törtvonalú

Részletesebben