XXIV. ERDÉLYI MAGYAR MATEMATIKAVERSENY Megyei szakasz, november 30. IX. osztály
|
|
- Irén Barna
- 8 évvel ezelőtt
- Látták:
Átírás
1 XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember. IX. ostály. Feldt Sbdo egedü 4 pllgót egy tégltest lú helységbe melye mérete 5 m 4 m m. Boyítsu be hogy bármely plltb léte ét oly pllgó melye távolság 8 m-él sebb. helység térfogt 4 m. Ossu fel helységet 4 drb m térfogtú ocár és tetsü pllgót potserűe. Mde pllgó trtoo hho ocáho melybe trtóod. stuly elv lpjá eor les leglább egy oly oc melyhe ét pllgó trtó. Eor ét pllgó távolság sebb mt 8 m mvel m élhossúságú oc testátlój 7 m hossú.. Feldt Igold hogy y potív sámor teljesül lább egyelőtleség: y y y y Mtlp 8/ y Felírju sámt és mért öepe öött egyelőtleséget potív sámor. y y y y y y y Hsoló pju hogy y y y és y y y három egyelőtleséget össedv megpju ért össefüggést. egyelőség or és cs or áll fe h y y y.. Feldt BC háromsögbe legye H mgsságpot O örülírt ör öéppotj G súlypot pot átmérőse elletett potj. Boyítsu be hogy ) H H HO b) H G O poto egy egyeese helyeede el ) H HO O és H HO O Össedju ét fejeést és fgyelembe véve hogy össefüggést H H HO O O O pju ért
2 XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember. HG H HB HC b) Igolju hogy HO Ebből övete hogy H G és O poto olleárs vlmt OH 4. Feldt BCD ove égysögbe legye C BD O ) Igold hogy OB BOC COD DO háromsöge súlypotj egy prlelogrmm csúcspotj. b) O prlelogrmm átló metséspotj or és css or h O OB OC OD O ) Legye G 4 redre OB BOC COD DO háromsöge súlypotj. or O OB OB OC OG OG OG OC OD OG 4 OD O Kvov első ét és mjd utolsó ét össefüggést pju hogy G G G G vgys 4 G G G egy prlelogrmm. G 4 b)o G G G G prlelogrmm átló metséspotj 4 OG OG OG OG O OB OC OD O Feldt ) Oldd meg egyeletet b) Htárod meg y vlós sámot melye teljesít feltételt: y y 6 ) Ésrevehető hogy Z H or egyelet lú megoldás tehát H or egyelet lú megoldás tehát egyelet megoldás. b) Legye y b y c. Ésrevehető hogy b 6 c egyelet pedg b b 6 6 vgys b b 6 Tehát y 4 R. lú melye megoldás b OG X. ostály. Igold öveteő egyelőtleséget: b c b c c b b c. 4
3 XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember.. Oldd meg öveteő egyeletredsert: y y y sám törtrése. hol sám egésrése ( Mtlp 6 ). ) H C omple sámo eseté or gold hogy: Z= R. b) H C és gold hogy:. 4. Egy ostályb bármely ét gyere jár öös sörbe de mde legfeljebb ét söre tgj. Bíoyítsd be hogy v oly sör hov ostály leglább éthrmd rése jár. ( Mtlp 6 ) X. ostály Megoldáso :. Ésrevehető hogy m mg egyelőtleség lpjá: b c b c b c b c b c 4 b c 4 b c stb.....h egyeleteet () () lletve ()-ml jelöljü : ()+()-() y Z y Z y. () () y ;;; y Tehát :. ) Z... Z Z R b) egyelőtleség bl oldl így írhtó : y... Mde tuló sör tg sőt öös örre jár vl mássl. Másrést h vl cs egy sörbe jár mde tgj el legye és ebbe esetbe teljesül feltétel. H cs oly tuló cs egy sörre jár or mde leglább ét örre jár de feldt jeletése lpjá legfeebb ettőre ee sert potos ét örre.
4 XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember. Tetsü egy gyereet jár ét S S sörre h ostály mde tulój eere öröre jár állítás g. H em or létee g S g S és g S g S léte egy S ör melybe együtt jár. Bármely más g gyere eseté öveteő log lehetősége v: g S g S g más sörbe em jár. g S g S g S mert cs így lehet g vel öös örbe stb. Tehát mde tuló e három örből v beírtov ettőbe e össese tuló sámá étserese tehát vlmely csoportb ott les tuló leglább éthrmd. I. feldt (p) lmlog XI.ostály.) Sámítsd.) dott vlós sámsorot úgy hogy Legye hol sám törtrését jelöl. ) Igold hogy sorot overges és sámítsd htárértéét b) Sámítsd lm... h II.feldt (p) M R mátr. ) Sámítsd y sortot( y R ) vlmt N R. b) Egy lpr felírju... mátrot. Egy llomml letörölü ét mátrot és helyübe sortut írju fel. műveletet ddg smételjü mg cs egy mátr les lpuo. Mely mátr les? III.feldt (p) Oldju meg vlós sámo hlmá y 4y egyeletredsert Mtlp IV.feldt (p) Egy lépcső úgy ell felme hogy egy-egy lépéssel egy vgy ét lépcsőfoot lehet lép. ) Háyféleéppe lehet feljut ted lépcsőfor? b) Mely lépcsőfo melyre leglább 6 féleépp lehet feljut? c) Két emelet öött lépcsőfo v. Leglább háy gyere ell felmeje hho hogy btos legye ét oly gyere ugyor lépcsőfoor lépte mg egy emeletről másr felérte.
5 XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember. Mde tétel öteleő. Mudő ór. So sert!.feldt lmlog jelöl. Sámtsd Megoldás : Jelölje lm f ért htárértéet hol sám törtrését f tehát f f lm f lm log lm log m l l m l lm m lm m m l m m l m hol m. feldt. dott vlós sámsorot úgy hogy. Igold hogy sorot overges és sámítsd htárértéét b. Sámítsd lm... h. Megoldás tehát sorot.) Mtemt ducóvl b. hogy orlátos N tehát sorot sgorú csöeő. Mvel mooto és orlátos overges l R : lm lm l reurób htárértére térve pju hogy lm b.) II. feldt (p) lm lm
6 XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember. Legye R M mtr..sámtsu y sortot vlmt N b.egy lpr felrju... mátrot. Egy llomml letörölü ét mátrot és helyübe sortut rju fel. műveletet ddg smételjü mg cs egy mátr les lpuo. Mely mátr les _? Megoldás. boytás mtemt ducóvl mátro sorás ssoctv művelet. R tehát lpo mrdt mátr III.feldt (p) Oldju meg vlós sámo hlmá 4 y y egyeletredsert Megoldás Legye R y s cos cos cos 4s cos s másod egyelet Z 4 s 4 cos s Z 4 Z 8 tehát megoldás s cos y IV.feldt Egy lépcső úgy ell felme hogy egy-egy lépéssel egy vgy ét lépcsőfoot lehet lép..) Háyféleéppe lehet feljut ted lépcsőfor? b.) Mely lépcsőfo melyre leglább 5 féleépp lehet feljut? c.) Két emelet öött lépcsőfo v. Leglább háy gyere ell felmeje hho hogy btos legye ét oly gyere ugyor lépcsőfoor lépte mg egy emeletről másr felérte. Megoldás.. első lépcsőfor másodr étféleéppe lehet felme többre pedg ét előtte levőről lehet fellép vgys yféleéppe mey előő ét lehetőség össege. E egy Fbocc sorot tgjt dj tehát tgj
7 XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember vgys 89 lehetőség. for mjd folyttás b. 4. lépcsőfor 6 féleépp lehet felme de. r cs 77 c.. lépcsőfor féleépp lehet metehát 4 gyere ell felmeje hho hogy leglább ettő ugyor lépcsőre lépje. XII. ostály. Feldt dott f : E R f rcs függvéy. ) Htárou meg függvéy mmáls értelmeés trtomáyát. b) Igolju hogy f függvéy prmtválhtó mmáls értelmeés trtomáyo és htárou meg egy prmtv függvéyét. Megoldás: ) Mvel R E R.(p) b) f függvéy folytoos függvéye össetett függvéye tehát f folytoos R -e f prmtválhtó R -e f h.(p) H f egy prmtv függvéyée lább lj v: rcs l F rcs l C rcs l C F függvéy folytooságából pju hogy C l és C (p) or f d rcs d rcs l C Hsoló htárou meg prmtv függvéyt h lletve. Feldt Legye F : R R egy oly prmtv függvéye f : R R függvéye melyre f F 4 R Tudv hogy f. htárou meg f függvéyt. Megoldás: 4 f F 4 Legye R f F 4 R és f F 4 R (p) vov (p)össefüggéseet övete. (4p)
8 XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember. f F f F R F F tehát F F R (p) legye f F és F F össefüggésből tehát F F ho F tehát F f F f f 4 F e. Feldt Legye C (p) 4 és Q b bq. (p) ho ) Igolju hogy bármely em ull Q -bel elem vere s Q b) Igolju hogy M b b bz éve. -b v. hlm árt réshlm Z -e sorásr Megoldás: Mtlp ) Legye b Q b b. Keressü t b Q sámot melyre b b.(p) Mvel eért. bb Így egyeletedserhe jutu. (p) b b b b Mvel b b h egydőbe eért redsere b eseté b b egyértelmű megoldás v. Tehát b vertálhtó bármely b eseté. (p) b) Ésrevehető hogy b b b b. (p) Így b b c cd d b b c d c d b c d b c d m m m m m m (p)hol m c bd Z és d bc bd Z.(p) Tehát M árt réshlm Z -e sorásr éve. 4. Feldt Egy egység oldlú égyet belsejébe elhelyetü éháy sst (ee metshet s egymást) melye hoss össege 5 egység. ) Mutssu hogy v oly egyees mely leglább 5 sst mets. b) Igolju hogy v oly egyees mely legfeebb 5 sst mets. Megoldás:
9 XXIV. ERDÉLYI MGYR MTEMTIKVERSENY Megye ss. ovember. ) égyetbe írt ssot jelöljü s -vel s ss hossát h -vel h tehát 5. s ssot égyet somsédos oldlr vettjü B oldlr eső vetülete hoss legye b D oldlr eső vetülete hoss d. háromsöge oldlr votoó egyelőtlesége lpjá felírhtó hogy h b 5 d. b lletve h b d (p) tehát d össege öül egy gyobb vgy egyelő mt 5. H b 5 or B ss v oly potj melybe leglább 5 ss vetületébe megtlálhtó. Egy lye potb húott D-vel párhumos egyees leglább 5 sst mets. (p) ) h b d b d b d hogy h egyelőtleségeet pu hogy felhsálv sámt és égyetes öép öött egyelőtleség pju h b b d b d (p). Össedv 5 d össege öül egy sebb mt H b 5 or B ss v oly potj melybe legfeebb 5 ss vetületébe megtlálhtó. Egy lye potb húott D-vel párhumos egyees legfeebb 5 sst mets. (p)
9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet!
HANCSÓK KÁLMÁN MEGYEI MAEMAIKAVERSENY MEZŐKÖVESD Sóeli feldto és megoldáso ostál ) Oldju meg vlós sámhármso hlmán öveteő egenletet! ( pont) A egenlet l oldlát átlíthtju öveteőéppen: A l oldl egi tgj sem
RészletesebbenValószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
RészletesebbenACTA CAROLUS ROBERTUS
ACTA CAROLUS ROBERTUS Károly Róbert Főisol tudomáyos özleméyei Alpítv: ( ACTA CAROLUS ROBERTUS ( Mtemti szeció AZ INTEGRÁLSZÁMÍTÁS OKTATÁSÁRÓL KÖRTESI PÉTER Összefogllás A htározott itegrál értelmezése
RészletesebbenOlimpiai szakkör, Dobos Sándor 2008/2009
Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly
RészletesebbenKardos Montágh verseny Feladatok
Krdos Motágh versey Feldtok Az ABC háromszög hozzáírt köreiek középpotji O, P, Q, beírt köréek középpotj K Melyik állítás igz z lábbik közül? K z OPQ háromszög A) súlypotj B) mgsságpotj C) szögfelezőiek
RészletesebbenSíkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése
íbel culó zeezete egyeúlyozáá éáy édée íbel culó zeezete egyeúlyozáá éáy édée DR BENKŐJÁNO gátudoáy Egyete Gödöllő Mg Gépt Itézet gyoozgáú gépzeezete tevezéée foto lépée z egyelete, ezgéete üzeet bztoító
Részletesebben44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6
9 évfolm HNCSÓK KÁLMÁN MEGYEI MTEMTIKVERSENY MEZŐKÖVESD 5 Szóbeli feldto megoldási ) dju meg zot z egész értéeet mele mellett z 6 6 Z 6 6 6 6 is egész szám! pot 6 6 6 pot mide egész -re pártl íg or lesz
RészletesebbenV. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL
86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )
Részletesebbenmateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2
Nevezetes zoosságok: mteksoft.hu ( + ) + + ( x + ) x + 6 x + 9 ( x + y) 4x + 1xy + 9y ( ) + ( x ) x 6 x + 9 ( x y) 4x 1xy + 9y ( + + c) + + c + + c + c ( x + y + ) x + y + 4 + xy + 4x + 4y Htváyozás zoossági
RészletesebbenEmelt szintő érettségi tételek. 10. tétel Számsorozatok
Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.
RészletesebbenVIII. FEJEZET ÖSSZEFOGLALÓ FELADATOK
Össefoglaló feladato 7 VIII FEJEZET ÖSSZEFOGLALÓ FELADATOK VIII Verseyre előésítő feladato Két samitás, 6060 illetve 8080-cm agyságú sőyegdarab (mide meő 00 cm agyságú) segítségével le ell fedi egy 0000
Részletesebben19. Függvények rekurzív megadása, a mester módszer
19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.
Részletesebbenn természetes szám esetén. Kovács Béla, Szatmárnémeti
osztály Igzolju, hogy 3 < ármely természetes szám eseté Kovács Bél, Sztmárémeti Az összeg egy tetszőleges tgj: Ezt ővítjü és lítju úgy, hogy felothssu ét tört összegére ) )( ( ) ( ) )( ( ) )( ( ) )( (
RészletesebbenA Sturm-módszer és alkalmazása
A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle
RészletesebbenIX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN
4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z
Részletesebben(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.
Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N
RészletesebbenNevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét
Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Nevezetes középértékek megjeleése külöböző feldtokb Vrg József, Kecskemét Hrmic éves tári pályámo sokszor tpsztltm, hogy tehetséges tulók
RészletesebbenIV. RADÓ FERENC EMLÉKVERSENY Kolozsvár, június 3. MEGOLDÁSOK. V. osztály
Kolosvár, júius MEGOLDÁSOK V ostály Htárod meg 999 999 sort sámjegyeiek össegét! 999 d 9es feldteli sort követkeőképpe írhtó fel: 999 999 999 999 999 999 d 9es H e kivoást ismert lgoritmussl elvégeük kpjuk:
RészletesebbenEUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei
Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők
RészletesebbenSchultz János: Algebrai egyenlőtlenségek, Megoldások
FELADAT ALGEBRAI EGYENLŐTLENSÉGEKRE Veges feldto ülööő megoldási módserere MEGOLDÁSOK ) Vegü ésre hog íg!! 006 007!!!! ( )!!!! 006! 007! 007! < ) Vegü ésre hog ( ) eért ioítdó egelőtleség l oldlá álló
RészletesebbenMegoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra
. Adott z =, =,3, + 3 soozt. Számíts ki lim 3 htáétéket. Megoldás: Előszö lkítsuk át z k kifejezést: k = + k 3 = k3 k 3 + = (k (k + k + (k + (k k + = k k + k + k + k k +, k =,3, Ez lpjá z szozt átíhtó
RészletesebbenV. Koordinátageometria
oordinátgeometri Szkszt dott rányn osztó pont súlypont koordinátái 6 6 6 ) xf + 9 yf + N 7 N F 9 i ) 7 O c) O N d) O c N e) O O 6 6 + 8 B( 8) 7 N 5 N N N 6 A B C O O O BA( 6) A B BA A B O $ BA A B Hsonlón
RészletesebbenII. Valós számsorozatok
Vlós számsorozto 5 Értelmezés Az f : II Vlós számsorozto és f : \ {,,,, } típusú függvéyeet ( ) vlós számsorozt evezzü Értelmezés Az f : sorozt -edi tgjá vgy áltláos tgjá evezzü z f ( ) vlós számot, és
RészletesebbenI. Sorozatok. I.1. Sorozatok megadása
Mgyr Zsolt: Alízis özépisoláb I Sorozto oldl Def A pozitív egész számo hlmzá értelmezett számértéű függvéyeet sorozto evezzü Megjegyzés: Egyes tárgylási módob éyelmességi szempotból em N R függvéyeről,
Részletesebben1. Hibaszámítás Hibaforrások A gépi számok
Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi
RészletesebbenLineáris programozás
Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek
RészletesebbenHatványozás és négyzetgyök. Másodfokú egyenletek
Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x
RészletesebbenMatematikai összefoglaló
Mtemt össefoglló Vetoro Ngon so oln mennség vn, mel nem ellemehető egetlen sámml. A len mennségre legegserű és mnden áltl ól smert péld, vlmel pontn helete téren. Amor táéoódun és eg pont heletét meg ru
Részletesebben823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.
Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (
RészletesebbenSzoldatics József, Dunakeszi
Kstérség tehetséggodozás Rekurzív soroztok Szoldtcs József, Dukesz Npjkb egyre több verseye jelek meg rekurzív sorozt. Ezek megoldásához d ötleteket ez z elődás, A feldtok csoportosítv vk megoldás módszerek
Részletesebben2. ALGEBRA ÉS SZÁMELMÉLET
Szkközépiskol 9. osztály Felkészülési jvslt jvítóvizsgár Véges, végtele, üres hlmz oglm Két hlmz egyelősége Részhlmz, vlódi részhlmz oglm Uiverzum, komplemeterhlmz Hlmzműveletek (uió, metszet, külöbség)
Részletesebben11. KVADRATIKUS FORMÁK
. KVDRTIKUS FORMÁK bleás leépezéseel ogllozó előző ejezet észítette elő vdtus omá vgy más elevezéssel vdtus lo vzsgáltát. vdtus omá mtemt számos teületé yee llmzást. geometáb például vdtus omá másodedű
Részletesebben(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---
A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris
Részletesebben1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
Részletesebben9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA
9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.
Részletesebbeng x ugyanabba az halmazba kerüljön mint különböző módon tehetjük meg. A feladat állítása alapján igazolnunk kell, hogy ( ) n m m
A itűzött feldto megoldási X osztály 47 g ugybb z hlmzb erüljö mit figyelembe veü, hogy ( H -vel jelöljü z elemeie számát, or ezt j A j ülöböző módo tehetjü meg A feldt állítás lpjá igzolu ell, hogy m
RészletesebbenF.I.1. Vektorok és vektorműveletek
FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg
RészletesebbenMatematika A1 vizsga elméleti kérdések
Mtemtik A1 vizsg elméleti kérdések Deiíciók Forrás: Szirmi Jeő elődásvázltok, Szász Gáor: Mtemtik 1. tköyv Gépre vitte: Atli Máté 1. Peo-xiómák A természetes számok hlmzát N Peo-xiómák segítségével deiiáljuk.
RészletesebbenXXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály
Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 016. február 11
RészletesebbenBodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak
ábr: Ábr Bodó Be, Simoé Szbó Klár Mtemtik. közgzdászokk IV. modul: Számsoroztok 8. lecke: Számsorozt foglm és tuljdosági Tulási cél: A számsorozt foglmák és elemi tuljdoságik megismerése. A mootoitás,
RészletesebbenA pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata
6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az
RészletesebbenMinta feladatsor I. rész
Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!
RészletesebbenSzerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév
Sersámgépe 5. előadás. Márcis. Sersámg mgépe 5. előad adás Misolc - Egyetemváros /.félév Sersámgépe 5. előadás. Márcis. A sabályohatósági tartomáy övelésée módserei Előetes megfotoláso: S mi mi M S φ,
Részletesebben1. Komplex szám rendje
1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,
RészletesebbenDr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?
Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége
RészletesebbenTARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...
TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT
RészletesebbenX. Székely Mikó Matematikaverseny 1. Beszámoló a X. Székely Mikó Matematikaversenyről
X Széely Mió Mtetiversey Beszáoló X Széely Mió Mtetiverseyről február 8 és özt erült sor X Széely Mió Mtetiversey egredezésére A versey csíszeredi Márto Áro Giáziub zjlott, 8 diá és 5 tár részvételével
RészletesebbenAzonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága
Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba
RészletesebbenOrosz Gyula: Külföldi középiskolai matematikai versenyek. Elemi algebra 1. értékét, ha x, y pozitív valós számok és x 2 + y 2 = 6xy.
Orosz Gyul: Külöldi középiskoli mtemtiki verseyek Elemi lgebr. A.. Mcedói, 00, 9. év. I. ord. Htározzuk meg y y értékét, h, y pozitív vlós számok és y = 6y. A.. Horvátország, 00, regioális versey, 0. év.
RészletesebbenMőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK
Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.
Részletesebben286 Versenyre előkészítő feladatok VIII. FEJEZET. ÖSSZEFOGLALÓ FELADATOK VIII.1. Versenyre előkészítő feladatok (337. oldal)
86 Verseyre előészítő feladato VIII FEJEZET ÖSSZEFOGLALÓ FELADATOK VIII Verseyre előészítő feladato (7 oldal) Két samtás, 66 lletve 88-cm agyságú szőyegdarab (mde mező cm agyságú) segítségével le ell fed
RészletesebbenGyakorló feladatsor 11. osztály
Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy
RészletesebbenALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
RészletesebbenSOROZATOK. Körtesi Péter
SOROZATOK Körtesi Péter. Fejezet. Foglm ismétlése. Ez fejezet soroztoról szól. Ajálju, hogy tuló Sorozto I. szitű pszodót tulmáyozz, melybe főét Számti, Mérti és Hrmoius Hldváyot ismerheti meg. Az lábbib
RészletesebbenDebreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
RészletesebbenANALÍZIS I. (MT1301L, MT4301L, MT1301) Előadást követő vázlatok. Dr. Rozgonyi Tibor főiskolai docens
ANALÍZIS I (MT3L, MT43L, MT3) Elődást övető vázlto Dr Rozgo Tor ősol doces Néhá evezetes egelőtleség Beroull-éle egelőtleség H R és ℵ, or ( ) Az egelőség or és css or áll e, h vg Bzoítás: h ( )( ) ( )
RészletesebbenFELADATOK A KALKULUS C. TÁRGYHOZ
FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy
Részletesebben= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05
Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em
RészletesebbenS ( ) függvényre. . Az 1), 3) feltételekbõl a feltételek száma : ( l + 1) n ( l 1)
INE o egye [ ] IR I [ ] ( : és < < < z tervllum egy elosztás Deíó: Az :[ ] IR üggvéyt l eoú sple- evezzü C ( l I l Iterpoláós sple- evezzü egy ( : [ ] IR üggvéyre ( ( egjegyzés: Cs terpoláós sple-l ogu
RészletesebbenIV. A HATÁROZOTT INTEGRÁL
86 A htározott itegrál IV A HATÁROZOTT INTEGRÁL Bevezető feldto Feldt Számítsu i z f :, [ ], f függvéy grfius épe, z, és z O tegely áltl htárolt síidom területét Megoldás Árázolju függvéyt A XI y osztály
RészletesebbenA + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )
Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és
RészletesebbenV. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
RészletesebbenGyakorló feladatsor 9. osztály
Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n
RészletesebbenHeves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)
Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei
RészletesebbenLineáris egyenlet. Lineáris egyenletrendszer. algebrai egyenlet konstansok és első fokú ismeretlenek pl.: egyenes egyenlete
Lieáris egyelet algebrai egyelet kostasok és első fokú ismeretleek pl.: egyees egyelete Lieáris egyeletredser y a b lieáris egyeletek csoportja ugya ao a váltoó halmao Lieáris egyeletredser B b B b B b
RészletesebbenA G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:
Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai
RészletesebbenA térbeli szabad vektorok V halmaza a vektorok összeadására, és a skalárral való szorzásra vonatkozóan egy háromdimenziós vektorteret alkot.
1. fejezet Vetoro 1.1. Vetorlulus i j jobbsodrású ortoormált bázist, mely egy O ez- A térbeli szbd vetoro V hlmz vetoro összedásár, és slárrl vló szorzásr votozó egy háromdimeziós vetorteret lot. Gyr hszálju
RészletesebbenVektoralgebra feladatlap 2018 január 20.
1. Adott az ABCD tetraéder, határozzuk meg: a) AB + BD + DC b) AD + CB + DC c) AB + BC + DA + CD Vektoralgebra feladatlap 018 január 0.. Adott az ABCD tetraéder. Igazoljuk, hogy AD + BC = BD + AC, majd
RészletesebbenA lᔗ卧 ᔗ卧 s l ok l pj h f él om s k s és, v g m s s v l ᔗ卧kö p lés g ol ol g om f l, m l síkm s és g képsíko k ll vég h j s l ok s v l. A m g o s vo l
ᔗ卧 ), 2012 A f él om s k s és ol g om g po os s l ok l pj lé ho o ᔗ卧fo m m gs k s ésé j l ví s s, f lül é ) o. K ul ké ᔗ卧 s vo l sm jük, m s fo m c cs s ükség. hh cs k k ll l, hog ᔗ卧 f lül é m l ᔗ卧h jl
RészletesebbenMegjegyzés: Amint már előbb is említettük, a komplex számok
1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy
RészletesebbenVersenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.
Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy
Részletesebben1. Algebra x. x + értéke? x
Alger I Feldtok Bonts fel két 0-nél ngo sám sortár követkeő sámokt: ) ) ) d) e) f) g) h) i) j) k) Alkíts lson foksámú polinomok sortává lái polinomokt: ) i) ) j) 7 ) k) d) l) 0 6 e) m) 0 6 f) n) g) o)
Részletesebben1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b
XVII ERDÉLYI MAGYAR MATEMATIKAVERSENY CSÍKSZEREDA 007 FEBRUÁR 8- NAP 9 OSZTÁLY Igzoljuk, hogy mide * \ {} eseté 5 ( ) Lckó József, Csíkszered Az b,, b számok eseté htározzuk meg z Ex ( ) x b x kifejezés
RészletesebbenA Secretary problem. Optimális választás megtalálása.
A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra
RészletesebbenOrosz Gyula: Külföldi középiskolai matematikai versenyek. Elemi algebra 1. útmutatások. x arányt, vagy
Elem lgebr. útmuttások A.. Négyzetre emeléssel szmmetrkussá tehetjük törtet. Más megoldás lehetőségek: A homogé másodfokú egyeletből megkphtjuk z y ráyt, vgy lklmzhtuk prméterezést: + y y = p prméterezéssel
RészletesebbenKészségszint-mérés és - fejlesztés a matematika kompetencia területén
Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő
RészletesebbenHáromszög n egyenlő területű szakaszra osztása, számítással és szerkesztéssel. Bevezetés
Háromszög egyelő területű szkszr osztás, számítássl és szerkesztéssel Bevezetés Az építészet szkrodlomb elég gykr előfordul címbel feldt, főleg kötőelemek kosztáskor. Ezek lehetek szegek, csvrok, betétek,
RészletesebbenI. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK
Sorozto, számti és mérti hldváyo 5 I FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK 7 Gyorlto és feldto ( oldl) Vjo milye törvéyszerűség lpjá épeztü z lábbi soroztot? Az áltld tlált szbályszerűség
RészletesebbenA Gauss elimináció ... ... ... ... M [ ]...
A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer
RészletesebbenMetrikus terek. továbbra is.
Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d
RészletesebbenXXVI. Erdélyi Magyar Matematikaverseny Zilah, február
Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 06. február 4..
RészletesebbenExponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
RészletesebbenII. ALGEBRA ÉS SZÁMELMÉLET
MATEMATIKA FELADATSOR 9. évolym Elézést tegezésért! I. HALMAZOK Számegyeesek, itervllumok. Töltsd ki táláztot! Mide sor egy-egy itervllum hároméle megdás szerepelje!. Add meg következő itervllumokt! A
Részletesebben26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007
6 Győri Istvá, Hartug Ferec: MA4f és MA66a előadásjegyet, 006/007. A -trasformált.. Egy iformációátviteli probléma Legye adott egy üeetátviteli redserük, amelybe a üeeteket két alapjel modjuk a és b segítségével
RészletesebbenMATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
Részletesebbenb) A tartó szilárdsági méretezése: M
ZÉCHENY TVÁN EGYETEM LKLMZOTT MECHNK TNZÉK 5 MECHNK-ZLÁRDÁGTN GYKORLT (kidogot: dr Ng Zotá eg djuktus; ojtár Gerge eg Ts; Tri Gábor méröktár) 5 Rúdserkeet siárdságti méreteése: d kn kn kn m m m dott: kn
RészletesebbenKözépiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.
Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L
RészletesebbenFEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL
FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL SZAKDOLGOZAT Készítette: Kovács Blázs Mtet BSc, tár szrá Tévezető: dr Wtsche Gergel, djutus ELTE TTK, Mtettítás és Módszert Közot Eötvös Lorád Tudoáegete Terészettudoá
RészletesebbenLineáris programozás
LP LP 2 Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek egységár és z, hogy z egyes termékek egy egységéek előállításához
Részletesebben15. Többváltozós függvények differenciálszámítása
5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =
RészletesebbenA feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát.
Oros Gyula, 00. november Emelt sintű érettségi feladatsor Össeállította: Oros Gyula; dátum: 00. október A feladatsorok össeállításánál felhasnáltuk a Nemeti Tankönyvkiadó RT. Gyakorló és érettségire felkésítő
Részletesebbenn -adik hatványa ahol n q és c n Ekkor szeretnénk, ha a < a < a is teljesülne. (Így majd az exponenciális függvény monoton marad.
Mgr Eszter Emelt szitő érettségi tétele 6. tétel: A ritmus, z epoeciális és ritmusfüggvé és tuljdosági A htváozás iterjesztése: ) Törtitevıjő htváo Eg pozitív vlós szám htváá -di göe. Azz: -di htvá hol
RészletesebbenANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2
ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i
RészletesebbenII. Lineáris egyenletrendszerek megoldása
Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek
RészletesebbenFELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
Részletesebben( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FELADATOK Taylor- (Maclaurin-) sorok, hibabecslés
FELADATOK Taylor- (Maclauri- soro, hibabecslés Határozzu meg az e üggvéy -örüli Taylor-sorát! Adju meg a hatváysor overgecia sugarát, ill. overgecia halmazát! Számítsu i a deriváltaat a -helye: e, e, e,
RészletesebbenFtéstechnika I. Példatár
éecha I. Példaár 8 BME Épülegépéze azé éecha I. példaár aralojegyzé. Ha özeoglaló... 3.. Hvezeé...3.. Háadá....3. Hugárzá...6.. Háoáá....5. Szgeel axál hleadáához arozó ül áér....6. Bordázo vezeé.... Sugárzá...5.
RészletesebbenMérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
RészletesebbenMatematikai összefoglaló
Mtemt össefolló etoro Non so oln mennsé vn, mel nem ellemehető eetlen sámml. len mennsére leeserű és mnden áltl ól smert péld, vlmel pontn helete téren. mor táéoódun és e pont heletét me ru htáron, or
Részletesebbenx + 3 sorozat első hat tagját, ha
Soroztok, soroztok megdás rekurzív módo.. Az ( ) soroztot rekurzív módo dtuk meg 7 -, sorozt első két tgj ( < ) egybe gyökei következő egyeletek: sorozt első öt tgját. y.adott ( ). Írd fel ( ) x 0 x. Htározd
Részletesebben