Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét"

Átírás

1 Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Nevezetes középértékek megjeleése külöböző feldtokb Vrg József, Kecskemét Hrmic éves tári pályámo sokszor tpsztltm, hogy tehetséges tulók közül zok dolgozk eredméyesebbe, kik feldtot, problémát, h szükséges át tudják foglmzi. A feldtmegoldás sorá megjeleő kifejezések átlkításához, összehsolításához szükséges mtemtiki eszközökkel redelkezek. Sok feldt megoldásához v szükségük középértékekre és köztük lévő összefüggésekre. Az lábbi feldtokb ezekre tláluk példákt. A középiskoláb hszáltos égy középérték foglm: z,,, pozitív vlós számok.) számti közepé z ( ) A,,, = G i.) mérti közepé (,,, ) = ;.) hrmoikus közepé H (,,, = 4.) égyzetes közepé N (,,, ) = i i ; ; i kifejezést értjük. A középértékek között H G A N egyelőtleséglác áll fe. Az egyelőség potos kkor teljesül, h = =... =. A tulás folymtát segíti, h z bsztrkt foglomhoz társíti tuduk szemléletes, vizuális megjeleíthető jeletést is. Feldtok: A. Két változó eseté egy trpézb keressük meg középértékekek megfelelő, lpokkl párhuzmos szkszokt! 85

2 Mgs szitű mtemtiki tehetséggodozás B. Tekitsük következő ábrát! Legye > b > 0 és KV =, KS = b. Fejezzük ki z lábbi szkszokt és b segítségével: AK = GK = HK = NK = Hrmoikus középérték. feldt Bizoyítsuk be, hogy h egy derékszögű trpéz éritőégyszög is, kkor z lpokr merőleges szár hrmoikus közepe z lpokk!. feldt Bizoyítsuk be, hogy szbályos hétszög oldl egyelő hétszög két külöböző átlój hossz hrmoikus közepéek felével!. feldt Adott két egymást kívülről éritő kör. Htározzuk meg zo kör sugrát, mely ériti két kört és zok közös éritőjét. 4. feldt Bizoyítsuk be! ) Bármely háromszögbe beírt kör sugr mgsságok hrmoikus közepéek hrmd. b) Bármely tetréderbe beírt gömb sugr mgsságok hrmoikus közepéek egyede. 5. feldt Bizoyítsuk be, hogy bármely háromszög szögeire teljesül, hogy 86

3 Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb! + + siα si β si γ Mérti középérték 6. feldt Bizoyítsuk be, hogy h egy szimmetrikus trpéz mgsság mérti közepe z lpokk kkor trpéz éritőégyszög! 7. feldt Egy körbe beíruk és köré íruk egy-egy yolcszöget. Bizoyítsuk be, hogy kör sugr mérti közepe köré írt yolcszög köré írt köre sugrák és beírt yolcszög beírt köre sugrák! 8. feldt Egy háromszög belsejébe felvett tetszőleges poto át háromszög oldlivl párhuzmos egyeeseket húzuk. Ezek z egyeesek háromszög területét ht részre osztják. Mekkor z dott háromszög területe, h dv v három háromszög területe: t, t, t. 9. feldt Bizoyítsuk be, hogy egy háromszög kkor és csk kkor szbályos, h szögeire feáll egyelőség! 0. feldt cosα cos β cosγ = Bizoyítsuk be, hogy bármely háromszögbe α β γ si si si! 87

4 Mgs szitű mtemtiki tehetséggodozás. feldt Tekitsük egy egységyi oldlú szbályos háromszöget. Az oldlit osszuk egyelő részre, mjd középső szkszok fölé rjzoljuk egyelő oldlú háromszögeket. Hgyjuk el középső szkszokt. Így oly sokszöget kptuk, melyek mide oldl. Ezt z eljárást -szer elvégezve htározzuk meg kpott sokszög oldlik hosszát, számát, kerületét és területét!. feldt Tekitsük egy élű szbályos tetrédert. Mide lpo kössük össze lpokt htároló élek felezési potjit. Így mide lpot égy egybevágó egyelő oldlú háromszögre botottuk. A középső háromszögek fölé mide egyes lpo állítsuk szbályos tetrédereket. Az így kpott test oldllpji hosszúságú szbályos háromszöglpok. Az előbb leírt eljárást ismételjük meg többször egymás utá. Az -edik ráépítés utá mekkor lesz kpott test felszíe és térfogt?. feldt Adott egy egyees és ugyzo oldlá két pot. Szerkesszük oly kört, mely illeszkedik két potr és ériti z dott egyeest! 4. feldt Egy körhöz egy külső potból húzott éritők éritési potji A és B. A kör egy tetszőleges Q potjából z éritőkre, vlmit AB-re bocsátott merőlegesek tlppotji redre E, F, T. Bizoyítsuk be, hogy ekkor QT = QE QF! 5. feldt Az ABCD húrégyszög (AB em párhuzmos CD) átlóik metszéspotj M Az M poto át DC oldlll párhuzmos húzott egyees z AB oldl egyeesét P-be metszi. Igzoljuk, hogy 6. feldt Pot körre votkozó htváy PM = PA PB! 88

5 Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Számti középérték 7. feldt Bizoyítsuk be, hogy bármely háromszögbe + ρb + ρc k, hol ρ, ρb, ρ c háromszög, b illetve c oldlához írt körök sugri, k háromszög kerülete! 8. feldt Igzoljuk, hogy h k egy háromszög kerülete R háromszög köré írhtó kör sugr, kkor k R! 9. feldt Bizoyítsuk be, hogy bármely háromszögbe k 6 ρ, hol ρ háromszög beírt köréek sugr, k háromszög kerülete! 0. feldt Bizoyítsuk be, hogy bármely háromszögbe cosα + cos β + cosγ! Négyzetes középérték. feldt Az R sugrú körbe AC és BD húrok merőlegesek egymásr. A húrokt metszéspotjuk égy szeletre botj. Bizoyítsuk be, hogy ) égy szelet égyzetes közepe egyelő R-rel! b) z ABCD égyszög két-két szemközti oldlák égyzetösszege egyelő! 89

6 Mgs szitű mtemtiki tehetséggodozás. feldt Bizoyítsuk be, hogy bármely háromszögbe. feldt α β γ tg + tg + tg! Egy csok kúp lp-, illetve fedőköréek sugr R, illetve r. Az lplp síkjávl párhuzmos síkkl két oly csok kúpr osztjuk, melyek ) plástjik területe egyelő b) térfogtik egyelők. Mekkorák síkmetszetek sugri? Középértékek közötti kpcsoltok lklmzás 4. feldt Az x + y = r sugrú kör első síkegyedbeli éritői közül melyik metszi le koordiáttegelyekből legkisebb területű háromszöget? 5. feldt Egy pici kof tudj, hogy kétkrúmérlege em mér potos, ( krok em egyform hosszúk). A pottlságot úgy próbálj korrigáli, hogy kért áru, egyik felét z egyik serpeyőbe, másik felét másik serpeyőbe méri ki. Igzságos-e z így korrigált mérés? 6. feldt Bizoyítsuk be, hogy mide oly pozitív és b számr, melyre + b = igz következő egyelőtleség: b +! b 90

7 Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb 7. feldt Bizoyítsuk be, hogy háromszög, b, c és t területe között fe áll következő összefüggés: 8. feldt b c 4 t + +! Adott gömb köré írt egyees körkúpok közül melyikek legkisebb térfogt? Mekkor ekkor gömb és kúp felszíéek z ráy? 9. feldt Bizoyítsuk be, hogy háromszög mgsságir feáll következő egyelőtleség: m + mb + mc s s háromszög félkerületét jelöli! 0. feldt 6 6 Adott z f : R + R, f ( x) = x + függvéy. Htározzuk meg függvéy x miimum helyét és miimumértékét! Irodlom: Ábrhám Gábor: Egyelőtleségek Boifert Domokos: Néháy tipikus problémszituáció mtemtikából, MOZAIK Okttási Stúdió, Szeged 99. D.O. Skljrszkij-N.N. Csecov-I.M. Jglom: Válogtott feldtok és tételek z elemi mtemtik köréből I. (Aritmetik és lgebr), Tköyvkidó, Budpest 979. Molár Emil: Mtemtik verseyfeldtok gyűjteméye, Tköyvkidó, Budpest 974. Dr. Gerőcs László: Azok csodáltos húrégyszögek, Műszki Köyvkidó, Budpest

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):

Részletesebben

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): --- A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris

Részletesebben

Ptolemaios-tétele, Casey-tétel, feladatok

Ptolemaios-tétele, Casey-tétel, feladatok Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr. Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b XVII ERDÉLYI MAGYAR MATEMATIKAVERSENY CSÍKSZEREDA 007 FEBRUÁR 8- NAP 9 OSZTÁLY Igzoljuk, hogy mide * \ {} eseté 5 ( ) Lckó József, Csíkszered Az b,, b számok eseté htározzuk meg z Ex ( ) x b x kifejezés

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke? 5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,

Részletesebben

A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai

A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji Szkgyógyszerész-jelöltek képzése Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 2016. jnuár 16. 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást

Részletesebben

(arcsin x) (arccos x) ( x

(arcsin x) (arccos x) ( x ALAPDERIVÁLTAK ( c ) (si ) cos ( ) (cos ) si ( ) ( ) ( tg) cos ( e ) e ( ctg ) si ( a ) a l a ( sh) ch (l ) ( ch) sh (log a ) ( th) l a ch (arcsi ) (arccos ) ( arctg ) DERIVÁLÁSI SZABÁLYOK. ( c ) c. c

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN

( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN Shultz János EGYENLŐLENSÉGEK A HÁOMSZÖG GEOMEIÁJÁBAN Igzoljuk hogy egy szályos háromszög első pontját súsokkl összekötő három szkszól mindig szerkeszthető háromszög Egy tégllp elsejéen vegyünk fel egy

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

II. Lineáris egyenletrendszerek megoldása

II. Lineáris egyenletrendszerek megoldása Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2008. jnuár 31. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 31. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto

Részletesebben

VI. Kétismeretlenes egyenletrendszerek

VI. Kétismeretlenes egyenletrendszerek Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló

Részletesebben

Méréssel kapcsolt 3. számpélda

Méréssel kapcsolt 3. számpélda Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat

Részletesebben

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA 9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

A VI. FEKETE MIHÁLY EMLÉKVERSENY

A VI. FEKETE MIHÁLY EMLÉKVERSENY A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

MATEMATIKA KOMPETENCIATERÜLET A

MATEMATIKA KOMPETENCIATERÜLET A MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

3.3 Fogaskerékhajtások

3.3 Fogaskerékhajtások PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

Bevezetés. Párhuzamos vetítés és tulajdonságai

Bevezetés. Párhuzamos vetítés és tulajdonságai Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való

Részletesebben

Végeredmények, emelt szintû feladatok részletes megoldása

Végeredmények, emelt szintû feladatok részletes megoldása Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú

Részletesebben

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1 III. Évfolym. szám - 008. úius Gyrmti József Zríyi iklós Nemzetvédelmi Egyetem gyrmti.ozsef@zme.hu SRT, TÖBBSZEPONTÚ DÖNTÉSI PROBÉ EGY EGYSZERŰ EGODÁS bsztrkt cikk egy többszempotú dötési módszert mutt

Részletesebben

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt . Gyakorlat: asbeton gerenák nyírásvizsgálata Készítették: Frieman Noémi és Dr. Huszár Zsolt -- A nyírási teherbírás vizsgálata A nyírási teherbírás megfelelő, ha a következő követelmények minegyike egyiejűleg

Részletesebben

4. előadás. Vektorok

4. előadás. Vektorok 4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

A pillangótétel és más mesék (az elemi geometria néhány szép tétele és feladata) Bíró Bálint, Eger

A pillangótétel és más mesék (az elemi geometria néhány szép tétele és feladata) Bíró Bálint, Eger Kistérségi tehetséggondozás A pillangótétel és más mesék (az elemi geometria néhány szép tétele és feladata) Bíró Bálint, Eger 1. Bevezetés Az alábbiakban szereplő tételeket és feladatokat két téma köré

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym AMt2 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

NYUGAT-MAGYARORSZÁGI EGYETEM Faipari Mérnöki Kar. Mőszaki Mechanika és Tartószerkezetek Intézet. Dr. Hajdu Endre egyetemi docens MECHANIKA I.

NYUGAT-MAGYARORSZÁGI EGYETEM Faipari Mérnöki Kar. Mőszaki Mechanika és Tartószerkezetek Intézet. Dr. Hajdu Endre egyetemi docens MECHANIKA I. NYUGAT-MAGYARORSZÁGI EGYETEM aipari Mérnöki Kar Mőszaki Mechanika és Tartószerkezetek Intézet Dr Hajdu Endre egyetemi docens MECHANIKA I Sopron 9 javított kiadás TARTALOMJEGYZÉK I Bevezetés a mőszaki mechanika

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

Mezei Ildikó-Ilona. Analitikus mértan

Mezei Ildikó-Ilona. Analitikus mértan Mezei Ildikó-Ilona Analitikus mértan feladatgyűjtemény Kolozsvár 05 Tartalomjegyzék. Vektoralgebra 3.. Műveletek vektorokkal.................................. 3.. Egyenes vektoriális egyenlete..............................

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2010

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2010 KÖZPONTI STATISZTIKAI HIVATAL Telefon: 345-6 Internet: www.ksh.hu Adtszolgálttóinknk Nyomttványok Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) bekezdése lpján kötelező. Nyilvántrtási

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger

Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger. feladat Állítsunk merőlegeseket egy húrnégyszög csúcsaiból a csúcsokon át nem menő átlókra. Bizonyítsuk be, hogy a merőlegesek talppontjai

Részletesebben

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4) Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit

Részletesebben

4. modul Poliéderek felszíne, térfogata

4. modul Poliéderek felszíne, térfogata Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott

Részletesebben

JÁSZBERÉNY VÁROSI ÖNKORMÁNYZAT KÉPVISEL -TESTÜLETE EL TERJESZTÉSEK FED LAPJA

JÁSZBERÉNY VÁROSI ÖNKORMÁNYZAT KÉPVISEL -TESTÜLETE EL TERJESZTÉSEK FED LAPJA JÁSZBERÉNY VÁROSI ÖNKORMÁNYZAT KÉPVISEL -TESTÜLETE EL TERJESZTÉSEK FE LAPJA Az el terjesztés íme, tárgy: El terjesztés Jászerény város településrendezési el írási [ 261/2010. (IX. 15.) önkormányzti htározttl

Részletesebben

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése.

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése. 26. HÁLÓZATI TÁPEGYSÉGEK Célkiűzés: A hálózi egyenirányíó és silizáló lpkpcsolások és jellemzőinek megismerése, illeőleg mérése. I. Elmélei áekinés Az elekronikus készülékek működeéséhez legöször egyenfeszülségre

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL

KÖZPONTI STATISZTIKAI HIVATAL KÖZPONTI STATISZTIKAI HIVATAL Telefon: 345-6 Internet: www.ksh.hu Adtgyűjtések Letölthető kérdőívek, útmuttók Az dtszolgálttás 265/28. (XI. 6.) Korm. rendelet lpján kötelező. Nyilvántrtási szám: 223/9

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

Darupályatartók. Dr. Németh György főiskolai docens. A daruteher. Keréknyomás (K) Fékezőerő (F)

Darupályatartók. Dr. Németh György főiskolai docens. A daruteher. Keréknyomás (K) Fékezőerő (F) Dr. émeth Görg főiskoli docens Drupáltrtók s f c 6vg e f sz c/ >,5 e s ~,.. A druteher Q 4 4 eréknomás () Fékezőerő (F) F Oldlerő () Biztonsági ténező dru fjtájától (híddru/függődru) és névleges teherírástól

Részletesebben

Olimpiai szakkör, Dobos Sándor 2008/2009

Olimpiai szakkör, Dobos Sándor 2008/2009 Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly

Részletesebben

Anyagmozgatás és gépei. 3. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.

Anyagmozgatás és gépei. 3. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék. Anyagmozgatás és gépei tantárgy 3. témakör Egyetemi szintű gépészmérnöki szak 3-4. II. félé MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék - 1 - Graitációs szállítás Jellemzője: hajtóerő nélküli,

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 1. Merev test impulzusának

Részletesebben

A Szakács Jenő Megyei Fizika Verseny I. forduló feladatainak megoldása 1

A Szakács Jenő Megyei Fizika Verseny I. forduló feladatainak megoldása 1 A Szkác Jenő Megyei Fizik Vereny I. forduló feldtink egoldá. 0, c 0,7 /, /, 0, /. c )? d? ) Az elő ut ebeége: c +,7 /. pont A áodik ut ebeége: c 0, /. 3 pont Az elő ut ozgáánk ideje: 0 t 30. pont,7 A áodik

Részletesebben

Háromszög n egyenlő területű szakaszra osztása, számítással és szerkesztéssel. Bevezetés

Háromszög n egyenlő területű szakaszra osztása, számítással és szerkesztéssel. Bevezetés Háromszög egyelő területű szkszr osztás, számítássl és szerkesztéssel Bevezetés Az építészet szkrodlomb elég gykr előfordul címbel feldt, főleg kötőelemek kosztáskor. Ezek lehetek szegek, csvrok, betétek,

Részletesebben

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Gépszerkezettan tanszék Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Összeállította: Dr. Stampfer Mihály Pécs, 0. . A fogaskerekek előtervezése.

Részletesebben

KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016.

KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket az

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

Sűrűségmérés. 1. Szilárd test sűrűségének mérése

Sűrűségmérés. 1. Szilárd test sűrűségének mérése Sűrűségérés. Szilárd test sűrűségének érése A sűrűség,, definíciój hoogén test esetén: test töege osztv test V térfogtávl: V A sűrűség SI értékegysége kg/, hsználtos ég kg/d, kg/l és g/c Ne hoogén testnél

Részletesebben

FESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK. Prof.Dr. Zobory István

FESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK. Prof.Dr. Zobory István FESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK Prof.Dr. Zobory István Budpest 04 Trtlomegyzék. Bevezetés... 3. A vsúti árművek teherviselő részeiről... 3. Alvázs (nem önhordó) kocsik... 3.. Kéttengelyes kocsik... 4..

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

1. Fejezet A sorozat fogalmának intuitív megközelítése

1. Fejezet A sorozat fogalmának intuitív megközelítése SOROZATOK SZÁMTANI, MÉRTANI ÉS HARMONIKUS HALADVÁNYOK Körtesi Péter, Szigeti Jeő. Fejezet A sorozt foglmák ituitív megközelítése A sorozt számok egy redezett felsorolás, számokt sorozt tgjik evezzük. Egy

Részletesebben

Versenyző kódja: 26 27/2012. (VIII. 27.) NGM rendelet 34 521 10-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny.

Versenyző kódja: 26 27/2012. (VIII. 27.) NGM rendelet 34 521 10-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny. 34 521 10-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 34 521 10 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Szerszám-és készülékgyártás

Részletesebben

A logaritmus függvény bevezetése és alkalmazásai

A logaritmus függvény bevezetése és alkalmazásai Eötvös Loád Tudomáyegyetem Temészettudomáyi Ka A logaitmus függvéy bevezetése és alkalmazásai Szakdolgozat Készítette: Témavezető: Lebaov Dóa Mezei Istvá Adjuktus Matematika Bs Alkalmazott Aalízis és Matematikai

Részletesebben

Segédlet a menetes orsó - anya feladathoz Összeállította: Dr. Kamondi László egyetemi docens, tárgyelőadó Tóbis Zsolt tanszéki mérnök, feladat felelős

Segédlet a menetes orsó - anya feladathoz Összeállította: Dr. Kamondi László egyetemi docens, tárgyelőadó Tóbis Zsolt tanszéki mérnök, feladat felelős Segélet a menetes orsó - anya felaathoz Összeállította: Dr. Kamoni László egyetemi ocens, tárgyelőaó Tóbis Zsolt tanszéki mérnök, felaat felelős Terhelhetőségi vizsgálat Az ismert geometriai méretek, és

Részletesebben

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t.

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t. Ászpóke csapat Kalló Beát, Nagy Baló Adás Nagy Jáos, éges Máto Fazekas tábo 008. Igaz-e, hogy ha az f, g: Q Q függvéyek szigoúa ooto őek és étékkészletük a teljes Q, akko az f g függvéy étékkészlete is

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V. Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,

Részletesebben

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve! (9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora

Részletesebben

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2011

Matematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2011 Mtemtik I. Mőszki informtiki mérnm rnöksszisztens http://jgypk.u jgypk.u-szeged.hu/tnszek/szmtech szmtech/oktts/mtemtik-.pdf Glmbos GáborG JGYPK - Mtemtik I. Felsıfokú Szkképzés A Mtemtik I. fıbb f témái:

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.

Részletesebben

A torokgerendás fedélszerkezet erőjátékáról 1. rész

A torokgerendás fedélszerkezet erőjátékáról 1. rész A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

A digitális számítás elmélete

A digitális számítás elmélete A digitális számítás elmélete 1. előadás szept. 19. Determinisztikus véges automaták 1. Példa: Fotocellás ajtó m m m k b s = mindkét helyen = kint = bent = sehol k k b s m csukva b nyitva csukva nyitva

Részletesebben

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes 9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

KULCS_GÉPELEMEKBŐL III.

KULCS_GÉPELEMEKBŐL III. KULCS_GÉPELEMEKBŐL III. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket az adott mérettől

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

KOMLÓ TELEPÜLÉSRENDEZÉSI TERVE- MÓDOSÍTÁS 2016

KOMLÓ TELEPÜLÉSRENDEZÉSI TERVE- MÓDOSÍTÁS 2016 OMLÓ TELEPÜLÉSRENDEZÉSI TERVE- MÓDOSÍTÁS 016 OMLÓ TELEPÜLÉSRENDEZÉSI TERVE MÓDOSÍTÁS TERVEZŐ HÜBNER TERVEZŐ FT DR. HÜBNER MÁTYÁS okl. építészmérnök vezető tervező Lovs Attil okl. építőmérnök Tóth Rék kert-

Részletesebben

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b. FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2012

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2012 KÖZPONTI STATISZTIKAI HIVATAL Telefon: 345-6 Internet: www.ksh.hu Adtszolgálttóinknk Nyomttványok Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) bekezdése lpján kötelező. Nyilvántrtási

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben