n -adik hatványa ahol n q és c n Ekkor szeretnénk, ha a < a < a is teljesülne. (Így majd az exponenciális függvény monoton marad.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "n -adik hatványa ahol n q és c n Ekkor szeretnénk, ha a < a < a is teljesülne. (Így majd az exponenciális függvény monoton marad."

Átírás

1 Mgr Eszter Emelt szitő érettségi tétele 6. tétel: A ritmus, z epoeciális és ritmusfüggvé és tuljdosági A htváozás iterjesztése: ) Törtitevıjő htváo Eg pozitív vlós szám htváá -di göe. Azz: -di htvá hol Z, N szám -edi iötés: > Ezzel defiícióvl z összes egész itevıjő htvár votozó tétel igz mrd törtitevıjő htváor is. (Azz mőödi permeci elv.) ) Irrcioális itevıre (étoldli özelítéssel) Mide irrcioális szám özelíthetı lulról és felülrıl eg-eg rcioális számot trtlmzó mooto sorozttl: < < q< c hol,c Q és q és c q q c Eor szereté, h < < is teljesüle. (Íg mjd z epoeciális függvé mooto mrd.) Mivel és c mooto, ezért c és is mooto. Íg [ ] c ; áltl meghtározott zárt itervllumo egmás stulázott, íg Ctor-ióm q mitt v ezee metszete, mi szüségéppe egelemő, pedig lege ez özös elem. Ezzel defiícióvl iztosítottu z epoeciális függvé mootoitását. Tétel: z íg pott f : R R f () > függvé mootoitás mellett még foltoos is. (Dejó!) Defiíció: lpú ritmus z itevı, melre -t emelve -t pu. Jele: Kiötése: >,, > (Íg létezi.) Azz:, illetve rövide: Külöleges lpo: lg illetve e l A ritmus zoossági: ) Szorzt ritmus Szorzt ritmus egelı téezı ritmusi összegével. ( ) >,,, > ( ) defiíció lpjá ( ) zoos lpú htváo szorzt mitt, ezért mivel z epoeciális függvé szigorú mooto ( ) ( )

2 Mgr Eszter Emelt szitő érettségi tétele ) Tört ritmus Tört ritmus egelı számláló és evezı ritmusá ülöségével. >,,, > defiíció lpjá zoos lpú htváo hádos mitt, ezért mivel z epoeciális függvé szigorú mooto ( ) c) Htvá ritmus Htvá ritmus egelı htválp ritmus és itevı szorztávl. >,, > és R ( ) defiíció lpjá ( ) ( ) htvá htvá mitt mivel z epoeciális függvé szigorú mooto ( ), ezért d) Gö ritmus Gö ritmus egelı gölp ritmusá és göitevıe hádosávl. >,, > és htvá ritmus lpjá: Z > e) Áttérés más lpr: Eg szám új lpú ritmusát megpju, h szám régi lpú ritmusát elosztju z új lp régi lpú ritmusávl. >,, >, ééés > vegü midét oldl lpú ritmusát (hisze midét oldl pozitív) hszálv htvá ritmus tételét elosztv -vl ( mert )

3 Mgr Eszter Emelt szitő érettségi tétele Az epoeciális függvé: f : R R f () hol >, vlós szám (epoes itevı) ét lpvetıe ülöözı epoeciális függvét ülööztethetü meg < < > f () D f R g () D g R R f ( ; ) R ( ; ) R szigorú mooto csöeı szigorú mooto öveedı szélsıértée ics szélsıértée ics zérushele ics zérushele ics szigorú ove szigorú ove ifleiós potj ics ifleiós potj ics em páros, em pártl em páros, em pártl lsó orlátj lsó orlátj htárértéei: htárértéei: lim és lim lim és lim R g A ritmusfüggvé: f () és g () függvée grfioji z -tegelre szimmetrius grfioo f : R R f () hol >, vlós szám Az zoos lpú ritmusfüggvé és epoeciális függvé egmás iverzfüggvéei, mert o és o ( > ) Íg grfiojit megphtju mási grfiojá egeesre vló türözésével. Értelmezési trtomái és értéészletü felcseréléssel megphtó.

4 Mgr Eszter Emelt szitő érettségi tétele ét lpvetıe ülöözı ritmusfüggvét ülööztethetü meg < < > f () () g D f ( ; ) R ( ; ) R R f R D g R g R szigorú mooto csöeı szigorú mooto öveedı szélsıértée ics szélsıértée ics zérushele zérushele szigorú ove szigorú oáv ifleiós potj ics ifleiós potj ics em páros, em pártl em páros, em pártl em orlátos em orlátos htárértéei: htárértéei: lim, lim lim, lim Allmzáso: - számításoál ritmustálázt hszált (szorzás helett összedásr) - gságred-meghtározás - rdiotív omlástörvé (epoeciális) A rdiotív omló g tömege z idı szerit epoeciális változi: t m(t) m e hol z gr jellemzı álldó, m omló g ezdeti tömege, t z idı. Például 4-es tömegszámú széizotóp rdiotív, és élı szervezete is megtlálhtó eg dott jellemzı meisége. Megmérve lelete 4 C izotóp meiségét, omlási álldó ismeretée iszámolhtó, hog ezdeti szitrıl mei idı ltt omlott mértre, vgis hog mior hlt meg lelet. - féelelés törvée (Lmert-Beer törvé, ritmius) - epcsolási jeleség - ph számolás z oóium-io ocetrációjáól: ph lg[ H3 O ] - émii reció seességfüggése hımérsélettıl (epoeciális) - eletródpoteciál függése ocetrációtól, ritmius (Nerst-egelet)

5 Mgr Eszter Emelt szitő érettségi tétele - ritmius sálá: Richter (rezgése mplitúdóját méri, itott végő) A Richter-sál földregése gságát, ú. mgitúdóját htározz meg. Ezt z értéet megpju, h földregés iidulópotjától m-re lévı szvá szeizmográfo felvett szeizmogrm megmérjü mőszer áltl jelzett leggo itérést mirométere, s tízes lpú ritmusát vesszü. hgomásszit (deciele) csillgféesség (mgitúdó) - érzéelés: Weer-Fecher törvé: z igerület észlelt erıssége ráos fizii erısségée ritmusávl (ezerszer or igert tehát örülelül háromszororá érzü) - számítási oolultság jellemzése: Eg hlmz elemei özül ell megeresi (iválszti) éhát. H hlmz elemıl áll, és z dtoól rochérdéseel ell megeresi eget, ezt (h jól érdezü) érdésıl lehet megtei. (Logritmius lépésszám.) H midegi dtot ülö-ülö meg ell vizsgáli, or lépést ell megteü, h ármel ettıt össze ell hsolíti, or ( ) lépésre vg szüség. (Poliomiális lépésszám.) H pedig z d elem ármel részhlmzát meg ell vizsgálu, or d lépésre v szüség. (Epoeciális lépésszám.) A ritmius vg poliomiális lépésszámot igélı prolémá go dthlmz eseté is még lefuttthtó számítógépe, ám z epoeciális prolémá ilátástlul hosszú idıt vesze igée viszolg is elemszámú hlmz eseté is.

Emelt szintő érettségi tételek. 10. tétel Számsorozatok

Emelt szintő érettségi tételek. 10. tétel Számsorozatok Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

Mivel sikerült egész kitev j hatványokat is definiálnunk, felvet dhet a kérdés, hogy lehet-e racionális (tört) kitev j hatványokat is definiálni.

Mivel sikerült egész kitev j hatványokat is definiálnunk, felvet dhet a kérdés, hogy lehet-e racionális (tört) kitev j hatványokat is definiálni. . 3. Törtitev j htváo Mivel sierült egész itev j htváot is deiiálu, elvet dhet érdés, hog lehet-e rioális (tört) itev j htváot is deiiáli. Kövessü z lái godolteetet!. Az. Iserjü z 3. Ezért -t rju deiiáli.

Részletesebben

A hatványozás első inverz művelete, az n-edik gyökvonás.

A hatványozás első inverz művelete, az n-edik gyökvonás. Ismétlés: Htváozás egész kitevő eseté A htváozás iverz műveletei. (Htvá, gök, logritmus) De.: :... Ol téezős szorzt, melek mide téezője. : htvál : kitevő : htváérték A htváozás zoossági egész kitevő eseté:

Részletesebben

44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6

44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6 9 évfolm HNCSÓK KÁLMÁN MEGYEI MTEMTIKVERSENY MEZŐKÖVESD 5 Szóbeli feldto megoldási ) dju meg zot z egész értéeet mele mellett z 6 6 Z 6 6 6 6 is egész szám! pot 6 6 6 pot mide egész -re pártl íg or lesz

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus)

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus) A htváyoz yozás s iverz műveletei. m (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté Def.: egy oly téyezős szorzt, melyek mide téyezője. htváylp : kitevő: htváyérték: A htváyozás zoossági:

Részletesebben

ALGEBRA. 1. Hatványozás

ALGEBRA. 1. Hatványozás ALGEBRA. Htváyozás kitevő Péld: lp H kitevő természetes szám, kkor db téyező Bármely szám első htváy ömg Bármely ullától külöböző szám ulldik htváy egy. 0 ( 0) (0 0 em értelmezett) Htváyozás számológéppel:

Részletesebben

2. ALGEBRA ÉS SZÁMELMÉLET

2. ALGEBRA ÉS SZÁMELMÉLET Szkközépiskol 9. osztály Felkészülési jvslt jvítóvizsgár Véges, végtele, üres hlmz oglm Két hlmz egyelősége Részhlmz, vlódi részhlmz oglm Uiverzum, komplemeterhlmz Hlmzműveletek (uió, metszet, külöbség)

Részletesebben

1. Hibaszámítás Hibaforrások A gépi számok

1. Hibaszámítás Hibaforrások A gépi számok Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi

Részletesebben

III. FEJEZET FÜGGVÉNYEK. III.1. A függvény fogalma és néhány tulajdonsága

III. FEJEZET FÜGGVÉNYEK. III.1. A függvény fogalma és néhány tulajdonsága Függvée és tuljdosági 67 III FEJEZET FÜGGVÉNYEK III A üggvé oglm és éhá tuljdoság III A üggvé értelmezése A üggvé oglmávl z előző évee már tláloztu Eddigi ismereteitere támszodv válsszáto i z7 lái megeleltetése

Részletesebben

Matematika összefoglaló

Matematika összefoglaló Mtemtik összefoglló A középiskoli tg vázltos áttekitése, gkorló feldtok Összeállított: Deák Ottó mestertár Áltláos- és Felsőgeodézi Tszék Mtemtik kozultáció z I. évfolmk A emuttó vázlt Bemuttkozás, kozultáció

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

24. tétel Kombinatorika. Gráfok.

24. tétel Kombinatorika. Gráfok. Mgyr Eszter Emelt szitő érettségi tétele 4. tétel Komitori. Gráfo. Komitori: A mtemti zo elméleti területe, mely egy véges hlmz elemeie csoportosításávl, iválsztásávl vgy sorrederásávl fogllozi. Permutáció

Részletesebben

n 1 1 n sehova szám (DÖNTETLEN) 1 0 k n n n 1 IZÉ HA a sorozat is lim akkor n NEVEZETES SOROZATOK HATÁRÉRTÉKEI ÖSSZEG HATÁRÉRTÉKE IZÉ

n 1 1 n sehova szám (DÖNTETLEN) 1 0 k n n n 1 IZÉ HA a sorozat is lim akkor n NEVEZETES SOROZATOK HATÁRÉRTÉKEI ÖSSZEG HATÁRÉRTÉKE IZÉ NEVEZETES SOROZATOK HATÁRÉRTÉKEI HA KONKRÉT SZÁM - q q q q q q shov IZÉ HA IZÉ IZÉ ÖSSZEG HATÁRÉRTÉKE TÉTEL: H és sorozt ovrgs és ovrgs és A B A és B or sorozt is AZ ÖSSZEG HATÁRÉRTÉKÉNEK ESETE A? B A

Részletesebben

A valós számok halmaza

A valós számok halmaza A vlós számok hlmz VA A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Kocsis Imre, DE MFK) egedélyével hszálhtók fel! A vlós számok hlmz VA A vlós számok hlmzák lpvető tuljdosági A vlós

Részletesebben

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak ábr: Ábr Bodó Be, Simoé Szbó Klár Mtemtik. közgzdászokk IV. modul: Számsoroztok 8. lecke: Számsorozt foglm és tuljdosági Tulási cél: A számsorozt foglmák és elemi tuljdoságik megismerése. A mootoitás,

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1 PPKE ITK Algebr és diszkrét mtemtik = DETERMINÁNSOK = 13 = + + 13 13 Bércesé Novák Áges 1 PPKE ITK Algebr és diszkrét mtemtik DETERMINÁNSOK Defiíció: z sorb és m oszlopb elredezett x m (vlós vgy képzetes)

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

Olimpiai szakkör, Dobos Sándor 2008/2009

Olimpiai szakkör, Dobos Sándor 2008/2009 Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly

Részletesebben

I. Sorozatok. I.1. Sorozatok megadása

I. Sorozatok. I.1. Sorozatok megadása Mgyr Zsolt: Alízis özépisoláb I Sorozto oldl Def A pozitív egész számo hlmzá értelmezett számértéű függvéyeet sorozto evezzü Megjegyzés: Egyes tárgylási módob éyelmességi szempotból em N R függvéyeről,

Részletesebben

1. Halmazok, relációk és függvények.

1. Halmazok, relációk és függvények. . Hlmzok, relációk és függvéyek. - redezett pár (,b) = { {}, {,b} } hlmzelméleti defiíció; Tuljdoság: (,b) = (c,d) =c és b=d - hlmzok Descrtes-szorztt A x B := {(,b) A, b B} - r hlmzok közötti reláció

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Am = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x m: sorok szám : oszlopok szám

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

Sorozatok határértéke

Sorozatok határértéke I. Becsüljük kifejezéseket! Kidolgozott feldtok: Soroztok htárértéke. Számológép hszált élkül djuk becslést z lábbi kifejezések értékére h = 000 000! Hszáljuk közbe gyságredi becsléseket számláló és evező

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

ANALÍZIS I. (MT1301L, MT4301L, MT1301) Előadást követő vázlatok. Dr. Rozgonyi Tibor főiskolai docens

ANALÍZIS I. (MT1301L, MT4301L, MT1301) Előadást követő vázlatok. Dr. Rozgonyi Tibor főiskolai docens ANALÍZIS I (MT3L, MT43L, MT3) Elődást övető vázlto Dr Rozgo Tor ősol doces Néhá evezetes egelőtleség Beroull-éle egelőtleség H R és ℵ, or ( ) Az egelőség or és css or áll e, h vg Bzoítás: h ( )( ) ( )

Részletesebben

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8.

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8. . feladat: Eg 5 fős osztálba va fiú és 4 lá. z iskolai bálo (fiú-lá) pár fog tácoli. Háféleképpe tehetik ezt meg? párok sorredje em számít, viszot az, hog ki kivel tácol, az már ige. (0 pot) Válasszuk

Részletesebben

( ) ( ) Motiváció: A derivált közelítésére gyakran használjuk a differencia hányadost: ( ) ( ) ( ) + +

( ) ( ) Motiváció: A derivált közelítésére gyakran használjuk a differencia hányadost: ( ) ( ) ( ) + + 4 85 Impliit Euler módszer A diszretizáiós elöléseet szálv z impliit Euler módszer l: dott : Motiváió: A derivált özelítésére gr szálu dierei ádost: Felszálv z egeletbe: Ie átredezve vgis eg impliit ormulát

Részletesebben

Matematika II. Műszaki informatikai mérnökasszisztens. Galambos Gábor JGYPK

Matematika II. Műszaki informatikai mérnökasszisztens. Galambos Gábor JGYPK ..7. Mtemtik II. Műszki iformtiki méröksszisztes http://jgypk.u-szeged.hu/tszek/szmtech/oktts/mtemtik-.pdf Glmos Gáor JGYPK - Mtemtik II. A Mtemtik II. fő témái: Itervllum, távolság, köryezet Vlós függvéyek

Részletesebben

Analízis. Glashütter Andrea

Analízis. Glashütter Andrea Alízis Glshütter Adre Alízis Hlmzok I. Hlmzok Deiíció (hlmz) elemek összessége. Megdás. elemek elsorolásávl (z összes elemet elsorolom, vgy leglá yit, hogy z lpjá következteti lehesse töi elemre); pl A{,,4,7,4,8}..

Részletesebben

IV. A HATÁROZOTT INTEGRÁL

IV. A HATÁROZOTT INTEGRÁL 86 A htározott itegrál IV A HATÁROZOTT INTEGRÁL Bevezető feldto Feldt Számítsu i z f :, [ ], f függvéy grfius épe, z, és z O tegely áltl htárolt síidom területét Megoldás Árázolju függvéyt A XI y osztály

Részletesebben

II. Valós számsorozatok

II. Valós számsorozatok Vlós számsorozto 5 Értelmezés Az f : II Vlós számsorozto és f : \ {,,,, } típusú függvéyeet ( ) vlós számsorozt evezzü Értelmezés Az f : sorozt -edi tgjá vgy áltláos tgjá evezzü z f ( ) vlós számot, és

Részletesebben

g x ugyanabba az halmazba kerüljön mint különböző módon tehetjük meg. A feladat állítása alapján igazolnunk kell, hogy ( ) n m m

g x ugyanabba az halmazba kerüljön mint különböző módon tehetjük meg. A feladat állítása alapján igazolnunk kell, hogy ( ) n m m A itűzött feldto megoldási X osztály 47 g ugybb z hlmzb erüljö mit figyelembe veü, hogy ( H -vel jelöljü z elemeie számát, or ezt j A j ülöböző módo tehetjü meg A feldt állítás lpjá igzolu ell, hogy m

Részletesebben

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + +

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + + LINEÁRIS ALGEBRA Mit evezük másodredő determiásk? Másodredő determiásk evezzük égy elem, két sor és két oszlop redezett táláztát, melyhez z lái módo redelük értéket: = d c c d Mit evezük egy determiás,

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Amx = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x, A R m x m: sorok szám : oszlopok

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

ACTA CAROLUS ROBERTUS

ACTA CAROLUS ROBERTUS ACTA CAROLUS ROBERTUS Károly Róbert Főisol tudomáyos özleméyei Alpítv: ( ACTA CAROLUS ROBERTUS ( Mtemti szeció AZ INTEGRÁLSZÁMÍTÁS OKTATÁSÁRÓL KÖRTESI PÉTER Összefogllás A htározott itegrál értelmezése

Részletesebben

Matematika A1 vizsga elméleti kérdések

Matematika A1 vizsga elméleti kérdések Mtemtik A1 vizsg elméleti kérdések Deiíciók Forrás: Szirmi Jeő elődásvázltok, Szász Gáor: Mtemtik 1. tköyv Gépre vitte: Atli Máté 1. Peo-xiómák A természetes számok hlmzát N Peo-xiómák segítségével deiiáljuk.

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

SOROZATOK. Körtesi Péter

SOROZATOK. Körtesi Péter SOROZATOK Körtesi Péter. Fejezet. Foglm ismétlése. Ez fejezet soroztoról szól. Ajálju, hogy tuló Sorozto I. szitű pszodót tulmáyozz, melybe főét Számti, Mérti és Hrmoius Hldváyot ismerheti meg. Az lábbib

Részletesebben

Alkalmazott matematika

Alkalmazott matematika Allmzott mtemti (Szméröi előás vázlt) Sztmár Zoltá Trtlomjegzé Hlmzo 3 A htárérté foglm és tuljosági 5 3 Függvée htárértée és foltoosság 4 Függvée iffereciálás5 5 Függvée itegrálás 6 Itegrálási mószere8

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás. feruár 9.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény integrálhtó z, intervllum ármely, részin- tervllumán,

Részletesebben

WEKERLE SÁNDOR ÜZLETI FŐISKOLA. Gazdaságmatematika 1 Analízis. Oktatási segédanyag Készítette: Pór Andrásné

WEKERLE SÁNDOR ÜZLETI FŐISKOLA. Gazdaságmatematika 1 Analízis. Oktatási segédanyag Készítette: Pór Andrásné WEKERLE SÁNDOR ÜZLETI FŐISKOLA Gzdságmtemtik Alízis Okttási segédyg Készítette: Pór Adrásé 203 Trtlomjegyzék HALMAZOK... 3 FÜGGVÉNYEK... 0 SOROZATOK... 24 FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA... 29

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden Kétváltozós függvéek Defiíció: f: R R vag z f(,) Szeléltetés:,,z koordiátaredszerbe felülettel Pl z + forgási paraboloid z R ( + ) félgöb z + + forgási iperboloid (két köpeű) z + forgási iperboloid (eg

Részletesebben

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában 9. tétel: Elsı- és másodfoú egyelıtlesége, pozitív számo evezetes özepei, és eze felhaszálása szélsıérté-feladato megoldásáa Egyelıtleség: Két relációsjellel összeapcsolt ifejezés vagy függvéy. Az egyelıtleséget

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

Analízis I. Kidolgozta: Ábrahám Róbert Dr. Szili László előadásai alapján július 10.

Analízis I. Kidolgozta: Ábrahám Róbert Dr. Szili László előadásai alapján július 10. Alízis I. Kidolgozt: Ábrhám Róbert Dr. Szili László elődási lpjá 200. július 0. Trtlomjegyzék. A vlós számok struktúráj 3.. Az R Dedekid-féle xiómredszere (872:................................ 3.2. R részhlmzi:................................................

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás 7. feruár.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény folytonos z, intervllumon, vlmint létezik f()d htárérték

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gáor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgeri összefoglló: ) Mátri

Részletesebben

MATEMATIKA A 11. évfolyam 2. modul: Hatványozás kiterjesztése, hatványfüggvény

MATEMATIKA A 11. évfolyam 2. modul: Hatványozás kiterjesztése, hatványfüggvény MATEMATIKA A. évfolym. modul: Htváyozás kiterjesztése, htváyfüggvéy Készítette: Csákvári Áges és Dros Noémi Áges Mtemtik A. évfolym. modul: Htváyozás kiterjesztése, htváyfüggvéy Tári útmuttó A modul célj

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok /0 SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gábor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgebri összefoglló:

Részletesebben

A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL

A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL MŰSZAKI ISKOLA ÉRETTSÉGI VIZSGA ADA, 06jnuár 0/06-ös iskolév, júniusi vizsgidőszk A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL Munkterület: GÉPÉSZET, ELEKTROTECHNIKA, ÉPITÉSZET Tntárg: MATEMATIKA

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0

Részletesebben

Az elégséges szint eléréséhez szükséges ismeretek matematikából a 9. évfolyamon

Az elégséges szint eléréséhez szükséges ismeretek matematikából a 9. évfolyamon Pdáni Ktolikus Gkorlóiskol, Veszprém Az elégséges szint eléréséhez szükséges ismeretek mtemtikáól 9. évfolmon Az elégséges szint eléréséhez szükséges ismeretek mtemtikáól 9. évfolmon Cél: pontos, kitrtó

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris

Részletesebben

különbözõ alappontok, y, y,..., y értékek. : függvény.) ( x)

különbözõ alappontok, y, y,..., y értékek. : függvény.) ( x) 7 Iterpoácó poomo Legee [ ] (Átá ho [ ] IR üöözõ ppoto IR értée : üggvé ( O Ρ (egee -edoú poomot eresü mere ( ( 7 Téte! Ρ mere Bzoítás meghtározás és z egértemûség zoítás htározt egütthtó módszeréve törté

Részletesebben

N-ed rendű polinomiális illesztés

N-ed rendű polinomiális illesztés ed rendű polinomiális illesztés 1 oldl Tegük fel, hog dottk vlmilen fiziki menniség függvénében mért értékek, zz mérési értékpárok, hlmz ( db mérési pont) A mérés mindig trtlmz vlmekkor bizontlnságot mért

Részletesebben

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):

Részletesebben

A valós számok halmaza

A valós számok halmaza Vlós számok, komplex számok A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Dr. Kocsis Imre, DE Műszki Kr) egedélyével hszálhtók fel! Vlós számok, komplex számok A vlós számok hlmzák

Részletesebben

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása Automták nlízise, szintézise és minimlizálás Formális nyelvek, 11. gykorlt Célj: Az utomták nlízisének és szintézisének gykorlás, utomt minimlizáió Foglmk: Anlízis és szintézis, nyelvi egyenlet és egyenletrendszer

Részletesebben

Emelt szintő érettségi tételek. 19. tétel: Vektorok. Szakaszok a koordinátasíkon. Irányított szakasz, melynek állása, iránya és hossza van.

Emelt szintő érettségi tételek. 19. tétel: Vektorok. Szakaszok a koordinátasíkon. Irányított szakasz, melynek állása, iránya és hossza van. 19. tétel: Vektrk. Szkszk krdinátsíkn. Vektr: Iráníttt szksz, melnek állás, irán és hssz vn. Jele: v = AB Vektr bszlút értéke: A vektrt meghtárzó iráníttt szksz ngság. Jele: v = AB Vektrk kölcsönös helzete:

Részletesebben

Kétváltozós függvények

Kétváltozós függvények Kétváltozós függvéek Tartalomjegzék Többváltozós függvéek... Kétváltozós függvéek... Nevezetes felületek... 3 Forgásfelületek... 3 Kétváltozós függvé határértéke... 4 Foltoos kétváltozós függvéek... 6

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Nevezetes középértékek megjeleése külöböző feldtokb Vrg József, Kecskemét Hrmic éves tári pályámo sokszor tpsztltm, hogy tehetséges tulók

Részletesebben

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra . Adott z =, =,3, + 3 soozt. Számíts ki lim 3 htáétéket. Megoldás: Előszö lkítsuk át z k kifejezést: k = + k 3 = k3 k 3 + = (k (k + k + (k + (k k + = k k + k + k + k k +, k =,3, Ez lpjá z szozt átíhtó

Részletesebben

Metrikus terek. továbbra is.

Metrikus terek. továbbra is. Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

VI. Kétismeretlenes egyenletrendszerek

VI. Kétismeretlenes egyenletrendszerek Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

OPTIKA. Vastag lencsék képalkotása lencserendszerek. Dr. Seres István

OPTIKA. Vastag lencsék képalkotása lencserendszerek. Dr. Seres István OPTIKA Vastag lecsék képalkotása lecsereszerek Dr. Seres Istvá OPTIKA mechatroika szak. átrix optika Paraxiális sugármeet (

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

II. ALGEBRA ÉS SZÁMELMÉLET

II. ALGEBRA ÉS SZÁMELMÉLET MATEMATIKA FELADATSOR 9. évolym Elézést tegezésért! I. HALMAZOK Számegyeesek, itervllumok. Töltsd ki táláztot! Mide sor egy-egy itervllum hároméle megdás szerepelje!. Add meg következő itervllumokt! A

Részletesebben

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet!

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet! HANCSÓK KÁLMÁN MEGYEI MAEMAIKAVERSENY MEZŐKÖVESD Sóeli feldto és megoldáso ostál ) Oldju meg vlós sámhármso hlmán öveteő egenletet! ( pont) A egenlet l oldlát átlíthtju öveteőéppen: A l oldl egi tgj sem

Részletesebben

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert: . Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek

Részletesebben

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket, Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

1. Primitív függvények (határozatlan integrálok)

1. Primitív függvények (határozatlan integrálok) . Primitív függvéyekhtároztl itegrálok 7. Primitív függvéyek htároztl itegrálok.. A defiíciók egyszerű következméyei F. Htározz meg z lábbi függvéyek összes primitív függvéyét: f :, + ; b f :, ; c f :,

Részletesebben

OPTIKA. Vastag lencsék képalkotása lencserendszerek. Dr. Seres István

OPTIKA. Vastag lencsék képalkotása lencserendszerek. Dr. Seres István OPTIKA Vastag lecsék képalkotása lecsereszerek Dr. Seres Istvá OPTIKA mechatroika szak. átrix optika Paraxiális sugármeet (

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben