1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor"

Átírás

1 . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis konvergens, ha bármely ε > 0 esetén van olyan N(ε) küszöbindex, hogy minden n > m > N(ε) esetén n k=m+ a k < ε.. n 2. ( ) n n 3. n 2 Határozza meg a következ végtelen sorok összegét. Tétel. (Geometriai sor összege) Ha q <, akkor a q n sor konvergens, és q n = q n(n + ) 3 n 2 + 5n n 2 + 3n + 2 log ( n ) n 2 + 3n ( ) 2 n n+2 5 n 3 n n+4 3 n 5 n n+2 5 n 3 2n n+ + 3 n 5 n n + 2 n+ 4 n+3 5. ( 2) n+ 2 2n 3 Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából valamelyik összehasonlító kritériumot használva.

2 Tétel. (Majoráns, minoráns kritérium) Ha a a n és a b n pozitív tagú sorok tagjaira véges sok indext l eltekintve érvényes az a n b n egyenl tlenség, akkor (i) ha b n konvergens, akkor a n is konvergens, és (ii) ha a n divergens, akkor b n is divergens. Tétel. Ha a n, b n > 0 minden n N esetén és a n lim = L > 0, n b n akkor a a n és b n sorok közül vagy mindkett divergens vagy mindkett konvergens. 6. ( n ) ( ) 2 n n n + 3 n 2 2n n + 5 3n n(n + ) (3n ) n + 3 n 2 n n 2 n n 3 5 n sin π n A Cauchy-ekvikonvergencia tételt használva vizsgáljuk meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle ekvikonvergencia) Ha (a n ) monoton csökken és pozitív tagú sorozat, akkor a a n, 2 n a 2 n sorok közül vagy mindkett konvergens, vagy mindkett divergens. 26. n p 27. n ln 2 n 28. n ln 3 n A hányados-, illetve gyökkritériumot használva vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. 2

3 Tétel. (Gyökkritérium) Legyen (a n ) pozitív tagú sorozat, ekkor ha <, akkor a a n sor konvergens; lim n an >, hakkor a a n sor divergens; n =, akkor a a n lehet konvergens is, és divergens is. Tétel. (Hányadoskritérium) Legyen (a n ) pozitív tagú sorozat, ekkor ha a <, akkor a a n sor konvergens; n+ lim >, hakkor a a n a n sor divergens; n =, akkor a a n lehet konvergens is, és divergens is n ( 2) n n+ n n 2 n 3n + n 3 + n ( ) n + n 3. 2n e n n 3 n! 2 n + ( 2 n + n) n n n! n! n n (2n ) n Tétel. (Integrálkritérium) Legyen j N rögzített és f : [j, ) R folytonos, monoton csökken és pozitív. Ekkor a j n=j f(x) dx improprius integrál konvergens. Ekkor j f(x) dx f(n) végtelen sor akkor és csak akkor konvergens, ha az f(n) n=j j f(x) dx, illetve j f(x) dx f(n) f(j) + n=j j f(x) dx. 39. Az integrálkritériumot használva igazolja, hogy a becslést az összegére ε = 0.0 pontossággal. n 2 sor konvergens, és adjon 3

4 40. Az integrálkritériumot használva igazolja, hogy a becslést az összegére ε = 0.0 pontossággal. n 2 sor konvergens, és adjon + 5 A Leibniz kritériumot használva vizsgálja meg a következ végtelen sorokat konvergencia, illetve abszolút konvergencia szempontjából. Tétel. (Leibniz-kritérium) Ha az (a n ) pozitív tagú szigorúan monoton csökken ( 0 < a n+ < a n ) sorozatra lim n a n = 0, akkor a sor konvergens. ( ) n a n Tétel. Abszolút konvergens sor konvergens ( ) n 2n ( ) n n 3 n n 42. ( ) n 3n + n ( ) n n + 2 n ( ) n 2n 3 n + 2 Határozza meg a következ hatványsorok konvergenciatartományát. Tétel. (Cauchy-Hadamard) A a nx n hatványsor konvergenciasugara ϱ, ahol n = lim sup an = lim sup a n+ ϱ n n a n, amennyiben a fenti határérték létezik és véges. Ha a határérték végtelen, akkor a konvergenciasugár 0, ha a határérték 0, akkor a konvergenciasugár végtelen. 46. x n n2 n 47. (n + ) 5 x 2n 2n n2 x n 49. (x + 3) n n n x n n! 5. (x 3) n n 2 2 n Határozza meg a következ függvények Taylor-sorát a megadott pontok körül. 4

5 Taylor-sor. Legyen az f : I R függvény akárhányszor dierenciálható a 0-t is tartalmazó nyitott I intervallumon. A f (k) (0) x k k! hatványsort az f függvény Taylor-sorának nevezzük. Taylor-formula. Ha az f : I R függvény (n + )-szer folytonosan dierenciálható a 0-t is tartalmazó I intervallumon, akkor minden x I esetén ahol f(x) = valamely 0 és x közötti c számra. k=0 f (k) (0) x k + R n+ (x), k! R n+ (x) = f n+ (c) (n + )! xn+ Tétel. Ha a a nx n hatványsor konvergens a ( c, c) intervallumon, és f(x) = a nx n, x ( c, c), akkor az f függvény Taylor-sora a nx n, azaz f (n) (0) = a n n! (n {0,, 2,...}) 52. f(x) = x 2, x 0 = f(x) = x, x 0 = f(x) = + x 2, x 0 = f(x) = + 2x, x 0 = 56. f(x) = sin x, x 0 = Az ln ( + x) függvény Taylor-sorát felhasználva adjon becslést ln 27 értékére. 58. Határozza meg az f(x) = e x függvény 0 körüli Taylor-sorának els három tagját, majd ennek segítségével becsülje az integrált. 0 e x dx 5

6 59. A sin x függvény Taylor-sorát felhasználva adjon becslést az integrál értékére. /2 0 sin x x dx 60. Határozza meg az f(x) = e x2 /2 függvény x 0 = 0 körüli Taylor sorának els négy tagját, majd ennek segítségével adjon becslést az határozott integrálra. 2π e x2 /2 dx Tétel. Legyen a a nx n hatványsor konvergens a ( c, c) intervallumon. Deniáljuk az f : ( c, c) R függvényt a következ képpen: Ekkor a f(x) := a n x n. (n + )a n+ x n = a + 2a 2 x + 3a 3 x hatványsor is konvergens a ( c, c) intervallumon, az f függvény dierenciálható a ( c, c) intervallumon, és f (x) = (n + )a n+ x n. (x ( c, c)). Tétel. Legyen a a n hatványsor konvergens a ( c, c) intervallumon. Deniáljuk az f : ( c, c) R függvényt a következ képpen: Ekkor a f(x) := a n x n. a n n + xn+ = a 0 x + a 2 x2 + a 2 3 x hatványsor is konvergens a (-c,c) intervallumon, az f függvény folytonos a ( c, c) intervallumon, és f(x) dx = a n n + xn+ (x ( c, c)). 6

7 Tétel. Legyen a a nx n hatványsor konvergens a ( c, c) intervallumon, és legyen f(x) = a n x n, ha x ( c, c). Ha az f függvény kiterjeszthet a ( c, c] intervallumra úgy, hogy c-ben folytonos legyen, akkor a a nx n hatványsor konvergens c-ben is, és f(c) = a n c n. 6. Határozza meg az f(x) = ln ( x) függvény Taylor-sorát az a = 0 pont körül, és ezt felhasználva határozza meg a ( ) n+ n = sor összegét. 62. Határozza meg az f(x) = arctan x függvény Taylor-sorát az a = 0 pont körül, és ezt felhasználva határozza meg a sor összegét. ( ) n+ 2n + = Határozza meg az f(x) = ( + x) ln ( + x) függvény Taylor-sorát az a = 0 pont körül, és ezt felhasználva határozza meg a sor összegét. n=2 ( ) n+ n 2 n = Tétel. (Binomiális sorfejtés) Ha x <, akkor ( + x) α = ( ) α x n, n ahol ( ) α = n α(α )(α 2)... (α n + ), n! ( ) α =. 0 7

8 64. A binomiális sorfejtést használva határozza meg az f(x) = + x függvény a = 0 pont körüli Taylor-sorának els 4 tagját. A megfelel függvények binomiális sorfejtését felhasználva adjon becslést a következ kre A binomiális sor segítségével becsülje meg /2 0 3 x 2 + dx értékét. Fourier-sor Az f ( π, π) intervallumon integrálható függvény Fourier-sora f(x) a a n cos nx + b n sin nx, ahol és a n = π b n = π π π π π f(x) cos nx dx, n = 0,, 2,... f(x) sin nx dx, n =, 2,... Tétel. (Parseval-formula) Ha az f függvény négyzetesen integrálható a ( π, π) intervallumon, akkor π π ( ( a 2 0 f(x) 2 + a n cos nx + b n sin nx)) dx 0, (n ), továbbá érvényes az úgynevezett Parseval-formula: π f 2 (x) dx = a2 0 π π 2 + (a 2 n + b 2 n). 7. Adja meg az f(x) = x függvény Fourier-sorát, majd ennek segítségével számítsa ki a sor összegét. n 2 8

9 72. Határozza meg az f(x) = sgn x függvény Fourier-sorát. 2. Dierenciálegyenletek Oldja meg a következ szétválasztható változójú dierenciálegyenleteket, illetve kezdetiérték problémákat. Szétválasztható változójú dierenciálegyenlet. A h(y)y = g(x) típusú egyenletet szétválasztható változójú dierenciálegyenletnek nevezzük. 73. y = x y 74. xyy = x y = + y y tan x = y 77. y + yx x 78. xy = y 2 y 79. x 2 y + y = 2xy 80. y (x + 3) y + = 0 y( ) = 0 8. y y sin x = 0 y(π) = xy + y = y 2 y() = yy cos x = tan x y(π) = A rádium bomlási sebessége arányos a pillanatnyi rádiummennyiséggel. Ha a bomlás következtében a rádium mennyisége kereken 600 év alatt a felére csökken, a kiindulási anyag mennyiségének hány százaléka bomlik el 00 év alatt? Oldja meg a következ homogén fokszámú dierenciálegyenleteket. 9

10 Homogén fokszámú dierenciálegyenlet. Az y = f ( y x), illetve y = f ( ) x y alakú egyenleteket változóiban homogén fokszámú dierenciálegyenletnek nevezzük. Az els esetben az u = y/x, a másodikban a v = x/y helyettesítést elvégezve az u + xu = f(u), illetve v xv = g(v)v 2 szétválasztható változójú dierenciálegyenlethez jutunk. 85. xy = 2y + x 86. y y x = x2 87. x y + xy = xe y x + y xy = x 2 y = 2xy y y = x + y x y 9. x 2 y 2 + 2xyy = 0 Oldja meg a következ els rend lineáris dierenciálegyenleteket. Lineáris dierenciálegyenlet. Az y + p(x)y = q(x) alakú egyenletet lineáris dierenciálegyenletnek nevezzük. Ha q(x) = 0, akkor a lineáris dierenciálegyenletet homogénnek, különben inhomogénnek nevezzük. Tétel. Az inhomogén lineáris dierenciálegyenlet általános megoldását az y IH = y H + y p összefüggés szolgáltatja, ahol y H = cf(x) a homogén egyenlet megoldása, y p az inhomogén egyenlet egy partikuláris megoldása. Konstansvariáció. Az inhomogén egyenlet y p partikuláris megoldását y p = c(x)f(x) alakban keressük, melyet az eredeti egyenletbe visszahelyettesítve c(x)-re a következ egyenletet kapjuk c (x)f(x) = q(x). 0

11 92. y + yx x = y y x = x2 94. y xy = x y + y = e x 96. xy y x + = x 97. xy + y = x ln x 98. y cos x + y sin x = 99. (x + )y y = 3x 4 + 4x 3 Határozza meg F (F )-et, ha, Laplace-transzformáció. Az f függvény Laplace-transzformáltja: L[f](s) := Deriváltakra vonatkozó szabályok: 0 f(x)e sx dt. L[f ] = sl[f] f(0), L[f ] = s 2 L[f] sf(0) f (0). 00. F (s) = 2 s 3 0. F (s) = 3 s F (s) = s s 2 2s F (s) = 7s s 2 + 3s F (s) = 3 s 6 + 6s s F (s) = 2s + s(s )(s + 2) Oldja meg a következ kezdetiérték problémákat Laplace-transzformáció segítségével. 06. y y 2y = 0 y(0) = y 2y + 5y = 8e x y(0) = 2 y (0) = 5 y (0) = y 4y + 5y = 4e 3x y(0) = y + 2y + 5y = 3e x sin x y(0) = 0 y (0) = 7 y (0) = 3 0. y + 4y = e x cos x y(0) =. y 4y = 3e x y(0) = y (0) = 0 y (0) = 5

12 3. Többváltozós valós függvények Határozza meg a következ függvények értelmezési tartományát. 2. f(x, y) = x 3. f(x, y) = ln ( + y) 4. x y 6. f(x, y) = y 2y + y 2 x 5. f(x, y) = x 2 + y f(x, y) = sin x cos y 8. f(x, y) = y sin x 9. f(x, y) = x 2 + y 2 Határozza meg a következ határértékeket. Derékszög és polárkoordináta-rendszer kapcsolata. x = r cos ϕ r = x 2 + y 2 y = r sin ϕ tan ϕ = y x 20. xy 2 lim (x,y) (2, ) x 2 + y 4 2. sin xy lim (x,y) (0,2) x 22. 2xy y 2 lim (x,y) (0,0) x 2 + y lim (x,y) (0,0) xx2 x 2 + y xy 2 lim (x,y) (0,0) x 2 + y x + lim (x,y) (2,) y 26. xy + 2x 3y + lim (x,y) (2,) yx + x xy + 2x 3y + lim (x,y) (,) yx + x Deníció alapján határozza meg a következ függvények parciális dierenciálhányadosait a megadott helyen. 2

13 Parciális derivált. Legyen adott az f : D R 2 R függvény. értelmezve van x 0 = (x 0, y 0 ) D egy környezetében. Ha a Tegyük fel, hogy f f x (x 0) = f x(x 0 ) = f x(x f(x 0 + h, y 0 ) f(x 0, y 0 ) 0, y 0 ) := lim h 0 h határérték létezik és véges, akkor azt mondjuk, hogy f x-szerint parciálisan dierenciálható az x 0 pontban, az f x(x 0 ) értéket pedig az f x 0 pontban vett x-szerinti parciális deriváltjának nevezzük. 28. f(x, y) = xy 2, P (2, 3) 29. f(x, y) = 2x y +, P (2, ) Totális dierenciálhatóság. Legyen adott az f : D R 2 R függvény. Tegyük fel, hogy f értelmezve van x 0 D egy környezetében. Az f függvény (totálisan) dierenciálható az x 0 pontban, ha létezik A = (A, A 2 ) R 2 és a 0 egy V környezetében értelmezett ω : V R függvény úgy, hogy f(x) = f(x 0 ) + A (x x 0 ) + ω(x x 0 ) az x 0 egy környezetében lév minden x pontra, továbbá ω(x x 0 ) lim x x 0 x x 0 = 0. Ekkor az A = (A, A 2 ) R 2 vektort az f függvény x 0 pontban vett gradiensének nevezzük. Jelölés: f(x 0 ) = A. Totális dierenciálhatóság szükséges feltétele. Ha az f : D R 2 R függvény totálisan dierenciálható az x 0 = (x 0, y 0 ) D pontban, akkor mindkét változója szerint parciálisan is dierenciálható, továbbá ( f f(x 0 ) = x (x 0), f ) y (x 0) = ( f x(x 0 ), f y(x 0 ) ). Totális dierenciálhatóság elegend feltétele. Ha az x 0 = (x 0, y 0 ) D pont valamely környezetében az f : D R 2 R függvény mindkét parciális deriváltja létezik, továbbá az x 0 pontban folytonosak, akkor f(x, y) az x 0 pontban totálisan dierenciálható és ( f f(x 0 ) = x (x 0), f ) y (x 0) = ( f x(x 0 ), f y(x 0 ) ). 3

14 30. Deníció szerint mutassa meg, hogy az f(x, y) = x 2 + xy y 2 függvény totális dierenciálható, majd határozza meg a gradiens vektorát és parciális deriváltjait. 3. Határozza meg az f(x, y) = xy függvény parciális deriváltjait és totális dierenciálját az origóban. Határozza meg a következ függvények érint síkjának egyenletét az adott M pontokban. Érint sík egyenlete. Legyen az f(x) függvény dierenciálható az x 0 = (x 0, y 0 ) pontban. A z = f(x 0 ) + f(x 0 )(x x 0 ) egyenlet sík az f függvény (x 0, f(x 0 )) pontbeli érint síkja. 32. f(x, y) = x 2 + xy + 2y 2, M(, 2) 33. f(x, y) = xy 2 2x +, M(0, 4) 34. f(x, y) = x 2 y + 2x 2 y, M(2, ) Határozza meg a következ függvények u irány szerinti deriváltját a megadott P pontban. Irány menti derivált. Legyen adott az f : D R 2 R függvény. Tegyük fel, hogy f értelmezve van x 0 = (x 0, y 0 ) D egy környezetében. Az f függvény x 0 pontban vett u ( u = ) irány szerinti deriváltja az határérték, ha létezik és véges. f u = lim h 0 f(x 0 + hu) f(x 0 ) h Tétel. Ha az f : D R 2 R függvény dierenciálható az x 0 pontban, akkor f bármely u, ( u = ) irány szerint dierenciálható x 0 -ban, és f u(x 0 ) = f(x 0 ) u 35. f(x, y) = x 2 y, P (, ), u(3, 4) ( 36. f(x, y) = x 2 xy, P (, 2), u 3 5, 4 ) 5 4

15 37. f(x, y) = 3xe y2 sin x, P (0, ), u( 2, 2) 38. f(x, y) = x tan y e xy2, P (, 0), u(, ) Határozza meg a következ függvények széls értékeit. Széls érték létezésének szükséges feltétele. Ha az f(x) : D R 2 R függvény dierenciálható az x 0 pontban, és ott lokális széls értéke van, akkor f(x 0 ) = 0. Széls érték létezésének elegend feltétele. Tegyük fel, hogy az f(x) : D R 2 R függvénynek léteznek és folytonosak a másodrend parciális deriváltjai az x 0 pont egy környezetében, továbbá f(x 0 ) = 0. Legyen Ha D(x 0 ) = f xx(x 0 ) f yy(x 0 ) [f xy(x 0 )] 2 D(x 0 ) < 0, akkor x 0 nem lokális széls értékhely; D(x 0 ) > 0 és f xx(x 0 ) > 0 akkor f-nek x 0 -ban lokális minimuma van; D(x 0 ) > 0 és f xx(x 0 ) < 0 akkor f-nek x 0 -ban lokális maximuma van. 39. f(x, y) = (x ) 2 + 2y f(x, y) = y 2 + 2x 2 y + x 2 4. f(x, y) = yx 2 /2 yx + y f(x, y) = x 2 xy + y 2 2x + y 43. f(x, y) = x 4 + y 4 2x 2 + 4xy 2y f(x, y) = 2x 2 + y 2 2xy + 4x 2y Egy téglatest egy pontba összefutó éleinek a hossza 2. Mekkorák a lehet legnagyobb ilyen térfogatú téglatest élei? Oldja meg a következ egzakt dierenciálegyenleteket. 5

16 Egzakt dierenciálegyenlet. A P (x, y)dx + Q(x, y)dy = 0 egyenletet egzakt dierenciálegyenletnek nevezzük, ha P y = Q x. Ekkor van olyan U(x, y) függvény, melynek totális dierenciálja du = P (x, y)dx + Q(x, y)dy. 46. (2xy 3)dx + x 2 dy = dx 2 x y + 4 x y 2 dy = 0 x y 48. ( 2xy + ) ( ) x 2 dx + + y + x2 dy = (cos x x sin x + y)dx + (x cos y)dy = 0 Határozza meg az integrálási tartományt és írja fel a határokat a fordított sorrendben történ integráláshoz f(x, y) dy dx 5. 2 x 0 0 f(x, y) dy dx 52. x 2 0 x f(x, y) dy dx /x 0 f(x, y) dy dx Számítsa ki az alábbi kett s integrálokat. 54. D (x2 + 2y) dy dx, ahol D az x = 0 és az x + 2y = 2 egyenlet egyenesek által határolt háromszög x 0 2 /x 0 x 2 x + y dy dx 56. xy dy dx 58. x x 0 x 2 x 2 + 2y dy dx x + y 3 dy dx 6

17 D x2 + y 2 dy dx, ahol D az egység sugarú kör. 2xy D dy dx, ahol D az az origó középpontú körgy r, mely küls körének sugara x 2 +y 2 2, bels körének sugara pedig. 6. Határozza meg az R sugarú gömb térfogatát. 62. Határozza meg az e x2 /2 integrál értékét. 4. Komplex függvénytan Mely pontokban dierenciálhatóak a következ komplex érték függvények? Komplex dierenciálhatóság. Legyen a z 0 pont az f(z) függvény értelmezési tartományának tolródási pontja. Az f(z) függvényt z 0 pontban dierenciálhatónak nevezzük, ha a határérték létezik és véges. f(z 0 + z) f(z 0 ) lim z 0 z 63. f(z) = zz 64. f(z) = Rez 65. f(z) = z z 2 Igazolja, hogy a következ függvények harmonikusak, majd határozza meg a harmonikus társat. Harmonikus társ keresés. A kétszer folytonosan dierenciálható u(x, y) függvényt harmonikusnak nevezzük, ha teljesíti a Laplace-egyenletet: u xx + u yy = 0. A v(x, y) függvényt az u(x, y) függvény harmonikus társának nevezzük, ha harmonikus és teljesíti a Cauchy-Riemann egyenleteket: u x = v y, u y = v x 7

18 66. u(x, y) = x 2 5xy + 3y y x 3 3xy u(x, y) = x 3 y xy 3 + 2x + 3y Határozza meg a következ kifejezések értékét. Komplex exponenciális és logaritmus függvény. Az Euler-képlet e iϕ = cos ϕ + i sin ϕ felhasználásával: e z = e z (cos (arg z) + i sin (arg z)), ln z = ln z + i arg z. 69. e iπ 70. e 3+i 7. 2 i 72. ln ( + i) 73. ln ( 3i) 74. ln i 75. i i 76. Határozza meg az (z + 3 2i) dz integrál értékét, ahol L a 2i középpontú, r = L sugarú körnek az A = i, B = 2i pontjait összeköt negyed körív (A B) 77. Határozza meg az (z i) dz integrál értékét, ahol L a i középpontú, r = 2 sugarú L körnek az A = i, B = 3i pontjait összeköt fél körív (A B) 78. Határozza meg az (z i) dz integrál értékét, ahol L a i középpontú, r = 2 sugarú L körnek az A = i, B = 3i pontjait összeköt fél körív (A B) 79. Határozza meg az ( z 2 2i) dz integrál értékét, ahol L az A = 3 i, B = + 2i L pontokat összeköt szakasz 80. Határozza meg az ( z + 3 2i) dz integrál értékét, ahol L az A = i, B = 2i pontokat összeköt szakasz L 8

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) =

7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) = . feladatsor: szeparábilis és els rend lineáris dierenciálegyenletek x. Mutassuk meg, hogy y = e x e t2 dt + 3e x megoldása az alábbi dierenciálegyenletnek: y y = e x+x2. 2. Adjuk meg az y = e 3x + 2x

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0, Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor

Részletesebben

VIK A3 Matematika, Gyakorlati anyag 2.

VIK A3 Matematika, Gyakorlati anyag 2. VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1 Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

Elérhető maximális pontszám: 70+30=100 pont

Elérhető maximális pontszám: 70+30=100 pont Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:

Részletesebben

Gyakorlatok. Tartalomjegyzék tavasz

Gyakorlatok. Tartalomjegyzék tavasz Gyakorlatok Tartalomjegyzék. tavasz. Közönséges dierenciálegyenletek.. Bevezet......................................... Szétválasztható változójú differenciálegyenletek................. 3.3. Lineáris els

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei

Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Gyakorlo feladatok a szobeli vizsgahoz

Gyakorlo feladatok a szobeli vizsgahoz Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F

Részletesebben

Szakdolgozat. Hatványsorok és alkalmazásaik

Szakdolgozat. Hatványsorok és alkalmazásaik Szakdolgozat Hatványsorok és alkalmazásaik Heimbuch Zita Matematikai elemz szakirány Témavezet : Bátkai András, adjunktus Alkalmazott Analízis és Számításmatematikai Tanszék Eötvös Loránd Tudományegyetem,

Részletesebben

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére Matematika II. Feladatgyűjtemény GEMANB Anyagmérnök BSc szakos hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . gyakorlat Matematika II.. Az alábbi f függvényeknél adja meg f -t! f() = + 5; (b) f()

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

Segédanyag az A3 tárgy gyakorlatához

Segédanyag az A3 tárgy gyakorlatához Segédanyag az A3 tárgy gyakorlatához Sáfár Orsolya Szeparábilis dierenciálegyenletek A megoldásról általában: A szeparábilis dierenciálegyenlet álatlános alakja: y (x) = f(x)g(y). Ebben az esetben g(y)-al

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

Parciális dierenciálegyenletek

Parciális dierenciálegyenletek Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben. Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

Matematika M1 Gyakorlat

Matematika M1 Gyakorlat Matematika M Gyakorlat BME - Gépésmérnök MSc Gyakorló Feladatsor. Zh. Határoa meg a α paraméter értékét úgy hogy a vx y = αx y xy 4y 3 3 kétváltoós függvény egy reguláris komplex függvény képetes rése

Részletesebben

1. Határozza meg az alábbi határértéket! A válaszát indokolja!

1. Határozza meg az alábbi határértéket! A válaszát indokolja! Matematika (Analízis és dierenciálegyenletek), NGB_MA003_1, 2. zárthelyi 2014. 11. 20., 1A-csoport x 2 + 6x x 2 5 5x 2 f(x) = tg(2x + 1) 2 x + cos x x 16 5 x + 16 2 x 16 4. Határozza meg, hogy az f(x)

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

Kalkulus I. gyakorlat, megoldásvázlatok

Kalkulus I. gyakorlat, megoldásvázlatok Kalkulus I. gyakorlat, megoldásvázlatok Fizika BSc I/.. Ábrázoljuk a következ halmazokat a síkon! a {, y R : + y < }, b {, y R : + y < }, c {, y R : + y

Részletesebben

FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ

FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

Feladatgyûjtemény. Analízis III. Sáfár Zoltán

Feladatgyûjtemény. Analízis III. Sáfár Zoltán Feladatgyûjtemény Analízis III. Sáfár Zoltán NyME-SEK 20 Tartalomjegyzék. Számsorozatok számsorok 2. Differenciálszámítás 5 2.. L Hospital-szabály............................... 7 3. Függvénysorok Taylor-polinom

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

1. Bevezetés Differenciálegyenletek és azok megoldásai

1. Bevezetés Differenciálegyenletek és azok megoldásai . Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb

Részletesebben

2.7. Fourier-sor Gyakorló feladatok... 84

2.7. Fourier-sor Gyakorló feladatok... 84 Tartalomjegyzék. Közönséges differenciálegyenletek 3.. Bevezető.................................... 3.. Szétválasztható változójú differenciálegyenletek.............. 4... Gyakorló feladatok..........................

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

ANALÍZIS SZIGORLATI TEMATIKA

ANALÍZIS SZIGORLATI TEMATIKA ANALÍZIS SZIGORLATI TEMATIKA matematikatanár szakosok részére (2006/2007) Az els négy félév anyaga 1. Halmazokkal és függvényekkel kapcsolatos alapfogalmak 2. A valós számok 3. Valós számsorozat határértéke

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben