cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
|
|
- Ágnes Némethné
- 7 évvel ezelőtt
- Látták:
Átírás
1 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos () ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) (+) 6 4 cos() ( ) sin()cos 5 () tg 6 () f) cos () sin 6 ()cos() arctg () ( +) 4 4 5sin ()cos() 7. 4 tg() + f) (+ )arctg() ctg() sin() +cos() 8 arcsin() 8. (+)e + cos( ) sin(ln()) f) e +e tg() cos () e sin( ) cos( )
2 Integrálszámítás II. Parciális integrálás. i) l) o) e (+)(e e ) cos() h) e sin() j) (sin() cos()) m) arctg() p) arcsin() e ( )e sin() f) cos() ( )(sin() cos()) e cos() k) e sin()cos() ln() n) (+)ln (). 6 e e ( (+) sin ) ( )ln() h) ( +)e e cos() f) arctg() i) cos() ( +)ln() arctg() Helyettesítéses integrálás. j) m) + + ( + + ) 6 f) e + 6 h) i) 7 e + cos( ) k) sin( ) l) n) o) + 4 e e + e ( 5 ). 4 6 (+) + sin( ) 8 e +e e + e
3 Integrálszámítás III. Racionális függvények integrálása ( 4)(+)(+) 5 + ( )( ) ( ) (+) ( +)( 9) ( +6+)( ) + ( +4)( 6) (9 6+5)(+) (+) ( +) Irracionális függvények integrálása. i). ( 4 ) ( (+) ) 4 f) h) ( + ) j) f)
4 Az integrálszámítás alkalmazásai I. Területszámítás. Számítsa ki a görbe és az -tengely közé zárt területet a megadott intervallumban: y = +7 [,] y = +sin() [,] y = e [,] y = sin () 4 [,]. Számítsa ki az alábbi paraméteres alakban megadott görbe és az-tengely közötti területet a megadott intervallumban: = cos(t), y = sin(t), [,] = t sin(t), y = cos(t), [,] = t t, y = e t, t [,4] = t, y = sin(t), t [,4]. Számítsa ki az adott görbék által határolt korlátos síkrész területét: y = 6 7, y = y = e, y = e y =, y = 4 y = sin(), y = 4. Számítsa ki a paraméteres alakban megadott görbe átal határolt síkidom területét: = t, y = sin(t), t [,] = cos (t), y = sin(t), t [,] = t, y = t 4t [,] Forgástestek térfogata. Számítsa ki az adott görbeívnek az -tengely körüli megforgatásával kapott forgástest térfogatát: y = 4 [, [,] y =,, ] cos() 6 y = e, [,]. Forgassuk meg az y = e, y = e és az = egyenletű görbék által határolt véges tartományt az-tengely körül! Mekkora a keletkezett forgástest térfogata? Mekkora annak a forgástestnek a térfogata, amelyet úgy nyerünk, hogy ugyanezen síkidomot azy-tengely körül forgatjuk meg?. Számítsa ki a következő paraméteresen megadott görbeív -tengely körüli megforgatásával kapott forgástest térfogatát: [ = cos(t), y = sin(t), t, ] = t +t, y = e t, t [,]
5 Ívhossz számítása. Számítsa ki a görbeív hosszát a megadott intervallumban: y =, [,] y = +, [, ] [ 6 y = lnsin(),, ]. Számítsa ki az alábbi paraméteresen megadott görbeív hosszát a megadott intervallumban: ( ) [ = t, y = t t, t, ] = e t sin(t), y = e t cos(t), t [,ln]
6 Az integrálszámítás alkalmazásai II. Felszínszámítás. Számítsa ki a görbe-tengely körüli forgatásával nyert forgástest palástfelszínét: y = [,] y = 9 [,] y = [,] y = 4 [,]. Forgassa meg az alábbi paraméteres egyenletrendszerrel felírt görbék megadott darabját aztengely körül, és számítsa ki a keletkező forgástestek palástjának felszínét: = t, y = t, t [,] = acos (t), y = asin (t), t [, = e t cos(t), y = e t sin(t), t [ ], = cos(t)+ln ( tg ( t Improprius integrálok )), y = sin(t), t [, 4 ] ] Integrálás végtelen intervallumon. j) ln e ln () e + e h) +4 k) + ++ f) e + i) e ( +) (+)e e Adott intervallumon nem korlátos függvény integrálása. ln() f) cos() sin() ln h) () 4 + tg()
7 Differenciálegyenletek I.. Döntse al, hogy az alábbi differenciálegyenletek hányadrendűek, illetve azt is, hogy lineárisak-e: y tg() y 4 +y e sin() = arccos() y = 5y 4 y (4) ln(y)+sin(y ) =. Döntse el, hogy azy = y + differenciálegyenletnek megoldásai-e az függvények! f() =, illetveg() = e. Határozza meg integrálással azy = differenciálegyenlet általános megoldását, majd az y() =,y () =, y () = kezdeti feltételeket kielégítő partikuláris megoldását! 4. Rajzolja fel a következő differenciálegyenletekhez tartozó iránymezőt az y-koordinátarendszerben! Rajzoljon meg néhány integrálgörbét is az iránymező alapján! Mi lehet a differenciálegyenletek megoldása? Sejtését számítással is ellenőrizze! y = y y = y 5. Adja meg az alábbi szétválasztható változójú differenciálegyenletek általános megoldását! Ha adott valamilyen feltétel, akkor írja fel az ezt kielégítő partikuláris megoldást is! y = y, y() = dy = y, y() = y sin() = yln(y) 6. Írja fel az alábbi elsőrendű lineáris homogén differenciálegyenletek általános megoldását: y sin() ycos() = y + y = 7. Oldja meg az állandó variálásának módszerével az alábbi elsőrendű lineáris inhomogén differenciálegyenleteket: y y + = ( y +y = cos ) y +y = e ln()
8 y + y ln() = 8. Határozza meg az állandó variálásának módszerével az alábbi elsőrendű lineáris differenciálegyenletek adott feltételt kielégítő partikuláris megoldását: y +ytg() = cos (), y() = y + y =, y() = + y y =, y() = + 9. Oldja meg próbafüggvény módszerrel az alábbi állandó együtthatójú elsőrendű lineáris differenciálegyenleteket: y +y = sin() y y = 4 y +y = (e +e ) y 4y = 5 4 cos()+. Oldja meg próbafüggvény módszerrel az alábbi állandó együtthatójú elsőrendű differenciálegyenletet, figyelve a rezonanciára: y y = e +
9 8. hét Differenciálegyenletek II.. Adja meg az alábbi állandó együtthatójú másodrendű lineáris, homogén differenciálegyenletek általános megoldását: y y y = y +5y = y 6y +9y = y +4y = y y +y =. Oldja meg próbafüggvény-módszerel az alábbi másodrendű lineáris inhomogén differenciálegyenleteket: y +y = 4y +y = 85(e e ) y +y +y = cos() 5sin() y +y = (+)e y 6y = e sin() f) y y = 5 cos(). Oldja meg próbafüggvény-módszerel az alábbi másodrendű lineáris inhomogén differenciálegyenleteket: y y y = 6(e ) y +9y = sin() cos() y 4y +4y = e +4 y y = e +(6+5)e 4. Adja meg a következô differenciálegyenleteknek az adott feltétel(ekt kielégítô partikuláris megoldását: ( y +y = y() = y ) = e y +y = cos() y() = y y = e y() = y () = 4
10 Laplace-transzformáció Képezze a következő függvények Laplace-transzformáltját:. e t e t+ e 5t sin(t) cos(t) f) t 5t 4 h) 8t 6. e t 5 t +e t sin(4t) cos(t) sin(t) cos(5t) 4t t +7t. e 4t e t 4e t e t sin(t)+sin (t) sin(t) t 7t+6 t 4. e t sin(t) e t cos(7t) e t (sin(t) cos(4t)) e 6t (4t t +t 4) 5. t sin(t) t cos(t) Határozza meg a következő függvények inverz Laplace-transzformáltját:.. s 4s+ s +s 4 s s +s 6 s s 6s s + s s+6 (s +4)(s+6) s s +4 4s s+9 (s )(s ) Határozza meg a következő differenciálegyenletek, illetve differenciál-egyenletrendszerek megadott kezdeti feltételhez tartozó partikuláris megoldását Laplace-transzformáció alkalmazásával:. y +y = 8e 5 y() = 4 y 5y = 5 y() = y +y = sin(4) y() = y +y = cos() y() = y y = 4 e y() = f) y y = e y() =. y +9y = 9 y() = y () = y +y +y = e y() = y () = y +4y = 68sin() y() = y () = y +y = + y() = 4 y () =
11 Numerikus sorok. Vizsgálja meg az alábbi számsorok konvergenciáját. Ha konvergensek, akkor számítsa ki az összegüket: + k +5 k k+ k+ 5 k k= k k= ( ) k a k ( ) k b, (b ) f) ( ) k, k= a + k= b k= ( ) k, k+ k=. Határozza meg a következő sorok összegét résztörtekre bontással: k(k +)(k +) k= ( k ) ( k ). Számítsuk ki a a k sor összegét, haa =,a n = a n, han egész, és a n+ = a n 4, han egész! 4. A konvergencia szükséges feltételét felhasználva mutassa meg, hogy a következő sorok divergensek: ( ) 5k 5k + k k + k 5k + k k k k 5. Mutassa meg, hogy a következő (harmonikus sorra visszavezethető) sor divergens: k= ( k ) ( k ) 6. A majoráns és a minoráns kritérium alkalmazásával döntsük el, hogy a következő sorok közül melyik konvergens és melyik divergens: (k ) k (k +)(k+4) k + +k k + f) k= k 4k +5 +k (k +)k ( tg h) i) 4k) k ln(k +) j) k +k
12 7. Döntse el hányadoskritérium segítségével, hogy a következő sorok konvergensek-e: k k k! (k +)(k +) k= k! k k k k= k! ( ) k! (k +)! k k f) k h) k k k k! k 8. A gyökkritérium alkalmazásával döntse el, hogy a következő sorok konvergense-e: k kp k k, ahol < p < k k k k sin k( ) k ( ) k ( k k + f) k k + k + k + (arctg(k)) k (k +) k 9. Integrálkritérium alkalmazásával döntse el, hogy a következő sorok konvergensek-e: k + k= k ln(k ) k + k= k ln (k), ahol α > f) kα k k +(k +) h) k + (k +)ln i) (k +) k= kln(k) j) k e k. Vizsgálja meg a következő váltakozó előjelű sorokat konvergencia szempontjából: ( ) k+ ( ) k k k ( ) kk + ( ) k k+, k +k k= ) k
13 Függvénysorok. Határozza meg a következő függvénysorok konvergenciatartományát és összegfüggvényét: ( ) k e k tg k e () k. Határozza meg a következő hatványsorok konvergenciatartományát: k! k k k k k= k k k kk 5 k k! k k + k! k k f) k k( )k. Írja fel az alábbi függvények -körüli harmadrendű Taylor-polinomját: f() = = f() = ln() = e f() = = f() = 7 = sin() k= 4. Írja fel az alábbi függvények Maclaurin-sorát és határozza meg, hogy az melyik tartományban állítja elő a függvényt: f() = sin() f() = e f() = e f() = ln( ) 5. Az = körüli harmadrendű Taylor-polinom alkalmazásával adja meg az alábbi függvények közelítő értékét a megadott helyen és adjon felső becslést a közelítő érték hibájára: f() = e =, f() = + =, f() = cos() =, f() = arctg() =, 6. Az integrandus = körüli negyedfokú Taylor-polinomjának alkalmazásával adja meg az alábbi integrálok közelítő értékét és adjon felső becslést a közelítő érték hibájára:,, sin() e, 7. Az integrandus = körüli Taylor-polinomjának alkalmazásával számítsa ki az alábbi integrálok közelítő értékét úgy, hogy a pontos értéktől való eltérés legfeljebb 6 legyen:, e,6,5 sin() +,4 k= k=
14 Fourier-sorok Fejtse Fourier-sorba a következő függvényeket: ha. f: R R, f() = < ha < { 6 ha < <. f: R R, f() = ha < < { ha < <. f: R R, f() = ha < < és R esetén f(+) = f() és R eseténf(+) = f() és R esetén f(+) = f() { ha < 4. f: R R, f() = + ha < és R esetén f(+) = f()
15 Többváltozós függvények I.. Határozza meg a következő függvények értelmezési tartományát: f(;y) = y f(;y) = ln(+y) f(;y) = + y f(;y) = 4 y. Határozza meg a következő függvények megadott értékekhez tartozó szintvonalainak egyenletét: z = +y + z =, z = z = +y z =, z = 9 z = y z =, z = 8 z = 4 +y z =, z = 5. Határozza meg a következő többváltozós függvények parciális deriváltfüggvényeit: f(;y) = 6 y +y f(;y) = ln( y )+e y f(;y) = cos(y ) f(;y;z) = ln(yz) 4. Határozza meg az alábbi függvények parciális deriváltjait a megadottp pontban: ( ) e ( z = ln ; P sin ; ) z = tg( y) ; P (;) (y) ( ) +y z = arctg ; P (;) y 5. Határozza meg a következő függvények teljes differenciálját: f(;y) = y f(;y) = e +y y f(;y) = sin ()+cos(y)
16 Többváltozós függvények II.. Számítsa ki az alábbi kétváltozós függvények iránymenti deriváltját az adott v irányvektorú egyenes mentén az adottp pontban: f(;y) = cos ( y) ; v( ; ) ( ; P ; ) 4 f(;y) = sin( +y ) ; v ( ; ) ( ) ; P ; f(;y) = ln() ln(y) ln(y) ln() ; v( ;4) ; P (e;e ). Határozza meg a következő függvények szélsőértékeit: f(;y) = (5+ y) e f(;y) = e y f(;y) = 5 +4 y f(;y) = e (+y ) f(;y) = +y +y +y + f) f(;y) = +y y. Határozza meg az = y felületnek az origóhoz legközelebb eső pontját! 4. Egy derékszögű háromszög rövidebbik befogójának hosszát a = 5 ±, cm-nek mértük, másik befogójának hosszát pedig b = ±, cm-nek. Becsülje meg, hogy mekkora abszolút, illetve relatív hibával számítható ki az átfogó hosza; a háromszög területe; tg(β), ahol β a b oldallal szemközti szög! 5. A véges növekmények tétele segítségével adjon közelítést az alábbi kétváltozós valós függvények megadott pontban felvett értékére egy olyan közeli pontból kiindulva, ahol a függvényérték könnyen számolható: f(;y) = ln( y ), P(,;,96) f(;y) = (y) (y +), P(,98;,) 6. Számítsa ki az alábbi kétváltozós függvények kettős integrálját a megadott T tartományon: f(;y) = y T = { (;y) }, y 4 { f(;y) = sin(y) T = (;y) }, y f(;y) = 54y T = { (;y) }, y arctg() + f(;y) = sin() T = {(;y) } y, cos() y cos()
17 7. Számítsa ki az alábbi kétváltozós valós függvények kettős integrálját a csúcsaival megadott sokszögtartományon: f(;y) = e y A(;), B(;), C(;) f(;y) = y A(;), B(;), C(4;4) 8. Számítsa ki az alábbi kétváltozós valós függvények kettős integrálját azon a korlátos tartományon, amelyet a következő egyenletekkel megadott görbék határolnak: f(;y) = y e = y, = y f(;y) = y (+) = y, = y, y =
x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos
RészletesebbenMatematikai analízis II.
Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények
RészletesebbenIntegrálszámítás (Gyakorló feladatok)
Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)
RészletesebbenMatematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére
Matematika II. Feladatgyűjtemény GEMANB Anyagmérnök BSc szakos hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . gyakorlat Matematika II.. Az alábbi f függvényeknél adja meg f -t! f() = + 5; (b) f()
Részletesebben1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
Részletesebben0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Részletesebbenn n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
RészletesebbenIV. INTEGRÁLSZÁMÍTÁS Feladatok november
IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin
RészletesebbenDebreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk
RészletesebbenMatematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
Részletesebben5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
RészletesebbenA képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
Részletesebbensin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
RészletesebbenMatematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
RészletesebbenI. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
RészletesebbenHÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
RészletesebbenAnalízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor
Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor Bodrogné Réffy Júlia, Horváth Róbert 2018/19. II. félévtől Tantárgykód: BMETE90AX20 Félév: 2018/19. tavasz Nyelv: magyar
RészletesebbenRészletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika II. KMEMA21TND Kreditérték:
RészletesebbenI. feladatsor. (t) z 1 z 3
I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.
Részletesebben1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
RészletesebbenFeladatok matematikából 3. rész
Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!
RészletesebbenIntegrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
RészletesebbenGyakorlo feladatok a szobeli vizsgahoz
Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F
Részletesebben12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
RészletesebbenKOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor
Részletesebben10. Differenciálszámítás
0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =
Részletesebben1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis
RészletesebbenVIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
RészletesebbenMatematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
RészletesebbenSzili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány
Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........
Részletesebben2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
RészletesebbenMatematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
Részletesebbenb) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
RészletesebbenPTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
RészletesebbenI. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
RészletesebbenMatematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
Részletesebben5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
RészletesebbenDIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
RészletesebbenJPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,
Részletesebben2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
RészletesebbenKalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
Részletesebbenvalós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
RészletesebbenAz egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenKalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
RészletesebbenElérhető maximális pontszám: 70+30=100 pont
Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenA Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
Részletesebben2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.
. Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján
RészletesebbenHÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenTerületszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd
Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás
RészletesebbenDefiníció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény.
8. Differenciálegyenletek 8.1. Alapfogalmak Korábbi tanulmányaink során sokszor találkoztunk egyenletekkel. A feladatunk általában az volt, hogy határozzuk meg az egyenlet megoldását (megoldásait). Az
Részletesebben7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) =
. feladatsor: szeparábilis és els rend lineáris dierenciálegyenletek x. Mutassuk meg, hogy y = e x e t2 dt + 3e x megoldása az alábbi dierenciálegyenletnek: y y = e x+x2. 2. Adjuk meg az y = e 3x + 2x
RészletesebbenHatározatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
RészletesebbenHatározott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
RészletesebbenTöbbváltozós függvények Feladatok
Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk
RészletesebbenFeladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
RészletesebbenMatematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
RészletesebbenTöbbváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
RészletesebbenMatematika szigorlat javítókulcs, Informatika I máj. 30.
Matematika szigorlat javítókulcs, Informatika I. 006. máj. 0.. Legyen f : [0, [ R, f (x)= x x +. a) Vizsgálja meg a függvényt monotonitás szempontjából! f (x)= x (x + ). x=0 0
RészletesebbenKOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor
RészletesebbenDifferenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
RészletesebbenMatematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Részletesebbenn 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,
205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:
Részletesebben8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,
3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5
RészletesebbenTartalomjegyzék. 1. Előszó 1
Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenÉrtelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
Részletesebben6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
RészletesebbenA fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Részletesebbenfüggvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenFeladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet
Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =
Részletesebben2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Részletesebben2.7. Fourier-sor Gyakorló feladatok... 84
Tartalomjegyzék. Közönséges differenciálegyenletek 3.. Bevezető.................................... 3.. Szétválasztható változójú differenciálegyenletek.............. 4... Gyakorló feladatok..........................
Részletesebben0, különben. 9. Függvények
9. Függvények 9.. Ábrázolja a megadott függvényeket, és vizsgálja meg a függvények korlátosságát, monotonitását, konveitását, paritását, előjelét, zérushelyeit, periodicitását és határozza meg a valós
Részletesebben2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
RészletesebbenÍrja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6
Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja
Részletesebben4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
RészletesebbenKOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 10 X PARCIÁLIS DIFFERENCIÁLEGYENLETEk 1 Elsőrendű kvázilineáris parciális DIFFERENCIÁLEGYENLETEk Elméleti alapok Elsőrendű kvázilineáris parciális differenciálegyenlet általános
RészletesebbenMegoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
Részletesebben1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
RészletesebbenFeladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.
Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t
RészletesebbenMatematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
RészletesebbenHatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
Részletesebben1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.
Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7
RészletesebbenAnalízis házi feladatok
Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,
RészletesebbenFeladatgyûjtemény. Analízis III. Sáfár Zoltán
Feladatgyûjtemény Analízis III. Sáfár Zoltán NyME-SEK 20 Tartalomjegyzék. Számsorozatok számsorok 2. Differenciálszámítás 5 2.. L Hospital-szabály............................... 7 3. Függvénysorok Taylor-polinom
RészletesebbenAz integrálszámítás néhány alkalmazása
Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8
RészletesebbenMATEMATIKA 2. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 2. 1.2 Azonosító (tantárgykód) GKNB_MSTM008 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 2 gyakorlat
RészletesebbenCsomós Petra. Loránd Tudományegyetem, Budapest. függvénytan, valós és komplex vonalintegrál)
Oktatási és témavezetői tevékenység Csomós Petra 1. Oktatás 2001.09 12. 2003.09 12. 2001.02 06. 2003.02 06. 2002.09 12. 2004.09 12. 2003.02 06. 2005.02 06. Analízis I. gyakorlat meteorológus és geofizikus
RészletesebbenDifferenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék
Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és
RészletesebbenYBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Részletesebben