1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor"

Átírás

1 . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis konvergens, ha bármely ε > 0 esetén van olyan N(ε) küszöbindex, hogy minden n > m > N(ε) esetén n k=m+ a k < ε.. n 2. ( ) n n 3. n 2 Határozza meg a következő végtelen sorok összegét. Sorösszeg meghatározása parciális törtekre bontás módszerével. Meghatározandó a p (n + r)(n + s) sor összege. A sor n-edik tagjára p (n + r)(n + s) = p s r s r (n + r)(n + s) = p ( s r n + r ). n + s Ekkor a sor n-edik részletösszege s n = n k= p n (k + r)(k + s) = k= p s r s r (k + r)(k + s) = p s r ahol a jobboldali összeg teleszkopikus, így s n határértéke kiszámítható. n k= ( k + r ), k + s Tétel. (Geometriai sor összege) Ha q <, akkor a q n sor konvergens, és q n = q n(n + ) 3 n 2 + 5n n 2 + 3n + 2 log ( n ) n 2 + 3n ( ) 2 n 5

2 0. 3 2n+2 5 n 3 n n+4 3 n 5 n n+2 5 n 3 2n n+ + 3 n 5 n n + 2 n+ 4 n+3 5. ( 2) n+ 2 2n 3 Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából valamelyik összehasonlító kritériumot használva. Tétel. (Majoráns, minoráns kritérium) Ha a a n és a b n pozitív tagú sorok tagjaira véges sok indextől eltekintve érvényes az a n b n egyenlőtlenség, akkor (i) ha b n konvergens, akkor a n is konvergens, és (ii) ha a n divergens, akkor b n is divergens. Tétel. Ha a n, b n > 0 minden n N esetén és a n lim = L > 0, n b n akkor a a n és b n sorok közül vagy mindkettő divergens vagy mindkettő konvergens. 6. ( n ) ( ) 2 n n n + 3 n 2 2n n + 5 3n n(n + ) (3n ) n + 3 n 2 n n 2 n n 3 5 n sin π n A hányados-, illetve gyökkritériumot használva vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. 2

3 Tétel. (Gyökkritérium) Legyen (a n ) pozitív tagú sorozat, ekkor ha <, akkor a a n sor konvergens; lim n an >, hakkor a a n sor divergens; n =, akkor a a n lehet konvergens is, és divergens is. Tétel. (Hányadoskritérium) Legyen (a n ) pozitív tagú sorozat, ekkor ha a <, akkor a a n sor konvergens; n+ lim >, hakkor a a n a n sor divergens; n =, akkor a a n lehet konvergens is, és divergens is n ( 2) n 27. ( ) n + n 28. 2n e n n n+ n n 2 n 3n + n 3 + n n! 2 n + ( 2 n + n) n n n! n! n n (2n ) n Tétel. (Integrálkritérium) Legyen j N rögzített és f : [j, ) R folytonos, monoton csökkenő és pozitív. Ekkor a n=j f(n) végtelen sor akkor és csak akkor konvergens, ha az j f(x) dx improprius integrál konvergens. Ekkor j f(x) dx f(n) n=j j f(x) dx, illetve j f(x) dx f(n) f(j) + n=j j f(x) dx. 36. Az integrálkritériumot használva igazolja, hogy a becslést az összegére. n 2 sor konvergens, és adjon 3

4 37. Az integrálkritériumot használva igazolja, hogy a becslést az összegére. n 2 sor konvergens, és adjon + 5 A Leibniz kritériumot használva vizsgálja meg a következő végtelen sorokat konvergencia, illetve abszolút konvergencia szempontjából. Tétel. (Leibniz-kritérium) Ha az (a n ) pozitív tagú szigorúan monoton csökkenő ( 0 < a n+ < a n ) sorozatra lim n a n = 0, akkor a ( ) n a n sor konvergens. Tétel. Abszolút konvergens sor konvergens ( ) n 2n ( ) n n 3 n n 39. ( ) n 3n + n ( ) n n + 2 n ( ) n 2n 3 n + 2 Határozza meg a következő hatványsorok konvergenciatartományát. Tétel. (Cauchy-Hadamard) A a nx n hatványsor konvergenciasugara ϱ, ahol ϱ = lim n an = lim a n+ n n a n, amennyiben a fenti határérték létezik és véges. Ha a határérték végtelen, akkor a konvergenciasugár 0, ha a határérték 0, akkor a konvergenciasugár végtelen. 43. x n n2 n 44. (n + ) 5 x 2n 2n n2 x n 46. (x + 3) n n n x n n! 48. (x 3) n n 2 2 n Határozza meg a következő függvények Taylor-sorát a megadott pontok körül. 4

5 Taylor-sor. Legyen az f : I R függvény akárhányszor differenciálható a 0-t is tartalmazó nyitott I intervallumon. A f (k) (0) x k k! hatványsort az f függvény Taylor-sorának nevezzük. Taylor-formula. Ha az f : I R függvény (n + )-szer folytonosan differenciálható a 0-t is tartalmazó I intervallumon, akkor minden x I esetén ahol f(x) = valamely 0 és x közötti c számra. k=0 f (k) (0) x k + R n+ (x), k! R n+ (x) = f n+ (c) (n + )! xn+ Tétel. Ha a a nx n hatványsor konvergens a ( c, c) intervallumon, és f(x) = a nx n, x ( c, c), akkor az f függvény Taylor-sora a nx n, azaz f (n) (0) = a n n! (n {0,, 2,...}) 49. f(x) = x 2, x 0 = f(x) = x, x 0 = 2 5. f(x) = + x 2, x 0 = f(x) = + 2x, x 0 = 53. f(x) = sin x, x 0 = Határozza meg az f(x) = e x függvény 0 körüli Taylor-sorának első három tagját, majd ennek segítségével becsülje az integrált. 0 e x dx 5

6 55. Határozza meg az f(x) = e x2 /2 függvény x 0 = 0 körüli Taylor sorának első négy tagját, majd ennek segítségével adjon becslést az határozott integrálra. 2π e x2 /2 dx Tétel. Legyen a a nx n hatványsor konvergens a ( c, c) intervallumon. Definiáljuk az f : ( c, c) R függvényt a következőképpen: Ekkor a f(x) := a n x n. (n + )a n+ x n = a + 2a 2 x + 3a 3 x hatványsor is konvergens a ( c, c) intervallumon, az f függvény differenciálható a ( c, c) intervallumon, és f (x) = (n + )a n+ x n. (x ( c, c)). Tétel. Legyen a a n hatványsor konvergens a ( c, c) intervallumon. Definiáljuk az f : ( c, c) R függvényt a következőképpen: Ekkor a f(x) := a n x n. a n n + xn+ = a 0 x + a 2 x2 + a 2 3 x hatványsor is konvergens a (-c,c) intervallumon, az f függvény folytonos a ( c, c) intervallumon, és f(x) dx = a n n + xn+ (x ( c, c)). 6

7 Tétel. Legyen a a nx n hatványsor konvergens a ( c, c) intervallumon, és legyen f(x) = a n x n, ha x ( c, c). Ha az f függvény kiterjeszthető a ( c, c] intervallumra úgy, hogy c-ben folytonos legyen, akkor a a nx n hatványsor konvergens c-ben is, és f(c) = a n c n. 56. Határozza meg az f(x) = ln ( x) függvény Taylor-sorát az a = 0 pont körül, és ezt felhasználva határozza meg a ( ) n+ n = sor összegét. 57. Határozza meg az f(x) = arctan x függvény Taylor-sorát az a = 0 pont körül, és ezt felhasználva határozza meg a sor összegét. ( ) n+ 2n + = Határozza meg az f(x) = ( + x) ln ( + x) függvény Taylor-sorát az a = 0 pont körül, és ezt felhasználva határozza meg a sor összegét. n=2 ( ) n+ n 2 n = Tétel. (Binomiális sorfejtés) Ha x <, akkor ( + x) α = ( ) α x n, n ahol ( ) α = n α(α )(α 2)... (α n + ), n! ( ) α =. 0 7

8 59. A binomiális sorfejtést használva határozza meg az f(x) = + x függvény a = 0 pont körüli Taylor-sorának első 4 tagját. A megfelelő függvények binomiális sorfejtését felhasználva adjon becslést a következőkre A binomiális sor segítségével becsülje meg /2 0 3 x 2 + dx értékét. Fourier-sor Az f ( π, π) intervallumon integrálható függvény Fourier-sora ahol és f(x) a a n cos nx + b n sin nx, a n = π b n = π π π π π f(x) cos nx dx, n = 0,, 2,... f(x) sin nx dx, n =, 2,... Tétel. (Parseval-formula) Ha az f függvény négyzetesen integrálható a ( π, π) intervallumon, akkor π π ( ( a 2 0 f(x) 2 + a n cos nx + b n sin nx)) dx 0, (n ), továbbá érvényes az úgynevezett Parseval-formula: π f 2 (x) dx = a2 0 π π 2 + (a 2 n + b 2 n). 64. Adja meg az f(x) = x függvény Fourier-sorát, majd ennek segítségével számítsa ki a sor összegét. n Határozza meg az f(x) = sgn x függvény Fourier-sorát. 8

9 2. Differenciálegyenletek Oldja meg a következő szétválasztható változójú differenciálegyenleteket, illetve kezdetiérték problémákat. Szétválasztható változójú differenciálegyenlet. Az y = g(x)h(y) típusú egyenletet szétválasztható változójú differenciálegyenletnek nevezzük. 66. y = x y 67. xyy = x y = + y y tan x = y 70. y + yx x 7. xy = y 2 y 72. x 2 y + y = 2xy 73. y (x + 3) y + = 0 y( ) = y y sin x = 0 y(π) = xy + y = y 2 y() = yy cos x = tan x y(π) = A rádium bomlási sebessége arányos a pillanatnyi rádiummennyiséggel. Ha a bomlás következtében a rádium mennyisége kereken 600 év alatt a felére csökken, a kiindulási anyag mennyiségének hány százaléka bomlik el 00 év alatt? Oldja meg a következő homogén fokszámú differenciálegyenleteket. 9

10 Homogén fokszámú differenciálegyenlet. Az y = f ( y x), illetve y = f ( ) x y alakú egyenleteket változóiban homogén fokszámú differenciálegyenletnek nevezzük. Az első esetben az u = y/x, a másodikban a v = x/y helyettesítést elvégezve az u + xu = f(u), illetve v xv = g(v)v 2 szétválasztható változójú differenciálegyenlethez jutunk. 78. xy = 2y + x 79. y y x = x2 80. x y + xy = 0 8. xe y x + y xy = x 2 y = 2xy y y = x + y x y 84. x 2 y 2 + 2xyy = 0 Oldja meg a következő elsőrendű lineáris differenciálegyenleteket. Lineáris differenciálegyenlet. Az y + p(x)y = q(x) alakú egyenletet lineáris differenciálegyenletnek nevezzük. Ha q(x) = 0, akkor a lineáris differenciálegyenletet homogénnek, különben inhomogénnek nevezzük. Tétel. Az inhomogén lineáris differenciálegyenlet általános megoldását az y IH = y H + y p összefüggés szolgáltatja, ahol y H = cf(x) a homogén egyenlet megoldása, y p az inhomogén egyenlet egy partikuláris megoldása. Konstansvariáció. Az inhomogén egyenlet y p partikuláris megoldását y p = c(x)f(x) alakban keressük, melyet az eredeti egyenletbe visszahelyettesítve c(x)-re a következő egyenletet kapjuk c (x)f(x) = q(x). 0

11 85. y + yx x = y y x = x2 87. y xy = x y + y = e x 89. xy y x + = x 90. xy + y = x ln x 9. y cos x + y sin x = 92. (x + )y y = 3x 4 + 4x 3 Oldja meg a következő konstans együtthatójú másodrendű differenciálegyenleteket. Másodrendű konstans együtthatós differenciálegyenlet. Az () y + ay + by = 0 alakú egyenletet homogén másodrendű konstans együtthatós differenciálegyenletnek nevezzük. A λ 2 + aλ + b = 0 egyenletet az () alatti differenciálegyenlet karakterisztikus egyenletének nevezzük. Ennek megoldását jelölje λ, λ 2 C. Ekkor az egyenlet megoldása y = c e λ x + c 2 e λ 2x, y = c e λ x + c 2 xe λ x, y = e p (c cos qx + c 2 sin qx), ha λ λ 2 és λ, λ 2 R ha λ = λ 2 és λ R ha λ = p + qi és λ 2 = p qi Tétel. Az y + ay + by = q(x) inhomogén másodrendű konstans együtthatós differenciálegyenlet megoldása y IH = y H + y p, ahol y H a homogenizált egyenlet megoldása, y p pedig egy partikuláris megoldás. 93. y + 5y + 4y = y + 5y + 4y = 2x y + 5y + 4y = 3e x 96. y + y 5y = cos 2x 97. y 3y + 2y = e x 98. y + 4y = 2 sin x

12 99. Oldja meg a következő kezdetiérték problémát y 4y + 5y = 0 y (0) = 3 y(0) = 2 3. Többváltozós valós függvények Határozza meg a következő függvények értelmezési tartományát. 00. f(x, y) = x 0. f(x, y) = ln ( + y) 02. x y 04. f(x, y) = y 2y + y 2 x 03. f(x, y) = x 2 + y f(x, y) = sin x cos y Határozza meg a következő határértékeket. Derékszögű és polárkoordináta-rendszer kapcsolata. x = r cos ϕ r = x 2 + y 2 y = r sin ϕ tan ϕ = y x 06. xy 2 lim (x,y) (2, ) x 2 + y sin xy lim (x,y) (0,2) x 08. 2xy y 2 lim (x,y) (0,0) x 2 + y lim (x,y) (0,0) xx2 x 2 + y 2 0. xy 2 lim (x,y) (0,0) x 2 + y 4. x + lim (x,y) (2,) y 2. xy + 2x 3y + lim (x,y) (2,) yx + x 2 3. xy + 2x 3y + lim (x,y) (,) yx + x Definíció alapján határozza meg a következő függvények parciális differenciálhányadosait a 2

13 megadott helyen. Parciális derivált. Legyen adott az f : D R 2 R függvény. Tegyük fel, hogy f értelmezve van x 0 = (x 0, y 0 ) D egy környezetében. Ha a f x (x 0) = f x(x 0 ) = f x(x f(x 0 + h, y 0 ) f(x 0, y 0 ) 0, y 0 ) := lim h 0 h határérték létezik és véges, akkor azt mondjuk, hogy f x-szerint parciálisan differenciálható az x 0 pontban, az f x(x 0 ) értéket pedig az f x 0 pontban vett x-szerinti parciális deriváltjának nevezzük. 4. f(x, y) = xy 2, P (2, 3) 5. f(x, y) = 2x y +, P (2, ) Totális differenciálhatóság. Legyen adott az f : D R 2 R függvény. Tegyük fel, hogy f értelmezve van x 0 D egy környezetében. Az f függvény (totálisan) differenciálható az x 0 pontban, ha létezik A = (A, A 2 ) R 2 és a 0 egy V környezetében értelmezett ω : V R függvény úgy, hogy f(x) = f(x 0 ) + A (x x 0 ) + ω(x x 0 ) az x 0 egy környezetében lévő minden x pontra, továbbá ω(x x 0 ) lim x x 0 x x 0 = 0. Ekkor az A = (A, A 2 ) R 2 vektort az f függvény x 0 pontban vett gradiensének nevezzük. Jelölés: f(x 0 ) = A. Totális differenciálhatóság szükséges feltétele. Ha az f : D R 2 R függvény totálisan differenciálható az x 0 = (x 0, y 0 ) D pontban, akkor mindkét változója szerint parciálisan is differenciálható, továbbá ( f f(x 0 ) = x (x 0), f ) y (x 0) = ( f x(x 0 ), f y(x 0 ) ). Totális differenciálhatóság elegendő feltétele. Ha az x 0 = (x 0, y 0 ) D pont valamely környezetében az f : D R 2 R függvény mindkét parciális deriváltja létezik, továbbá az x 0 pontban folytonosak, akkor f(x, y) az x 0 pontban totálisan differenciálható és f(x 0 ) = ( f x (x 0), f ) y (x 0) = ( f x(x 0 ), f y(x 0 ) ). 3

14 6. Definíció szerint mutassa meg, hogy az f(x, y) = x 2 + xy y 2 függvény totális differenciálható, majd határozza meg a gradiens vektorát és parciális deriváltjait. 7. Határozza meg az f(x, y) = xy függvény parciális deriváltjait és totális differenciálját az origóban. Határozza meg a következő függvények érintősíkjának egyenletét az adott M pontokban. Érintősík egyenlete. Legyen az f(x) függvény differenciálható az x 0 = (x 0, y 0 ) pontban. A z = f(x 0 ) + f(x 0 )(x x 0 ) egyenletű sík az f függvény (x 0, f(x 0 )) pontbeli érintősíkja. 8. f(x, y) = x 2 + xy + 2y 2, M(, 2) 9. f(x, y) = xy 2 2x +, M(0, 4) 20. f(x, y) = x 2 y + 2x 2 y, M(2, ) Határozza meg a következő függvények u irány szerinti deriváltját a megadott P pontban. Irány menti derivált. Legyen adott az f : D R 2 R függvény. Tegyük fel, hogy f értelmezve van x 0 = (x 0, y 0 ) D egy környezetében. Az f függvény x 0 pontban vett u ( u = ) irány szerinti deriváltja az határérték, ha létezik és véges. f u = lim h 0 f(x 0 + hu) f(x 0 ) h Tétel. Ha az f : D R 2 R függvény differenciálható az x 0 pontban, akkor f bármely u, ( u = ) irány szerint differenciálható x 0 -ban, és f u(x 0 ) = f(x 0 ) u 2. f(x, y) = x 2 y, P (, ), u(3, 4) ( 22. f(x, y) = x 2 xy, P (, 2), u 3 5, 4 ) f(x, y) = 3xe y2 sin x, P (0, ), u( 2, 2) 4

15 24. f(x, y) = x tan y e xy2, P (, 0), u(, ) Határozza meg a következő függvények szélsőértékeit. Szélsőérték létezésének szükséges feltétele. Ha az f(x) : D R 2 R függvény differenciálható az x 0 pontban, és ott lokális szélsőértéke van, akkor f(x 0 ) = 0. Szélsőérték létezésének elegendő feltétele. Tegyük fel, hogy az f(x) : D R 2 R függvénynek léteznek és folytonosak a másodrendű parciális deriváltjai az x 0 pont egy környezetében, továbbá f(x 0 ) = 0. Legyen Ha D(x 0 ) = f xx(x 0 ) f yy(x 0 ) [f xy(x 0 )] 2 D(x 0 ) < 0, akkor x 0 nem lokális szélsőértékhely; D(x 0 ) > 0 és f xx(x 0 ) > 0 akkor f-nek x 0 -ban lokális minimuma van; D(x 0 ) > 0 és f xx(x 0 ) < 0 akkor f-nek x 0 -ban lokális maximuma van. 25. f(x, y) = (x ) 2 + 2y f(x, y) = y 2 + 2x 2 y + x f(x, y) = yx 2 /2 yx + y f(x, y) = x 2 xy + y 2 2x + y 29. f(x, y) = x 4 + y 4 2x 2 + 4xy 2y f(x, y) = 2x 2 + y 2 2xy + 4x 2y Egy téglatest egy pontba összefutó éleinek a hossza 2. Mekkorák a lehető legnagyobb ilyen térfogatú téglatest élei? Oldja meg a következő egzakt differenciálegyenleteket. 5

16 Egzakt differenciálegyenlet. A P (x, y)dx + Q(x, y)dy = 0 egyenletet egzakt differenciálegyenletnek nevezzük, ha P y = Q x. Ekkor van olyan U(x, y) függvény, melynek totális differenciálja du = P (x, y)dx + Q(x, y)dy. 32. (2xy 3)dx + x 2 dy = dx 2 x y + 4 x y 2 dy = 0 x y 34. ( 2xy + ) ( ) x 2 dx + + y + x2 dy = (cos x x sin x + y)dx + (x cos y)dy = 0 Határozza meg az integrálási tartományt és írja fel a határokat a fordított sorrendben történő integráláshoz f(x, y) dy dx x 0 0 f(x, y) dy dx 38. x 2 0 x f(x, y) dy dx /x 0 f(x, y) dy dx Számítsa ki az alábbi kettős integrálokat. 40. D (x2 + 2y) dy dx, ahol D a tengelyek és az x + 2y = 2 egyenletű egyenes által határolt háromszög. 4. x 0 x 2 x + y dy dx 42. x x 2 + 2y dy dx /x 0 xy dy dx 44. D x2 + y 2 dy dx, ahol D az egység sugarú kör. x 0 x 2 x + y 3 dy dx 6

17 46. 2xy D dy dx, ahol D az az origó középpontú körgyűrű, mely külső körének sugara x 2 +y 2 2, belső körének sugara pedig. 47. Határozza meg az R sugarú gömb térfogatát. 48. Határozza meg az e x2 /2 integrál értékét. 4. Komplex függvénytan Igazolja, hogy a következő függvények harmonikusak, majd határozza meg a harmonikus társat. Harmonikus társ keresés. harmonikusnak nevezzük, ha teljesíti a Laplace-egyenletet: A kétszer folytonosan differenciálható u(x, y) függvényt u xx + u yy = 0. A v(x, y) függvényt az u(x, y) függvény harmonikus társának nevezzük, ha harmonikus és teljesíti a Cauchy-Riemann egyenleteket: u x = v y, u y = v x 49. u(x, y) = x 2 5xy + 3y y x 3 3xy 2 5. u(x, y) = x 3 y xy 3 + 2x + 3y 52. Határozza meg az (z 2i) dz integrál értékét, ahol L az A = 3 i, B = + 2i L pontokat összekötő szakasz 53. Határozza meg az (z + 3 2i) dz integrál értékét, ahol L az A = i, B = 2i L pontokat összekötő szakasz 54. Határozza meg az (z + 3 2i) dz integrál értékét, ahol L a 2i középpontú, r = L sugarú körnek az A = i, B = 2i pontjait összekötő negyed körív (A B) 7

18 55. Határozza meg az L (z i) dz integrál értékét, ahol L a i középpontú, r = 2 sugarú körnek az A = i, B = 3i pontjait összekötő fél körív (A B) 56. Határozza meg az (z i) dz integrál értékét, ahol L a i középpontú, r = 2 sugarú L körnek az A = i, B = 3i pontjait összekötő fél körív (A B) Határozza meg az a következő függvények Laurent-sorát a megadott pontok körül 57. f(z) = z, P = + i 58. f(z) = z 2i z + 2i, P = i 59. f(z) = z 2 +, P = i 60. f(z) = z 3 ( z), P = 0 6. f(z) = z 3 ( z), P = Határozza meg F (F )-et, ha, 62. F (s) = 2 s F (s) = 3 s F (s) = s s 2 2s F (s) = 7s s 2 + 3s F (s) = 3 s 6 + 6s s F (s) = 2s + s(s )(s + 2) Oldja meg a következő kezdetiérték problémákat Laplace-transzformáció segítségével. y y 2y = 0 y 2y + 5y = 8e x 68. y(0) = y(0) = 2 y (0) = 5 y (0) = 2 y 4y + 5y = 4e 3x y 4y = 3e x 70. y(0) = 2 7. y(0) = y (0) = 7 y (0) = 5 8

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) =

7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) = . feladatsor: szeparábilis és els rend lineáris dierenciálegyenletek x. Mutassuk meg, hogy y = e x e t2 dt + 3e x megoldása az alábbi dierenciálegyenletnek: y y = e x+x2. 2. Adjuk meg az y = e 3x + 2x

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

VIK A3 Matematika, Gyakorlati anyag 2.

VIK A3 Matematika, Gyakorlati anyag 2. VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére Matematika II. Feladatgyűjtemény GEMANB Anyagmérnök BSc szakos hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . gyakorlat Matematika II.. Az alábbi f függvényeknél adja meg f -t! f() = + 5; (b) f()

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Differenciálegyenletek

Differenciálegyenletek Differenciálegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, I. félév Losonczi László (DE) Differenciálegyenletek 2011/12 tanév, I. félév 1 /

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0, Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Feladatgyûjtemény. Analízis III. Sáfár Zoltán

Feladatgyûjtemény. Analízis III. Sáfár Zoltán Feladatgyûjtemény Analízis III. Sáfár Zoltán NyME-SEK 20 Tartalomjegyzék. Számsorozatok számsorok 2. Differenciálszámítás 5 2.. L Hospital-szabály............................... 7 3. Függvénysorok Taylor-polinom

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

2.7. Fourier-sor Gyakorló feladatok... 84

2.7. Fourier-sor Gyakorló feladatok... 84 Tartalomjegyzék. Közönséges differenciálegyenletek 3.. Bevezető.................................... 3.. Szétválasztható változójú differenciálegyenletek.............. 4... Gyakorló feladatok..........................

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1 Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

A gyakorlatok anyaga

A gyakorlatok anyaga A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor

Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor Bodrogné Réffy Júlia, Horváth Róbert 2018/19. II. félévtől Tantárgykód: BMETE90AX20 Félév: 2018/19. tavasz Nyelv: magyar

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

Matematika M1 Gyakorlat

Matematika M1 Gyakorlat Matematika M Gyakorlat BME - Gépésmérnök MSc Gyakorló Feladatsor. Zh. Határoa meg a α paraméter értékét úgy hogy a vx y = αx y xy 4y 3 3 kétváltoós függvény egy reguláris komplex függvény képetes rése

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

Feladatok Oktatási segédanyag

Feladatok Oktatási segédanyag VIK, Műsaki Informatika ANAÍZIS () Komplex függvénytan Feladatok Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műsaki informatikus hallgatóinak tartott előadásai alapján össeállította: Frit

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,

Részletesebben

Gyakorlo feladatok a szobeli vizsgahoz

Gyakorlo feladatok a szobeli vizsgahoz Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F

Részletesebben

Részletes tantárgyprogram és követelményrendszer

Részletes tantárgyprogram és követelményrendszer Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika II. KMEMA21TND Kreditérték:

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 10 X PARCIÁLIS DIFFERENCIÁLEGYENLETEk 1 Elsőrendű kvázilineáris parciális DIFFERENCIÁLEGYENLETEk Elméleti alapok Elsőrendű kvázilineáris parciális differenciálegyenlet általános

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben