Matematika III. harmadik előadás
|
|
- Elek Illés
- 8 évvel ezelőtt
- Látták:
Átírás
1 Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13
2 tétel Az y (x) + p(x)y (x) + q(x)y(x) = f (x) egyenlet általános megoldása előáll y(x) = y h (x) + y p (x) alakban, ahol y h a homogén egyenlet általános megoldása, y p pedig az inhomogén egyenlet egy (partikuláris) megoldása. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 2 / 13
3 konstansvariálás Ha y 1 (x) és y 2 (x) a homogén egyenlet két lineárisan független megoldása, akkor az inhomogén egyenletnek mindig van y p (x) = C 1 (x)y 1 (x) + C 2 (x)y 2 (x) alakú megoldása valamely alkalmas C 1 (x) és C 2 (x) függvényekkel. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 3 / 13
4 tétel Legyenek y 1 (x) és y 2 (x) az y (x) + p(x)y (x) + q(x)y(x) = 0 homogén egyenlet lineárisan független megoldásai. Ekkor az y(x) = C 1 (x)y 1 (x) + C 2 (x)y 2 (x) függvény megoldása az y (x) + p(x)y (x) + q(x)y(x) = f (x) inhomogén egyenletnek, ha a C 1 (x) és C 2 (x) függvények eleget tesznek az alábbi egyenletrendszernek C 1 (x)y 1(x) + C 2 (x)y 2(x) = 0 C 1 (x)y 1 (x) + C 2 (x)y 2 (x) = f (x). Ez valójában egy inhomogén lineáris egyenletrendszer, mely mindig egyértelműen megoldható, mert az alapmátrix determinánsa nem nulla (ugyanis a Wronski determináns nem nulla), így például Cramer szabállyal megoldhatjuk. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 4 / 13
5 példa Oldjuk az y (x) + 5y (x) + 6y(x) = 12e x differenciálegyenletet! (homogén egyenlet megoldása) A differenciálegyenlethez tartozó homogén egyenlet: y + 5y + 6y = 0. Ennek karakterisztikus egyenlete λ 2 + 5λ + 6 = 0. A másodfokú egyenlet megoldása λ 1 = 2, λ 2 = 3. Két különböző valós megoldás van (azaz a diszkrimináns pozitív), így a homogén egyenlet általános megoldása y h (x) = C 1 e 2x + C 2 e 3x (C 1, C 2 R). (konstansvariálás Cramer szabály) Az inhomogén egyenlet egy megoldását y p (x) = C 1 (x)e 2x + C 2 (x)e 3x alakban keressük. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 5 / 13
6 A C 1 (x) és C 2 (x) függvényekre teljesülnie kell a C 1 (x)e 2x + C 2 (x)e 3x = 0 2C 1 (x)e 2x 3C 2 (x)e 3x = 12e x egyenletrendszernek. Ez egy lineáris egyenletrendszer C 1 (x)-re és C 2 (x)-re, melyet Cramer-szabállyal fogunk megoldani. Az egyenletrendszer alapmátrixa ( e A = 2x e 3x ). 2e 2x 3e 3x Ennek determinánsa D = e 5x. Legyen D 1 annak a mátrixnak a determinánsa, melyet úgy kapunk, hogy az alapmátrix első oszlopát az egyenletrendszer jobb oldalából képzett oszlopvektorral helyettesítjük: ( D 1 = det 0 e 3x 12e x 3e 3x ) = 12e 2x. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 6 / 13
7 A C 1 (x) és C 2 (x) függvényekre teljesülnie kell a C 1 (x)e 2x + C 2 (x)e 3x = 0 2C 1 (x)e 2x 3C 2 (x)e 3x = 12e x egyenletrendszernek. Ez egy lineáris egyenletrendszer C 1 (x)-re és C 2 (x)-re, melyet Cramer-szabállyal fogunk megoldani. Az egyenletrendszer alapmátrixa ( e A = 2x e 3x ). 2e 2x 3e 3x Ennek determinánsa D = e 5x. Legyen D 1 annak a mátrixnak a determinánsa, melyet úgy kapunk, hogy az alapmátrix első oszlopát az egyenletrendszer jobb oldalából képzett oszlopvektorral helyettesítjük: ( D 1 = det 0 e 3x 12e x 3e 3x ) = 12e 2x. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 6 / 13
8 Legyen D 2 annak a mátrixnak a determinánsa, melyet úgy kapunk, hogy az alapmátrix második oszlopát az egyenletrendszer jobb oldalából képzett oszlopvektorral helyettesítjük: ( D 2 = det A Cramer szabály alapján e 2x 0 2e 2x 12e x ) = 12e x. C 1 (x) = D 1 D = 12e 2x e 5x = 12e 3x C 2 (x) = D 2 D = 12e x e 5x = 12e4x. A C 1 (x) és C 2 (x) függvényeket integrálással határozhatjuk meg. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 7 / 13
9 (konstansvariálás folytatása-integrálás) Egyrészt C 1 (x) = 12 e 3x dx = 12 e3x 3 = 4e3x, másrészt C 2 (x) = 12 e 4x dx = 12 e4x 4 = 3e4x. Ezeket felhasználva y p (x) = C 1 (x)e 2x + C 2 (x)e 3x = 4e 3x e 2x 3e 4x e 3x = e x. (általános megoldás felírása) A differenciálegyenlet általános megoldása y(x) = C 1 e 2x + C 2 e 3x + e x (C 1, C 2 R). Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 8 / 13
10 definíció Az y (x) = f (x, y(x), y (x)) differenciálegyenletet hiányos másodrendű differenciálegyenletnek nevezzük, ha a jobb oldalon szereplő f függvény nem függ valamelyik változójától. Ha f nem függ y-tól, akkor az y (x) = p(x) helyettesítéssel egy elsőrendű egyenletet kapunk p-re, majd azt integrálva határozhatjuk meg az y függvényt. Ha f nem függ x-től, akkor az y = p(y) helyettesítést alkalmazzuk. Ekkor y = p (y) y = p (y) p(y). Így p-re a p (y)p(y) = f (y, p(y)) elsőrendű egyenletet kapjuk, majd y-t az y = p(y) szeparábilis differenciálegyenlet megoldásaként kapjuk. Ha f nem függ y -től, akkor nincs általános megoldási módszer. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 9 / 13
11 definíció Az y (x) = f (x, y(x), y (x)) differenciálegyenletet hiányos másodrendű differenciálegyenletnek nevezzük, ha a jobb oldalon szereplő f függvény nem függ valamelyik változójától. Ha f nem függ y-tól, akkor az y (x) = p(x) helyettesítéssel egy elsőrendű egyenletet kapunk p-re, majd azt integrálva határozhatjuk meg az y függvényt. Ha f nem függ x-től, akkor az y = p(y) helyettesítést alkalmazzuk. Ekkor y = p (y) y = p (y) p(y). Így p-re a p (y)p(y) = f (y, p(y)) elsőrendű egyenletet kapjuk, majd y-t az y = p(y) szeparábilis differenciálegyenlet megoldásaként kapjuk. Ha f nem függ y -től, akkor nincs általános megoldási módszer. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 9 / 13
12 definíció Az y (x) = f (x, y(x), y (x)) differenciálegyenletet hiányos másodrendű differenciálegyenletnek nevezzük, ha a jobb oldalon szereplő f függvény nem függ valamelyik változójától. Ha f nem függ y-tól, akkor az y (x) = p(x) helyettesítéssel egy elsőrendű egyenletet kapunk p-re, majd azt integrálva határozhatjuk meg az y függvényt. Ha f nem függ x-től, akkor az y = p(y) helyettesítést alkalmazzuk. Ekkor y = p (y) y = p (y) p(y). Így p-re a p (y)p(y) = f (y, p(y)) elsőrendű egyenletet kapjuk, majd y-t az y = p(y) szeparábilis differenciálegyenlet megoldásaként kapjuk. Ha f nem függ y -től, akkor nincs általános megoldási módszer. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 9 / 13
13 példa Tekintsük az (1 + x 2 )y (x) 2xy (x) = 0 differenciálegyenletet. Ez hiányos másodrendű egyenlet, mert hiányzik az y-os tag. Vezessük be a p(x) = y (x) helyettesítést. Ekkor p (x) = y (x). Ennek megfelelően átírva az egyenletet (1 + x 2 )p (x) = 2xp(x) adódik, vagy explicit alakban felírva p = 2x 1 + x 2 p, ami egy szeparábilis differenciálegyenlet. Bevezetve a h(p) = p és g(x) = 2x függvényeket, teljesülnie kell az 1+x 2 1 p dp = 2x 1 + x 2 dx egyenletnek. Elvégezve az integrálásokat ln p = ln(1 + x 2 ) + c p = e ln(1+x 2 )+c = C(1 + x 2 ). Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 10 / 13
14 példa Tekintsük az (1 + x 2 )y (x) 2xy (x) = 0 differenciálegyenletet. Ez hiányos másodrendű egyenlet, mert hiányzik az y-os tag. Vezessük be a p(x) = y (x) helyettesítést. Ekkor p (x) = y (x). Ennek megfelelően átírva az egyenletet (1 + x 2 )p (x) = 2xp(x) adódik, vagy explicit alakban felírva p = 2x 1 + x 2 p, ami egy szeparábilis differenciálegyenlet. Bevezetve a h(p) = p és g(x) = 2x függvényeket, teljesülnie kell az 1+x 2 1 p dp = 2x 1 + x 2 dx egyenletnek. Elvégezve az integrálásokat ln p = ln(1 + x 2 ) + c p = e ln(1+x 2 )+c = C(1 + x 2 ). Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 10 / 13
15 Mivel y (x) = p(x), ezért y (x) = C(1 + x 2 ), ami egy közvetlenül integrálható differenciálegyenlet. Ebből integrálással kapjuk, hogy y(x) = C (x + x 3 ) + D (C, D R). 3 Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 11 / 13
16 példa Tekintsük az y(x) y (x) = ( y (x) ) 2 differenciálegyenletet! Itt az x-es tag hiányzik. Alkalmazzuk az y = p(y) helyettesítést. Ekkor, ahogy azt az általános esetben megmutattuk y = p p. Végrehajtva a helyettesítést az yp p = p 2 differenciálegyenlethez jutunk. Látható, hogy p = 0 megoldás. Most tegyük fel, hogy p 0. Ekkor az előbbi egyenletet explicit alakban írva p = 1 y p adódik, ami egy szeparábilis differenciálegyenlet. A g(y) = 1 y és h(p) = p jelöléssel élve teljesülnie kell az alábbi egyenletnek: 1 h(p) dp = g(y) dy. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 12 / 13
17 példa Tekintsük az y(x) y (x) = ( y (x) ) 2 differenciálegyenletet! Itt az x-es tag hiányzik. Alkalmazzuk az y = p(y) helyettesítést. Ekkor, ahogy azt az általános esetben megmutattuk y = p p. Végrehajtva a helyettesítést az yp p = p 2 differenciálegyenlethez jutunk. Látható, hogy p = 0 megoldás. Most tegyük fel, hogy p 0. Ekkor az előbbi egyenletet explicit alakban írva p = 1 y p adódik, ami egy szeparábilis differenciálegyenlet. A g(y) = 1 y és h(p) = p jelöléssel élve teljesülnie kell az alábbi egyenletnek: 1 h(p) dp = g(y) dy. Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 12 / 13
18 Behelyettesítve a megfelelő függvényeket, majd integrálva és kifejezve p-t 1 p dp = 1 dy ln p = ln y + c p = C y y adódik. Mivel y = p(y), ezért az y = Cy újabb szeparábilis differenciálegyenlethez jutunk. Ennek megoldásához tekintsük az 1 y dy = C dx egyenletet. Ebből ln y = Cx + d adódik, így y(x) = De Cx (C, D R). Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 13 / 13
Differenciálegyenletek
Differenciálegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, I. félév Losonczi László (DE) Differenciálegyenletek 2011/12 tanév, I. félév 1 /
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.
Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
Differenciálegyenletek
DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)
λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)
Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
Differenciálegyenletek december 13.
Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire
Differenciálegyenletek megoldása próbafüggvény-módszerrel
Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós
6. Differenciálegyenletek
312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma
Matematika A3 1. ZH+megoldás
Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
Differenciaegyenletek
Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Reakciókinetika és katalízis
Reakciókinetika és katalízis 5. előadás: /22 : Elemi reakciók kapcsolódása. : Egy reaktánsból két külön folyamatban más végtermékek keletkeznek. Legyenek A k b A kc B C Írjuk fel az A fogyására vonatkozó
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E
differenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Differenciaegyenletek a differenciálegyenletek
Differenciaegyenletek a differenciálegyenletek tükrében Guzsvány Szandra Újvidéki Egyetem, Természettudományi Kar, Újvidék E-mail: g.sandra@citromail.hu 1. Bevezetés 1.1. Történeti áttekintés Dolgozatom
Segédanyag az A3 tárgy gyakorlatához
Segédanyag az A3 tárgy gyakorlatához Sáfár Orsolya Szeparábilis dierenciálegyenletek A megoldásról általában: A szeparábilis dierenciálegyenlet álatlános alakja: y (x) = f(x)g(y). Ebben az esetben g(y)-al
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek
7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,
Definíció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény.
8. Differenciálegyenletek 8.1. Alapfogalmak Korábbi tanulmányaink során sokszor találkoztunk egyenletekkel. A feladatunk általában az volt, hogy határozzuk meg az egyenlet megoldását (megoldásait). Az
Közönséges differenciálegyenletek megoldása Mapleben
Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen
Közönséges differenciálegyenletek
Szegedi Tudományegyetem Fizikus Tanszékcsoport Elméleti Fizikai Tanszék Közönséges differenciálegyenletek Segédlet Készítette: Szaszkó-Bogár Viktor PhD hallgató Szeged 2013 Tartalomjegyzék Előszó.......................................
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Elhangzott tananyag óránkénti bontásban
TTK, Matematikus alapszak Differenciálegyenletek (Előadás BMETE93AM03; Gyakorlat BME TE93AM04) Elhangzott tananyag óránkénti bontásban 2016. február 15. 1. előadás. Közönséges differenciálegyenlet fogalma.
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!
Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.
y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp
Differenciálegyenletek Oktatási segédanyag
VIK, Műszaki Informatika ANALÍZIS (2) Differenciálegyenletek Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műszaki informatikus hallgatóinak tartott előadásai alapján összeállította: Fritz
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 10 X PARCIÁLIS DIFFERENCIÁLEGYENLETEk 1 Elsőrendű kvázilineáris parciális DIFFERENCIÁLEGYENLETEk Elméleti alapok Elsőrendű kvázilineáris parciális differenciálegyenlet általános
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Polinomok maradékos osztása
14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
Differenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
A brachistochron probléma megoldása
A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e
1. Bevezetés Differenciálegyenletek és azok megoldásai
. Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb
7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága
7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Matematika szigorlat, Mérnök informatikus szak I máj. 29.
Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi
Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,
Bevezetés az állapottér elméletbe: Állapottér reprezentációk
Tartalom Bevezetés az állapottér elméletbe: Állapottér reprezentációk vizsgálata 1. Példa az állapottér reprezentációk megválasztására 2. Átviteli függvény és állapottér reprezentációk közötti kapcsolatok
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Differenciálegyenletek gyakorlat december 5.
Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat!
. Mátrixok. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: [ ] [ ] π a A = ; B = 8 7, 5 x. 7, 5 ln y. Legyen 4 A = 4 ; B = 5 5 Számítsuk ki az A + B, A B, A, B mátrixokat!. Oldjuk
Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21.
Analízis előadások Vajda István 2009. március 21. A módszer alkalmazásának feltételei: Állandó együtthatós, lineáris differenciálegyenletek megoldására használhatjuk. A módszer alkalmazásának feltételei:
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
Differenciálegyenlet rendszerek
Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1
Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,
Differenciálegyenletek
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek Példák differenciálegyenletekre Newton második törvénye Egy tömegpont gyorsulása egyenesen arányos a rá ható erővel és fordítottan arányos
2.1. Másodrendű homogén lineáris differenciálegyenletek. A megfelelő másodrendű homogén lineáris differenciálegyenlet általános alakja
2. Másodrendű skaláris differenciálegyenletek 19 2. Másodrendű skaláris differenciálegyenletek Legyen I R egy nyílt intervallum, p, q, f : I R. Az explicit másodrendű inhomogén lineáris skaláris differenciálegyenlet
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Matematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve.
TTK, Matematikus alapszak Differenciálegyenletek 1 (BMETE93AM15) Elhangzott gyakorlati tananyag óránkénti bontásban Mindkét csoport Rövidítve 1 gyakorlat 017 szeptember 7 T01 csoport Elsőrendű közönséges
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei