y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
|
|
- Dániel Bogdán
- 7 évvel ezelőtt
- Látták:
Átírás
1 III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp (Ax n! n= [ n= d exp (Ax = A exp (Ax dx exp (Ax x= = I Az exp (Ax azonosíthatjuk a V(x fundamentális mátrixal Y (x = V(xY, V = AV, V( = I
2 Az exponenciális mátrix függvény meghatározása Legegyszerűbb ha a mátrix diagonalizálható: det(a λi = λ < λ <, < λ n R η (, η (,, η (n sajátvektorokra: Aη (i = λ i η (i ot AT = T = η ( η (n η ( η (n η n ( η n (n λ η ( λ nη (n λ η n ( λ nη n (n, = TD, D = transzformációs mátrix λ λ λ n T AT = D, T A m T = [ T AT ] n = D n e λ x T e λ x exp (AxT = exp (Dx = e λnx
3 Vezessük be a T transzformáció mátrixal új Z = z z n függő változókat Y = TZ, TZ = ATZ Z = T ATZ Z = DZ
4 Példa r = 3, η ( = ( A = ( 4 ; r =, η( = A T transzformációs mátrix és annak T inverze ( ( T = ; T = ( D = T 3 AT = ( e Dx e 3x = e x C 4 4 ( Tehát az Y = AY megoldása Y (x = e (Ax Y ( = Te (Dx T Y ( ( ( ( ( ( e 3x C e 3x e x C Y (x = e x = e 3x e x ahol ( C C = T Y ( Y = C Y (x + C Y (x, Y (x = e 3x ( C, Y (x = e x (
5 Inhomogén lineáris egyenletrendszerek Y = A(xY + B(x, ahol A(x egy n n típusú mátrix, míg Y (x és B(x n komponensű vektor Az egyenlet általános megoldása Y = C Y (x+,, +C ny n(x + V (x ahol C Y (x+,, +C ny n(x a Y AY = homogén egyenletrendszer általános megoldása V (x az inhomogén egyenlet egy partikuláris megoldása
6 Diagonalizálás módszere Az Y = AY + B(x egyenletrendszerben legyen A egy állandó, átlós alakra hozható n n típusú mátrix A diagonalizálást a η (,, η (n sajátvektorokból képezett T transzformációs mátrixal történik Bevezetünk egy új Z = amely eleget tesz az alábbi egyenletnek Y = TZ, z z n vektort TZ = ATZ + B(x Z = (T AT Z + T B(x = DZ + H(x z j (x = r j z j (x + h j (x, j = {,, n} ahol h j (x a b (x,, b n(x meghatározott lineáris kombinációja z j (x = e r j x x x e r j s h j (sds + C j e r j x, j = {,, n}
7 Példa Y = r = 3 és r = ( η ( = ( ( e x Y + 3x A homogén egyenlet általános megoldása y = C ( (, η ( = e 3x + C ( = AY + B(x e x Ha normáljuk a sajátvektorokat, akkor be kell szorozzuk -vel T = (, T = ( Elvégezve az Y = TZ helyettesítést ( Z = DZ + T 3 H(x = Z + ( e x 3x e x + 3x
8 ( Z = DZ + T 3 H(x = Z + ( e x 3x e x + 3x z + 3z = e x 3 x, z = z + z = e x + 3 x e x 3 [ ( x ] + C e x, 3 9 z = xe x + 3 (x + C e x Y = TZ = ( z + z = z + z ( (C/ e 3x + [(C / + = ]e x + x xe x (C / e 3x + [(C / ]e x + x xe x
9 Az állandók változtatásának módszere Egy általánosabb módszert amely akkor is használható ha a mátrix nem állandó vagy nem diagonalizálható Y = A(xY + B(x A fundamentális mátrixa V(x A homogén egyenlet általános megoldása Y = V(xC, ahol C = C C n Y = V(xU(x, ahol U = V (x = A(xV(x u (x u n(x C = V (xu(x + V(xU (x = A(xV(xU(x + B(x ahol C egy tetszőleges állandó vektor V(xU (x = B(x U (x = V (xb(x, U(x = x V (sb(sds + C C C n
10 Y = V(xC + V(x x V (sb(sds Y (x = Y Y = V(xC + V(x x x V (sb(sds Y = V(x C = C = V (x Y Y = V(xV (x Y + V(x x x V (sb(sds A fenti képlet formája még egyszerübb lesz ha a Φ(x fundamentális mátrix eleget tesz a Φ(x = I összefüggésnek Y (x = Φ(xY + Φ(x x x Φ (sb(sds
11 Példa Y = V(xU (x = B(x ( V(x = ( e x Y + 3x ( e 3x ( e 3x e 3x e 3x e x e x e x e x = AY + B(x ( u u ( e x = 3x, ( Y = V(xU(x = C ( + u = e x 3 xe3x, u = + 3 xex u (x = ex e3x = 6 e3x + C, U (x = x + 3 xex 3 ex + C, ( e 3x + C ( e x + ( x 3 e x + ( 4 5, ( xe x +
12 Fourier-sorok Az f (x függvény periódusa P ha f (x = f (x ± P =,, = f (x ± np =, ϕ(t = ϕ(t + T akkor a ϕ(t periódusa T n {,, 3, } Hasonlóan,ha A legközismertebb periódikus függvények a sin x, cos x amelyeknél a periódus π sin x = sin(x + π, cos x = cos(x + π Ugyanezzel a periódussal rendelkezik sin x, sin 3x,, sin nx, illetve cos x, cos 3x,, cos nx, és ezek függvényei
13 Tétel Az f (x = f (x + π periodikus függvény esetén léteznek az a, a, és b, b, együtthatók úgy, hogy f (x = a + (a n cos nx + b n sin nx, n= a jobboldal ún trigonometrikus sor, az f (x függvény Fourier-sora, az a i és b i értékek pedig a függvény Fourier-együtthatói
14 Vegyük észre hogy az {, sin nx, sinmx, cos nx, cos mx, } n m, n, m {,, 3, } függvények szorzatainak integrálja a [, π] intervallumon : π sin nxdx =, n, π cos nxdx =, n, π π = = sin nx sin mxdx =, π cos nx cos mxdx =, sin nx cos mxdx =, n m, ahol felhasználtuk, hogy sin nx sin mx = [cos(n mx cos(n + mx], sin nx cos mx = [sin(n + mx + sin(n mx] összefüggést
15 Két függvény skaláris szorzata (egy adott, például [, π] intervallumon (φ ψ π Ha (φ ψ = függvények ortogonálisak (φ φ a függvény normájának a négyzete φ(xψ(x dx (φ φ φ φ >, φ = φ = A trigonometrikus sor függvényeinek skaláris szorzata : ( sin nx = ( cos nx =, (sin nx sin mx = (cos nx cos mx = (sin nx cos mx = ortogonálisak = sin nx = cos nx = π π π dx = π, sin nx dx = π, cos nx dx = π ( sin nx = ( cos nx = (sin nx cos mx = n, m { π n = m (sin nx sin mx = (cos nx cos mx = πδ nm = {n, m} N n m
16 Ezek után határozzuk meg a trigonometriai sor (Fourier-sor Fourier-együtthatóit az f (x = a + (a n cos nx + b n sin nx egyenlőség alapján Integrálva az egyenlet mindkét oldalát [ π] intervallumban : π n= f (x dx = a π a = π π f (x dx Szorozva az egyenlet mindkét oldalát cos mx-el és integrálva -tól π-ig az előzőek alapján kapjuk, hogy : a n = π π f (x cos nxdx, n = {,,, } Ha az egyenlet mindkét oldalát sin mx-el szorozzúk és ezután integrálunk -tól π-ig, kvetkezik, hogy : b n = π π f (x sin nxdx, n = {,, } Egy π periodocitású függvénynél a π intervallumon képeztett integrálás helyett használhatjuk a π, π intervallumot, sőt általánosabban az α, π α intervallumot is
17 Példa Legyen f : [ π, π] R, π periodicítású {, x [ π, ] f (x = x, x [, π függvény a n = π f (x = a + (a n cos nx + b n sin nx a = π π = sin nx x π π n π π π π π n= f (x dx = π f (x cos nx dx = π π π sin nx dx = n π, ha n páros =, ha n páratlan πn x dx = π, x cos nx dx =, cos nx n π = π ( n n π n =
18 b n = π π π f (x sin nx dx = π π x sin nx dx = cos nx x π + π cos nx π n π n = ( n + sin nx π n π n = ( n+ n Behelyettesítve az együtthatókat f (x = π 4 ( cos x cos 3x cos 5x sin x sin x sin 3x + +, π dx =
differenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
Fourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)
Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Segédanyag az A3 tárgy gyakorlatához
Segédanyag az A3 tárgy gyakorlatához Sáfár Orsolya Szeparábilis dierenciálegyenletek A megoldásról általában: A szeparábilis dierenciálegyenlet álatlános alakja: y (x) = f(x)g(y). Ebben az esetben g(y)-al
1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek
7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,
5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
Matematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,
Határozatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
Differenciálegyenletek
Differenciálegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, I. félév Losonczi László (DE) Differenciálegyenletek 2011/12 tanév, I. félév 1 /
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Differenciálegyenletek december 13.
Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
Lin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
Differenciálegyenletek megoldása próbafüggvény-módszerrel
Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
Fourier-sorok Horv ath G abor 1
Fourier-sorok Horváth Gábor 1 Tartalomjegyzék 1 Bevezetés Szakdolgozatom során periodikus függvények egyfajta közelítésével fogunk foglalkozni. Amíg a Taylor-sornál a függvényeket hatványsor alakban állítjuk
Matematika elméleti összefoglaló
1 Matematika elméleti összefoglaló 2 Tartalomjegyzék Tartalomjegyzék... 2 1. Sorozatok jellemzése, határértéke... 3 2. Függvények határértéke és folytonossága... 5 3. Deriválás... 6 4. Függvényvizsgálat...
(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e
Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x
MODELLEK ÉS ALGORITMUSOK ELŐADÁS
MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Differenciálegyenletek
DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)
Hatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke...
Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 5 2.1. A függvény
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Elérhető maximális pontszám: 70+30=100 pont
Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.
ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1
Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása
Mátrix-exponens, Laplace transzformáció
2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények
Példatár Lineáris algebra és többváltozós függvények
Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................
Matematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
Trigonometrikus függvények azonosságai
Ez az útmutató a képletgyűjtemény táblázataihoz nyújt részletes magyarázatot. A képletgyűjteménynek nem célja, hogy az elméleti tudást helyettesítse, mindössze egy emlékeztető, ami segíti az előadások
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
Differenciálegyenlet rendszerek
Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján
1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.
Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7
Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.
Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t
Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány
Függvénye hatványsorba fejtése, Maclaurin-sor, onvergenciatartomány Taylor-sor, ) Állítsu elő az alábbi függvénye x helyhez tartozó hatványsorát esetleg ülönféle módszereel) éa állapítsu meg a hatványsor
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
Differenciálegyenletek gyakorlat december 5.
Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
Polinomok maradékos osztása
14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
2.1. Másodrendű homogén lineáris differenciálegyenletek. A megfelelő másodrendű homogén lineáris differenciálegyenlet általános alakja
2. Másodrendű skaláris differenciálegyenletek 19 2. Másodrendű skaláris differenciálegyenletek Legyen I R egy nyílt intervallum, p, q, f : I R. Az explicit másodrendű inhomogén lineáris skaláris differenciálegyenlet
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Matematika szigorlat, Mérnök informatikus szak I máj. 29.
Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás
4. Lineáris rendszerek
60 Hartung Ferenc: Differenciálegyenletek, MA22i, MA623d, 2006/07 4 Lineáris rendszerek 4 Lineáris algebrai előismeretek Legyen A egy n n-es mátrix, I az n n-es egységmátrix A pλ := deta λi n-edfokú polinomot
Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41
Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét
Geometria II gyakorlatok
Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
Határozatlan integrál
Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás
1. Mit jelent az, hogy egy W R n részhalmaz altér?
Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál
7. gyakorlat megoldásai
7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Definíció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény.
8. Differenciálegyenletek 8.1. Alapfogalmak Korábbi tanulmányaink során sokszor találkoztunk egyenletekkel. A feladatunk általában az volt, hogy határozzuk meg az egyenlet megoldását (megoldásait). Az
Differenciálegyenletek Oktatási segédanyag
VIK, Műszaki Informatika ANALÍZIS (2) Differenciálegyenletek Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műszaki informatikus hallgatóinak tartott előadásai alapján összeállította: Fritz
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat!
. Mátrixok. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: [ ] [ ] π a A = ; B = 8 7, 5 x. 7, 5 ln y. Legyen 4 A = 4 ; B = 5 5 Számítsuk ki az A + B, A B, A, B mátrixokat!. Oldjuk
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log
1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f