Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
|
|
- Krisztián Kocsis
- 8 évvel ezelőtt
- Látták:
Átírás
1
2 A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni. Azaz az eliminációs fázisban k minden értékére az i ciklusváltozót nemcsak k + 1-től n-ig, hanem 1-től n-ig futtathatjuk, kivéve az i = k esetet. (Ez annak felel meg, mintha az x k -nak az k-adik egyenletből való kifejezése után azt az összes többibe behelyettesítenénk.) Az I. fázis végeredménye így egy diagonálmátrixú egyenletrendszer, vagyis a II. fázis ekkor csupán az x i = b i /a ii (i = 1, 2,..., n) utasításokból áll (amiket menet közben, egy-egy oszlop teljes kinullázása után vagy még előtte azonnal is megtehetünk).
3 A Gauss-Jordan elimináció, mátrixinvertálás Persze, szekvenciálisan végrehajtva ez a módszer nem előnyös, hiszen jelentősen megnő a műveletek száma. Ha viszont csak azután kezdünk a főátló fölötti elemek nullázásával foglalkozni, miután kialakítottuk a felső háromszögmátrixot, és ezt a nullázást a k = n, n 1,..., 2 sorrendben végezzük (tehát az oszlopok szerint visszafelé haladva), akkor az A mátrix elemeihez már nem kell hozzányúlni. Ugyanis az i-edik sor l ik -szor a k-adik sor (i = 1, 2,..., k 1) elvégzése során a k-adik sorban az a kk elem kivételével minden elem (elvileg) már 0. A k-adik oszlopba sem kell a 0-át beírni. A II. fázis úgy tekinti, hogy ott zérus áll. A főátló fölötti elemek nullázása tehát nem más, mint a már tárgyalt Gauss-módszer II. fázisa.
4 A Gauss-Jordan elimináció, mátrixinvertálás Az algoritmus több, de ugyanolyan együttható mátrixú Ax = b j (b j R n, j = 1, 2,..., m) egyenletrendszert oldjon meg. Főátló alatti nullázás (I. fázis): Legyen B = [b 1, b 2,..., b m ] Legyen A = [A, B], azaz kibővítjük az A-t a jobboldali b vektorokkal 1 FOR k 1 TO n-1 DO 2 // Határozzuk meg a t indexet, hogy a tk = max k i n a ik. 3 IF k t 4 cseréljük fel a k-adik és t-edik sort 5 FOR i k + 1 TO n DO 6 l ik = a ik /a kk 7 FOR j k + 1 TO n + m DO 8 a ij = a ij l ik a kj
5 A Gauss-Jordan elimináció, mátrixinvertálás Főátló fölötti nullázás (II. fázis): 1 FOR k n DOWNTO 2 DO 2 FOR i 1 TO k 1 DO 3 l ik = A ik /A kk 4 FOR j n + 1 TO n + m DO 5 a ij = a ij l ik a kj 6 FOR j n + 1 TO n + m DO 7 x k,j n = a kj /a kk 8 FOR j n + 1 TO n + m DO 9 x 1,j n = a 1j /a 11 Végeredmény: [x 1, x 2,..., x m ] = X
6 A Gauss-Jordan elimináció, mátrixinvertálás Megjegyzés Fenti algoritmus alkalmas mátrixinvertálásra. Könnyen belátható ugyanis, hogy az Ax = e i egyenletrendszer megoldása éppen az inverz mátrix i-edik oszlopvektora. Ha az algoritmusban B az egységmátrix, akkor a végeredmény: X = A 1.
7 A legkisebb négyzetek módszere, egyenes eset Legyen N N és adottak az x 1, x 2,..., x N R alappontok és az y 1, y 2,..., y N R függvényértékek (pl. mérési eredmények). Keressük azt az egyenest y = a 0 + a 1 x, melyre a kifejezés minimális. [y i (a 0 + a 1 x i )] 2 i=0 A fenti feltételnek eleget tevő egyenest az (x i, y i ) i = i,..., N, értékeket négyzetesen legjobban közeĺıtő egyenesnek nevezzük.
8 A legkisebb négyzetek módszere, egyenes eset A feladat megoldásához az F (a 0, a 1 ) = [ yi (a 0 + a 1 x i ) ] 2 : R 2 R függvényt kell minimalizálnunk. A többváltozós függvények szélsőértékéről tanultak szerint az F a 0 (a 0, a 1 ) = 0 és F a 1 (a 0, a 1 ) = 0 feltételnek eleget tevő a 0, a 1 -et keressük. A parciális deriváltakra 2[y i (a 0 + a 1 x i )] = 0 2[y i (a 0 + a 1 x i )]x i = 0 egyenletrendszert kapjuk.
9 A legkisebb négyzetek módszere, egyenes eset Ezt az egyenletrendszert az alábbi alakban írhatjuk: y i Na 0 a 1 x i = 0 x i y i a 0 x i a 1 xi 2 = 0 amelyből adódik, hogy ( N ) Na 0 + x i a 1 = ( N ) ( N x i a 0 + ) xi 2 a 1 = y i x i y i
10 A legkisebb négyzetek módszere, egyenes eset Vezessük be a következő jelöléseket: 1 x 1 1 x 2 A =.. RN 2, b = 1 x N y 1 y 2. y N RN, a = ( a0 a 1 ) R 2. Ekkor A T A = N x i x i N xi 2 A T b = y i x i y i
11 A legkisebb négyzetek módszere, egyenes eset Így az egyenletrendszer alakban írható. A T Aa = A T b A det(a T A) = 0 csak akkor teljesülhet, ha x 1 = x 2 =... = x N (érdektelen eset). Tehát feltehetjük, hogy det(a T A) 0. Ekkor az egyenletrendszer egyértelműen megoldható. Például az A T A invertálható, így a = (A T A) 1 A T b.
12 A legkisebb négyzetek módszere, polinom eset Legyen n, N N úgy, hogy n << N, adottak az x 1, x 2,..., x N R alappontok és az y 1, y 2,..., y N R függvényértékek (pl. mérési n eredmények). Keressük azt a P n (x) = a j x j polinomot, melyre a kifejezés minimális. j=0 (y j P n (x i )) 2 j=0 A fenti feltételnek eleget tevő P n polinomot az (x i, y i ) i = i,..., N, értékeket négyzetesen legjobban közeĺıtő n-ed fokú polinomnak nevezzük.
13 A legkisebb négyzetek módszere, polinom eset A feladat megoldásához az F (a 0, a 1,..., a n ) = n y i n a j x j i j=0 2 : R n+1 R függvényt kell minimalizálnunk. A többváltozós függvények szélsőértékéről tanultak szerint az F (a 0, a 1,..., a n ) = 0 feltételnek eleget tevő a j -ket keressük. A parciális deriváltakra F a j (a 0, a 1,..., a n ) = (j = 0, 1,..., n). ( 2(y i P n (x i )) P ) n (x i ) = 0 a j
14 A legkisebb négyzetek módszere, polinom eset P n (x i ) P n a j (x i ) = y i P n a j (x i ) (j = 0, 1,..., n). Mivel P n a j (x i ) = (x i ) j, a fenti egyenlet a következő alakba írható: n (x i ) j a k (x i ) k = n k=0 k=0 a k N (x i ) j+k = y i (x i ) j (j = 0, 1,..., n). Ezzel a k -kra egy lineáris egyenletrendszert kaptunk (n + 1 darab egyenlet, n + 1 darab ismeretlennel).
15 A legkisebb négyzetek módszere, polinom eset Vezessük be a következő jelöléseket: 1 x 1... x n 1 1 x 2... x n 2 A = RN (n+1), 1 x N... xn n y 1 a 0 y 2 b =. a 1 RN, a =. Rn+1. a n y N Ekkor az egyenletrendszer alakban írható. A T Aa = A T b
16 A legkisebb négyzetek módszere, tetszőleges függvény eset Az f függvény helyettesítésére (közeĺıtésére) a szóba jöhető, előre rögzített H függvényosztályból azt a h H függvényt keressük, amely az f h min, h H feltételes szélsőérték feladat megoldása. Tulajdonképpen minden h H tekinthető közeĺıtésnek, ezért a feladatot kielégítő függvényt szokás legjobb approximációnak nevezni.
17 A legkisebb négyzetek módszere, tetszőleges függvény eset Függvények [a, b] intervallumon való legkisebb négyzetes közeĺıtéséről akkor beszélünk, ha a norma diszkrét esetben (a x 1 < x 2 <... < x m b) folytonos esetben pedig ( m f 2 = f 2 (x i ) w (x i ) ( b f 2 = a ) 1 2 ) 1 f 2 2 (x) w (x) dx, ahol a rögzített w (x) súlyfüggvényre diszkrétnél a w (x i ) > 0 (i = 1, 2,... m), folytonosnál pedig a w (x) C [a, b], w (x) > 0, x [a, b] teljesülését megköveteljük. Fontos speciális eset a w (x) 1.,
18 A legkisebb négyzetek módszere, tetszőleges függvény eset Lineáris eset Legyen a H függvényhalmaz olyan, hogy ismert φ i : [a, b] R(i = 1,..., n) függvények valamennyi lineáris kombinációját tartalmazza, tehát a h (x) függvény alakja h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) a n φ n (x) = n a i φ i (x). A φ i függvényeket alapfüggvényeknek vagy másképpen bázisfüggvényeknek nevezzük.
19 A legkisebb négyzetek módszere, tetszőleges függvény eset Diszkrét, lieáris eset Fontos kérdés az approximációs feladat megoldásának létezése és egyértelműsége. Lineáris approximációra igaz az alábbi álĺıtás. Tétel Ha {φ i } n C [a, b] lineárisan függetlenek, akkor bármilyen normában és minden f C [a, b] esetén létezik legjobban közeĺıtő h(x) = n a iφ i (x) függvény.
20 A legkisebb négyzetek módszere, tetszőleges függvény eset Diszkrét, lineáris eset Legyen F = F (a 0, a 1..., a n ). Ekkor meg kell oldani a F = m [ f (xi ) ( a 1 φ 1 (x i ) a j φ j (x i ) a n φ n (x i ) )] 2 min i=i szélsőértékfeladatot. Ennek megoldása pedig F a j = 0, (j = 1, 2,..., n), vagyis a 2 m [f (x i ) (a 1 φ 1 (x i ) a j φ j (x i ) a n φ n (x i )] φ j (x i ) = 0 i=i lineáris egyenletrendszer megoldása. (Az egyenlet teljesülése az approximációs feladat megoldásának már emĺıtett egyértelmű létezése miatt elegendő.)
21 A legkisebb négyzetek módszere, tetszőleges függvény eset Diszkrét, lineáris eset Egyszerűsítés és a szokásos alakra való rendezés után kapjuk, hogy a 1 m i=i φ 1 (x i )φ j (x i ) a n m i=i φ n (x i )φ j (x i ) = m f (x i )φ j (x i ) i=i (j = 1, 2,..., n). Vezessük be az u, v = m u(x i )v(x i )w(x i ) i=i jelölést.
22 A legkisebb négyzetek módszere, tetszőleges függvény eset Diszkrét, lineáris eset Ezzel az egyenletrendszer alakja a következő: a 1 φ 1, φ 1 + a 1 φ 2, φ a n φ n, φ 1 = f, φ 1 a 1 φ 1, φ 2 + a 1 φ 2, φ a n φ n, φ 2 = f, φ 2 a 1 φ 1, φ n + a 1 φ 2, φ n a n φ n, φ n = f, φ n.
23 A legkisebb négyzetek módszere, tetszőleges függvény eset Megjegyzések A u, v = m u(x i )v(x i )w(x i ) i=i összefüggéssel egy skaláris szorzatot definiáltunk a diszkrét pontokon értelmezett függvények között. Ez két R n -beli vektornak a szorzata (ha w(x) 1). Az egyenletrendszer az úgynevezett normálegyenletrendszer. A G = [ φ j, φ i ] n i,j=1, a = [a 1,..., a n ] T és a b = [ f, φ 1,..., f, φ n ] T jelölésekkel tömörebben: Ga = b. A G R n n mátrixot Gram-mátrixnak nevezzük.
24 A legkisebb négyzetek módszere, tetszőleges függvény eset Diszkrét, lineáris eset Legyen A = [φ j (x i )] m,n i,j=1 Rm n, a = [a 1,..., a n ] T R n, b = y = [y 1,..., y m ] T R m és m > n. Keresünk olyan a paramétervektort, amely az Aa b hibát valamilyen normában minimalizálja. Ha létezik a Aa = b egyenletnek megoldása, akkor a minimumfeladat egyenértékű vele. Az euklideszi normában megfogalmazott Aa b 2 min. minimumfeladat megoldása az alábbi tétel: Tétel Az a R n akkor és csak akkor megoldása a feladatnak, ha A T Aa = A T b.
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
1. Mátrixösszeadás és skalárral szorzás
1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp
Feladat: megoldani az alábbi egyenletrendszert: A x = b,
Gauss Jordan-elimináció Feladat: megoldani az alábbi egyenletrendszert: ahol A négyzetes mátrix. A x = b, A Gauss Jordan-elimináció tulajdonképpen az általános iskolában tanult módszer lineáris egyenletrendszerek
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
NUMERIKUS MÓDSZEREK I. TÉTELEK
NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0
Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris
Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,
1 Lebegőpontos számábrázolás
Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Polinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.
ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Line aris f uggv enyilleszt es m arcius 19.
Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek
1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
összeadjuk 0-t kapunk. Képletben:
814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha
Matematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:
1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Eddig csak a polinom x-ben felvett értékét kerestük
Interpolációs polinom együtthatói Eddig csak a polinom x-ben felvett értékét kerestük Ez jó, ha kevés x-re kell kiértékelni Ha sok ismeretlen f (x)-et keresünk, akkor jobb kiszámolni az együtthatókat,
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Bevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA
1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: 1 0 0 0 0 1 0 0 E n = 0 0 1 0 0 0 0 1 n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Lineáris algebra. (közgazdászoknak) T C T = ( 1 ) ; , D T D =
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (1.) 2018/2019. tavaszi félév Mátrixok 1.1. Feladat. Legyen A = 1 2 1, B = 1 2 3 1 2 1 1, C = ( 1 2 0 ), D = 1 3 1 1 2 1 ( ) 10/2 0.6 1
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,
Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)
Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Többváltozós, valós értékű függvények
TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.
differenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
Differenciálegyenlet rendszerek
Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján
Mátrixok, mátrixműveletek
Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap
Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar
Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6.
A pivotálás hasznáról és hatékony módjáról Adott M mátrixra pivotálás alatt a következ½ot értjük: Kijelölünk a mátrixban egy nemnulla elemet, melynek neve pivotelem, aztán az egész sort leosztjuk a pivotelemmel.
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
rank(a) == rank([a b])
Lineáris algebrai egyenletrendszerek megoldása a Matlabban Lineáris algebrai egyenletrendszerek a Matlabban igen egyszer en oldhatók meg. Legyen A az egyenletrendszer m-szer n-es együtthatómátrixa, és
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35
Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei