Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
|
|
- Anikó Németh
- 6 évvel ezelőtt
- Látták:
Átírás
1 Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25
2 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris egyenletrendszer iterációs módszerei 8 6. Numerikus integrálás 9 7. Legkisebb négyzetek módszere 2
3 . Klasszikus hibaszámítás ) Tegyük fel, hogy 5 értéke 8 hibakorláttal számolható. Az alábbi két (elméletileg egyenl ) kifejezés közül melyiket lehet kisebb relatív hibával kiszámítani? Mekkora ez a hiba a nagyobb hibához képest? a) (4+ 5) 6. b) ) Közelítse az e π értéket 2, 78 3, 42-vel. Adja meg a közelítés abszolút és relatív hibakorlátját, ha ismert, hogy e és π három tizedesjegyre kerekített értékét használtuk! 3) Az π értéket -gyel közelíthetjük. Adja meg a közelítés abszolút és relatív 3,4 hibakorlátját, ha tudjuk, hogy 3,4 a π két tizedesjegyre kerekített értéke! 2. Lineáris egyenletrendszerek Határozza meg az alábbi lineáris egyenletrendszerek esetében a következ ket: ) a megoldást, valamint az együtthatómátrix LU-felbontását és determinánsát Gauss-eliminációval, 2) a megoldást, valamint az együtthatómátrix alkalmas LU-felbontását és determinánsát Gauss-eliminációval, részleges f elemkiválasztást alkalmazva, 3) a megoldást, valamint az együtthatómátrix alkalmas LU-felbontását és determinánsát Gauss-eliminációval, teljes f elemkiválasztást alkalmazva, 4) a megoldást, valamint az együtthatómátrix determinánsát és inverzének második oszlopát Gauss-Jordan eljárással, 5) a megoldást, valamint az együtthatómátrix determinánsát és inverzének második oszlopát LU-módszer I-es algoritmussal, 6) részleges f elemkiválasztást alkalmazva a megoldást, valamint az együtthatómátrix determinánsát és inverzének harmadik oszlopát LU-módszer II-es algoritmussal, 7) teljes f elemkiválasztást alkalmazva a megoldást, valamint az együtthatómátrix determinánsát és inverzének harmadik oszlopát LU-módszer II-es algoritmussal, 3
4 8) a megoldást és az együtthatómátrix Cholesky-felbontását! 3. Interpoláció x x 2 x 3 x x 2 x 3 x x 2 x 3 x x 2 x 3 = = = x x 2 x = = 3 79 ) Határozza meg az alábbi függvénytáblázatokhoz illeszked Lagrange interpolációs polinomot és annak alapján az f (.44), f(.5) és f(2) függvényérték közelítését, ahol lehet a) a Lagrange alapfüggvények segítségével, b) a Newton-féle osztott dierenciálokkal, c) lineáris egyenletrendszeren alapuló megoldással! x 2 2 f(x) x f(x) x 4 9 f(x) 2 3 4
5 x 2 f(x) ) Határozza meg az f(x) = x e x függvényt a,, 2, pontokban interpoláló 3 3 polinomot. Adjuk meg az f ( 2) racionális közelítését a polinom segítségével és becsüljük meg a hibát a megadott pontban a hibaformulával! 3) Határozza meg az f(x) = sin(πx) függvényt a,, 5, pontokban interpoláló 6 6 polinomot. Adjuk meg az f ( 3) racionális közelítését a polinom segítségével és becsüljük meg a hibát a megadott pontban a hibaformulával! 4) Adott az alábbi függvénytáblázat: x f (x) f (x).. 2 Határozza meg az f (.75), valamint az f (.75) függvényértékek közelítését a) Lagrange interpolációs polinommal, Newton I. formula segítségével; b) köbös els rend spline-nal; c) természetes spline-nal! A fenti eredmények ismeretében határozza meg az I = 3.. 5) Határozza meg az alábbi függvénytáblázathoz illeszked Hermite interpolációs polinomot, valamint a köbös els rend spline polinomot! x.. g (x).. g (x). 2. A fenti eredmények ismeretében határozza meg az I =.. 6) Írja fel az f-et közelít Hermite interpolációs polinomot, valamint köbös els rend spline-t ha x f (x) 2 f (x) 5
6 A fenti eredmények ismeretében határozza meg az I = 7) Írja fel az f-et közelít Hermite interpolációs polinomot, valamint a köbös els rend spline-t, ha x 2 f (x) f (x) 4 4 Az eredmények ismeretében határozza meg az I = 2 8) Tekintse az f(x) = sin ( π x) és a {,, } alappontrendszert és Határozza 2 meg az f-et interpoláló köbös természetes spline-t! Az eredmény ismeretében határozza meg az I = 9) Határozza meg azt az f-et interpoláló Hermite polinomot, valamint a köbös els spline-t, melyre x f (x) f (x) 3 A fenti eredmények ismeretében határozza meg az I = ) Írja fel azt az f-et interpoláló természetes spline-t, melyre x f (x) 3 f (x) Az eredmény ismeretében határozza meg az I = 4. Sajátérték, sajátvektor ) Határozza meg a) hatványmódszerrel az A i mátrix domináns sajátértékének közelít értékét valamint a hozzá tartozó közelít sajátvektort, adott hibakorlát mellett! 6
7 b) hatványmódszerrel az A i mátrix domináns sajátértékének közelít értékét, valamint a hozzá tartozó közelít sajátvektort! A kilépési feltétel: 4 a maximális iterációszám vagy az ered hiba ε i adott hibakorlátnál kisebb. c) inverz hatványmódszerrel az A i mátrix domináns sajátértékének közelítését, valamint a hozzá tartozó közelít sajátvektort, adott hibakorlát mellett! d) inverz hatványmódszerrel az A i mátrix domináns sajátértékének közelít étékét, valamint a hozzá tartozó közelít sajátvektort, adott 4 maximális iterációszám mellett! A = A 2 = A 3 = A 4 = A 5 = A 6 = , q () =, v () =, q () 2 =, v () 2 =, q () 3 =, v () 3 =, q () 4 =, v () 4 =, q () 5 =, v () 5 =, q () 6 =, v () 6 =, ε =.5, ε 2 =.5, ε 3 =.5, ε 4 =.2, ε 5 =.2, ε 6 =.45 2) Határozza meg az alábbi A mátrix valamennyi sajátértékét és a hozzájuk tartozó sajátvektort! Ennek ismeretében döntsön a mátrix szinguláritásáról és állítsa el a B = p (A) sajátértékeit, ahol p (z) = z + z 5! Ha az A mátrix nemszinguláris, akkor határozza meg az inverzének valamennyi sajátértékét is! A mátrix sorai rendre a következ k: a) [9,, 9]; [, 9, 9]; [9,, 9]. b) [9, 9, ]; [9, 9, 9]; [, 9, 9]. 7
8 c) [9, 9, ]; [, 9, 9]; [, 9, 9]. d) [,, ]; [,, ]; [,, ]. e) [,, ]; [,, ]; [,, ]. f) [,, ]; [,, ]; [,, ]. 5. Lineáris és nemlineáris egyenletrendszer iterációs módszerei ) Az x () = [ 3, 3, 3 ] T kezd vektor esetén határozza meg az alábbi lineáris egyenletrendszer megoldásának közelít értékét a) Gauss-Seidel iterációval! b) Jacobi iterációval! x x 2 x 3 = Akkor ér véget az eljárás, ha az iteráció száma 4 vagy az ered hiba kisebb mint ε =.9. 2) Adott az f (x) = nemlineáris egyenlet és az x () kezd érték, ahol a) f (x) = x 3 4x 2 44x + 76, x [7.9 ; 9]; x () = 7.5, b) f (x) = x 3 4x 2 44x + 76, x [. ; 3.]; x () =.5, c) f (x) = x 3 4x 2 44x + 76, x [ 7.9 ; 5.]; x () = 7.5, d) f (x) = 4x 3 + 7x 2 34x + 8, x [ ;.9]; x () =.5, e) f (x) = 4x 3 + 7x 2 34x + 8, x [. ; 3.]; x () =.52, f) f (x) = 4x 3 + 7x 2 34x + 8, x [ 5 ; 3.]; x () = 4, 95. Határozza meg a) xpontos iterációval (egyenletenként használja a megadott x () értéket kezd közelítésnek), b) intervallumfelez módszerrel, c) Newton-módszerrel a 4. lépésig és adjon hibabecslést! 8
9 3) Newton módszerrel, valamint Broyden módszerrel határozza meg az f (x, x 2, x 3 ) f 2 (x, x 2, x 3 ) = f 3 (x, x 2, x 3 ) nemlineáris egyenletrendszer megoldásának x (2) közelít értékét és adjon hibabecslést a kapott eredményre! Az ismert adatok: a) f (x, x 2, x 3 ) = 4x 4 3x x 3 f 2 (x, x 2, x 3 ) = x 3 x 4 2 x 3 f 3 (x, x 2, x 3 ) = x 2 x 2 x 2 3 x () = [,, ] T. b) f (x, x 2, x 3 ) = ln (x 4 + ) 3x x 3 f 2 (x, x 2, x 3 ) = x 3 x 4 2 x 3 f 3 (x, x 2, x 3 ) = x 2 x 2 2 ln (x ) x () = [,, ] T. c) f (x, x 2, x 3 ) = ln (x + ) ln (x 2 + 2) + x 3 f 2 (x, x 2, x 3 ) = x 3 x 4 2 x 3 f 3 (x, x 2, x 3 ) = x 2 x 2 2 ln (x ) x () = [,, ] T. d) f (x, x 2, x 3 ) = sin (x 2 ) 3x x 3 f 2 (x, x 2, x 3 ) = x 2 sin (x 2 2) x 3 f 3 (x, x 2, x 3 ) = x 2 x 2 2 sin (x ) x () = [,, ] T. 4) Az f(x) = x 3 5x + 2 függvény [; ]-beli gyökét közelítse. pontossággal a három tanult módon! 5) Közelítse az x = x + egyenlet megoldását a [; 3] intervallumban.3 pontossággal a három tanult módon! 6) Az f(x) = x 3 x függvény [; 2]-beli gyökét közelítse.4 pontossággal a három tanult módon! 6. Numerikus integrálás ) Adott az alábbi integrál: 2 x 2 dx. 9
10 A [, ] intervallum 4 azonos hosszúságú részintervallumra történ felosztása mellett határozza meg a) az összetett érint formula segítségével; b) az összetett trapézformula segítségével; c) az összetett Simpson formula segítségével az integrál közelít értékét és adjon hibabecslést a kapott eredményre! Használja fel azt a tényt, hogy az integrandus sokszor folytonosan dierenciálható! 2) Számítsa ki az 5 2 x 2 dx, x dx, 2 dx(= ln 2) x (= + x dx arctan() = π ) 2 4 integrálok közelít értékeit a megfelel intervallumokon azonos hosszúságú részintervallum felosztása mellett a) az összetett érint formula segítségével; b) az összetett trapézformula segítségével; c) az összetett Simpson formula segítségével! Adjon hibabecslést a kapott eredményre! 3) Adott az f(x) függvény az alábbi táblázattal: Határozza meg az I = x f (x) f(x)dx integrál értékét a) az összetett trapézformula segítségével; b) az összetett Simpson formula segítségével; c) az összetett érint formula segítségével, ha a lépésköz h =.5!
11 4) Adott az f(x) függvény az alábbi táblázattal: Határozza meg az I = x f (x) f(x)dx integrál értékét a.) az összetett trapézformula segítségével; b.) az összetett Simpson formula segítségével; c.) az összetett érint formula segítségével, ha a lépésköz h =! 5) Az I = π/4 ln(cos(x))dx integrál közelítése esetén a [, π/4] intervallumot legalább hány részre kell osztani, hogy az integrál értékét ε = nél kisebb hibával kapjuk a.) az összetett érint formula segítségével; b.) az összetett trapézformula segítségével; c.) az összetett Simpson formula segítségével? Határozza meg az integrál értékét mindhárom formulával! 7. Legkisebb négyzetek módszere. A legkisebb négyzetek módszerével illesszen g (x) = A + A 2 log 3 x alakú függvényt az alábbi táblázathoz! x f (x) Határozza meg a (; ), (; 3), (2; 4), (3; 6) pontokat négyzetesen legjobban közelít egyenest! 3. Írja fel a megadott (x i ; y i ) pontokat négyzetesen legjobban közelít egyenest! x i 2 2 y i
12 4. Írja fel a megadott (x i ; y i ) pontokat négyzetesen legjobban közelít egyenest! x i y i Írja fel a megadott (x i ; y i ) pontokat négyzetesen legjobban közelít egyenest és parabolát! x i 2 2 y i Írja fel a megadott (x i ; y i ) pontokat négyzetesen legjobban közelít egyenest és f(x) = A + Bx + C exp(x) alakú függvényt! x i y i A számolásokat 4 tizedesjegy pontosságal végezze! 2
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart
1 Lebegőpontos számábrázolás
Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:
1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
Numerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Numerikus matematika
Numerikus matematika Baran Ágnes Gyakorlat Nemlineáris egyenletek Baran Ágnes Numerikus matematika 9.10. Gyakorlat 1 / 14 Feladatok (1) Mutassa meg, hogy az 3x 3 12x + 4 = 0 egyenletnek van gyöke a [0,
Numerikus Analízis. Király Balázs 2014.
Numerikus Analízis Király Balázs 2014. 2 Tartalomjegyzék 1. A hibaszámítás elemei 7 1.1. A matematika modellezés folyamata és a hibaforrások megjelenése.. 7 1.2. Lebegőpontos számábrázolás.......................
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
Tartalomjegyzék 1 BEVEZETÉS 2
Tartalomjegyzék BEVEZETÉS FELADATOK. Lebegőpontos számok.............................. Normák, kondíciószámok........................... 5. Lineáris egyenletredszerek megoldása, mátrixok felbontása........
Numerikus integrálás
Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Numerikus integrálás április 18.
Numerikus integrálás 2016. április 18. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
KÖZELÍTŐ ÉS SZIMBOLIKUS SZÁMÍTÁSOK FELADATGYŰJTEMÉNY
Írta: MIHÁLYKÓ CSABA VIRÁGH JÁNOS KÖZELÍTŐ ÉS SZIMBOLIKUS SZÁMÍTÁSOK FELADATGYŰJTEMÉNY Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Mihálykó Csaba, Pannon Egyetem Műszaki Informatikai Kar Matematika
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS
Tétel: Ha,, akkor az ábrázolt szám hibája:
1. A lebegpontos számábrázolás egy modellje. A normalizált lebegpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl) fogalma,
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
A CSOPORT 4 PONTOS: 1. A
A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével
Numerikus módszerek I. zárthelyi dolgozat, 2009/10. I. félév, A. csoport, MEGOLDÁSOK
Numerikus módszerek I. zárthelyi dolgozat, 9/. I. félév, A. csoport, MEGOLDÁSOK. Feladat. Az a. választás mellett A /( a) értéke.486. Határozzuk meg mi is A értékét egy tizes számrendszerű, hatjegyű mantisszás
Numerikus módszerek. Labor gyakorlatok. Muszaki és Társadalotudományi Kar Marosvásárhely
Numerikus módszerek Labor gyakorlatok Kupán Pál Muszaki és Társadalotudományi Kar Marosvásárhely Tartalomjegyzék. Sorok összegének a kiszámítása 5 2. A felez o módszer. A Newton-féle módszer. 7 3. A húr,
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Gyakorlo feladatok a szobeli vizsgahoz
Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
NUMERIKUS MÓDSZEREK I. TÉTELEK
NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1
Newton módszer A húrmódszernél és a szelőmódszernél az F(x) függvény gyökének közelítéséhez a függvény húrját használtuk. Hatásosabb a módszer akkor, ha érintőkkel dolgozunk. Def.: Legyen x 0 az F(x) =
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
12 48 b Oldjuk meg az Egyenlet munkalapon a következő egyenletrendszert az inverz mátrixos módszer segítségével! Lépések:
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Egyenletrendszerek megoldása Excelben. Solver használata. Mátrixműveletek és függvények
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,
Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Példatár Lineáris algebra és többváltozós függvények
Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22
Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
IV. INTEGRÁLSZÁMÍTÁS Feladatok november
IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin
NUMERIKUS MÓDSZEREK XII. GYAKORLAT. 12a Numerikus Integrálás: Simpson+Trapéz formulák. Alapötletek:
NUMERIKUS MÓDSZEREK XII. GYAKORLAT a Numerikus Integrálás: Simpson+Trapéz formulák Alapötletek: ) a f x x a Lx x ) Ekvidisztáns alappontrendszer a x x n, x k x k h Memo: a f x x a Lx x n i a n f x i l
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Végeselem modellezés alapjai 1. óra
Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,
Integrálszámítás (Gyakorló feladatok)
Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)
A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Táblán. Numerikus módszerek 1. előadás (estis), 2017/2018 ősz. Lócsi Levente. Frissült: december 1.
Táblán Numerikus módszerek 1. előadás (estis), 2017/2018 ősz Lócsi Levente Frissült: 2017. december 1. Ebben az írásban a 2017/2018 őszi félév estis Numerikus módszerek 1. előadásának a diasorban nem szereplő,
Numerikus Matematika
Numerikus Matematika Baran Ágnes Gyakorlat Interpoláció Baran Ágnes Numerikus Matematika 6.-7. Gyakorlat 1 / 40 Lagrange-interpoláció Példa Határozzuk meg a ( 2, 5), ( 1, 3), (0, 1), (2, 15) pontokra illeszkedő
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Matematikai programozás gyakorlatok
VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Baran Ágnes. Gyakorlat Numerikus matematika. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 79
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Numerikus matematika Baran Ágnes Matematika Mérnököknek 1. 9.-13. Gyakorlat 1 / 79 Lebegőpontos számok Példa a = 2, t = 4, k = 3, k + = 2 esetén mi lesz
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó................................................ GÉPI SZÁMÁBRÁZOLÁS
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
x a x, ha a > 1 x a x, ha 0 < a < 1
EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény