Gauss-Seidel iteráció
|
|
- Benedek Mészáros
- 6 évvel ezelőtt
- Látták:
Átírás
1 Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján
2 1 ITERÁCIÓS MÓDSZEREK 1. Iterációs módszerek Korábban már vettünk lineáris egyenletrendszerek megoldására szolgáló algoritmusokat (LU, Cholesky és QR felbontások). Az eddig tanult módszereket direkt módszerek nek nevezzük. Az ilyen típusú eljárások véges sok meghatározott számú lépésben megadják a megoldást, úgy, hogy az egyenletrendszert olyan alakra hozzák elemi átalakításokkal, hogy a megoldások könnyen leolvashatóak legyenek. Ezek a kisebb vagy közepes méretű lineáris egyenletrendszerek megoldására (esetleg olyanokra, amelyek nagyobb sávmátrix alakúak) ajánlottak, mivel a műveletigényük ott még elviselhető. Viszont a nagy méretű, nem feltétlenül ritka együttható-mátrixú egyenletrendszerek megoldásakor ezek igen nagy műveletigényűek lehetnek. Ezekre alkalmasabbak az iterációs módszerek (továbbá olyan esetekben is használják, amikor az eliminációs módszerek kerekítési hibáival terhelt eredményeket pontosítani kell). Az iterációs módszerek olyan eljárások, amelyek adott kezdeti értékből kiindulva minden iterációval jobb közelítését adják a megoldásnak, de azt általában véges sok lépésben nem érik el. Az iterációs módszerek lényege, hogy egy olyan x (0), x (1), x (),...,,... vektorsorozatot generálunk, mely az adott egyenletrendszer megoldásához konvergál. Mivel számításaink minden esetben véges pontosságúak, így a kívánt pontosságot gyakran igen kevés lépésben elérhetjük. Az iterációs módszerek alapja az ún. fixpontkeresés, melyet a következőképpen csinálunk: a Banach-féle fixponttétel szerint, ha f egy,,jó tulajdonságú függvény, akkor egyetlen olyan x pont létezik, hogy x = f(x ) (ezt hívjuk az f függvény fixpontjának), és ez megkapható úgy, hogy egy tetszőleges x 0 pontból kiindulva képezzük az x (0), x (1) = f(x (0) ), x () = f(x (1) ),..., = f( ),... sorozatot és vesszük a határértékét. Ekkor x = lim (k ). Tehát veszünk egy nekünk szimpatikus kezdővektort, és az új közelítő értéket úgy kapjuk, hogy az előzőn végrehajtjuk minden iterációban ugyanazt a műveletet. Az x = lim (k ) pedig azt jelenti, hogy ha,,elég sok iterációt csinálunk, akkor meg fogjuk kapni a megoldást (vagy legalábbis annak egy tetszőleges pontosságú közelítését). Egy iterációs módszernek két fontos tulajdonsága van. Egyrészt, hogy konvergál-e, azaz hogy tetszőleges kezdővektorból indulva tényleg a (jelen esetben egyenletrendszer) megoldásának közelítését kapjuk. Másrészt, hogy mit választunk leállási kritériumnak. Általában akkor fejezünk be egy iterációt, ha annak két egymás utáni közelítése elég közel van egymáshoz, azaz x (m) x (m+1) ɛ teljesül, adott ɛ-ra. E mellé szokás még megadni egy maximális iterációszámot is. 1
3 JACOBI ITERÁCIÓ. Jacobi iteráció A feladat tehát egy Ax = b egyenletrendszer megoldása. Itt az egyenletrendszert átrendezzük olyan alakra, hogy a bal oldalon a változók álljanak (x 1,..., x n ), jobb oldalon pedig az egyenletrendszer többi része és az eredeti jobb oldal. Ezt minden egyenletnél úgy tudjuk megoldani, hogy az i-edik egyenletben az i-edik változó együtthatójával osztunk, majd az i-edik tagon kívül mindegyiket kivonjuk az egyenletből. Formálisan a következő alakban írhatjuk fel: = D 1 b D 1 (A D). Itt a D egy diagonális mátrix, amely az A főátlóbeli elemeit tartalmazza. Ennek az inverze pont az a mátrix, ahol D diagonális elemeit felváltják azok reciprokai. Vegyük észre, hogy a D 1 -zel balról való szorzás pont azt eredményezi, mintha az i-edik egyenletet elosztottuk volna az i-edik változó együtthatójával. A képlet kifejezi továbbá a kivonást is, ugyanis az új egyenletünkben az eredeti A főátlóbeli elemein kívül minden tagját átvittük a jobb oldalra kivonással (ezt fejezi ki az A D tag). A továbbiakban legyen c = D 1 b és B = D 1 (A D). Ekkor az iterációs egyenletünk = c + B. Hogyan is néz ki ez egy konkrét sorra az egyenletrendszerből? Nézzük az i-edik egyenletet: n j=1 a ijx j = b i 1 i n. Tegyük fel, hogy 0 (i = 1,..., n). Az i-edik egyenletből fejezzük ki az i-edik változót, s ezzel megkapjuk a fenti alakú iterációs formát: i = b i (l=1,i l) a il l ahol i = 1,,..., n; k = 1,, 3... az iterációs index és x (0) 1, x (0), x (0) 3,..., x (0) n kezdőértékek. Példa. Hajtsunk végre néhány Jacobi iterációt a következő Ax = b alakú egyenletrendszerünkön: x 1 x x 3 7 = 5
4 JACOBI ITERÁCIÓ Megoldás. Írjuk fel egyenletrendszer formájában a fenti mátrixos alakot: 5x 1 + x = 7 x 1 + x = 5 x + 3x 3 = Rendezzük át az egyenletrendszerünket = B + c alakúra: Írjuk vissza mátrix alakra: 1 3 Induljunk el az x (0) = 1. Iteráció. 1 = 1 5 x(k) = 1 x(k) = 1 3 x(k) /5 0 = 1/ /3 0 ( 1 1 1) T kezdővektorból /5 + /3 0 1/ /5 6/5 x (1) = 1/ = 0 1/3 0 1 /3 1/3. Iteráció. 3. Iteráció. 0 1/5 0 6/5 7/5 1 x () = 1/ = /3 0 1/3 / / /5 1.0 x (3) = 1/ = 0 1/3 0 0 / A pontos gyökök az x = ( 1 0) T vektor elemei. 3
5 3 GAUSS-SEIDEL ITERÁCIÓ 3. Gauss-Seidel iteráció A módszer a Jacobi iteráció egy olyan módosítása, ahol a (k + 1)-edik közelítő vektor i-edik koordinátájának kiszámításakor figyelembe vesszük, hogy az 1.,.,..., (i 1). koordinátákat már kiszámítottuk, így azokat használjuk fel megfelelő koordinátái helyett. Tehát az i. komponensének kiszámításához az ebben az iterációs lépésben kapott értékeket is felhasználjuk és csak i-nél nagyobb komponensek esetén használjuk az i-nél nagyobb komponenseinek értékét. Az első komponensét a Jacobi eljárással határozzuk meg. (Ez egyébként egy bevett módszer az algoritmusok javítására, bár nem biztos, hogy minden esetben tényleg jobb lesz.) Képlete: i = b (i 1) i a il l l=1 (l=i+1) a il l ahol i = 1,,..., n; k = 1,, 3... az iterációs index és x (0) 1, x (0), x (0) 3,..., x (0) n kezdőértékek. Példa. Az előző feladat így nézne ki Gauss-Seidel iterációval: Induljunk el az x (0) = 1. Iteráció. 1 = 1 5 x(k) = 1 x(k+1) = 1 3 x(k+1) + 3 ( 1 1 1) T kezdővektorból.. Iteráció. x (1) 1 = x (1) = x (1) 3 = = x(1) 1 = 1. = x(1) = 1.9 = x(1) 3 = 0.03 x () 1 = x () = x () 3 = = x() 1 = 1.0 = x() = 1.99 = x() 3 =
6 4 AZ ITERÁCIÓK KONVERGENCIÁJA 4. Az iterációk konvergenciája Mint az elején említettük, az iterációs módszerek egy fontos tulajdonsága, hogy konvergensek-e, azaz,,elég sok iterációt végrehajtva közelítjük-e a keresett megoldást. Ahhoz, hogy tudjunk beszélni a fenti iterációs módszerek konvergenciájáról, szükségünk van a következő fogalomra: Definíció 4.1. Szigorúan diagonális domináns mátrix: az n n-es A mátrix soronként (szigorúan) domináns főátlójú, ha a főátló minden eleme abszolút értékben nagyobb a sorában lévő többi elem abszolút értékeinek összegénél, azaz képletben: minden i = 1,,..., n-re. > a ij (j=1,j i) Definíció 4.. Akkor mondjuk, hogy egy iterációs sorozat globálisan konvergens, ha tetszőleges kezdővektorból indulva a módszer a megoldáshoz konvergál. Elegendő feltétel az iterációk konvergenciájára: Ha az n egyenletből álló n- ismeretlenes egyenletrendszer együtthatómátrixa szigorúan diagonális domináns, akkor bármely indulóvektor esetén a Jacobi- és a Gauss-Seidel iteráció is konvergens (tehát globálisan konvergens). Ez a feltétel csak elegendő, nem pedig szükséges a konvergenciához, tehát előfordulhat olyan, hogy valamelyik módszer konvergál olyan egyenletrendszer esetén, melynek nem szigorúan diagonális domináns az együttható mátrixa. Továbbá általánosan elmondható, hogy a Jacobi eljárás tetszőleges kezdeti vektor esetén konvergál, ha: oszlopösszeg feltétel, vagy a sorösszeg feltétel vagy a feltétel teljesül. max k max i ( (i=1,i k) (i=1,i k) (i=1,i k) a ik a ik < 1 ) 1/ a ik < 1 < 1 5
7 4 AZ ITERÁCIÓK KONVERGENCIÁJA Tétel(Sassenfeld kritérium 1 ): Tegyük fel hogy a fent definiált B mátrix eleget tesz a következő feltételnek:, ahol a p j számokat a: p 1 = (k=) a 1k a 11 p =, p j = max p j < 1 j=1,...,n (j 1) (k=1) a jk a jj p k + (k=j+1) (j =,..., n) rekurzióval határozzuk meg. Akkor a Gauss-Seidel iteráció minden kezdővektorból indítva konvergál a megoldáshoz annál gyorsabban, minél kisebb ez a p érték. Szükséges és elegendő feltétel az iterációk konvergenciájára: Mindkét iterációs eljárás pontosan akkor konvergens, ha a ρ(b) spektrálsugárra (azaz a legnagyobb abszolútértékű sajátérték abszolútértékére) teljesül, hogy ρ(b) < 1. (Erről még beszélünk egy későbbi gyakorlaton, az előadáson ennek a bizonyítása szerepel.) a jk a jj 1 R. Kress: Numerical Analysis, Springer Verlag,
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:
Polinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Numerikus módszerek 1.
Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Numerikus módszerek I. zárthelyi dolgozat, 2009/10. I. félév, A. csoport, MEGOLDÁSOK
Numerikus módszerek I. zárthelyi dolgozat, 9/. I. félév, A. csoport, MEGOLDÁSOK. Feladat. Az a. választás mellett A /( a) értéke.486. Határozzuk meg mi is A értékét egy tizes számrendszerű, hatjegyű mantisszás
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Eötvös Loránd Tudományegyetem Természettudományi Kar
Eötvös Loránd Tudományegyetem Természettudományi Kar Alapvető iterációs eljárások lineáris egyenletrendszerek megoldására Szakdolgozat Ruzsics László Matematika B.Sc., elemző szakirány Témavezető: Kurics
Táblán. Numerikus módszerek 1. előadás (estis), 2017/2018 ősz. Lócsi Levente. Frissült: december 1.
Táblán Numerikus módszerek 1. előadás (estis), 2017/2018 ősz Lócsi Levente Frissült: 2017. december 1. Ebben az írásban a 2017/2018 őszi félév estis Numerikus módszerek 1. előadásának a diasorban nem szereplő,
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:
1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
NUMERIKUS MÓDSZEREK I. TÉTELEK
NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
1 Lebegőpontos számábrázolás
Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó................................................ VEKTOR- ÉS MÁTRIXNORMÁK,
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Lineáris algebrai egyenletrendszerek direkt és iterációs megoldási módszerei
Eötvös Loránd Tudományegyetem Természettudományi Kar Lineáris algebrai egyenletrendszerek direkt és iterációs megoldási módszerei BSc Szakdolgozat Készítette: Laki Annamária Matematika BSc Matematikai
Tétel: Ha,, akkor az ábrázolt szám hibája:
1. A lebegpontos számábrázolás egy modellje. A normalizált lebegpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl) fogalma,
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Feladat: megoldani az alábbi egyenletrendszert: A x = b,
Gauss Jordan-elimináció Feladat: megoldani az alábbi egyenletrendszert: ahol A négyzetes mátrix. A x = b, A Gauss Jordan-elimináció tulajdonképpen az általános iskolában tanult módszer lineáris egyenletrendszerek
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Numerikus integrálás
Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
Numerikus módszerek 1.
Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
Lineáris algebra és mátrixok alkalmazásai
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Lineáris algebra és mátrixok alkalmazásai Szakdolgozat Készítette: Ruzsányi Orsolya Matematika BSc, matematikai elemző szakirány Témavezető: Fialowski
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
41. Szimmetrikus mátrixok Cholesky-féle felbontása
Benyújtja: Kaszaki Péter (KAPMAAT.SZE) 2005 november 21. 1.oldal Tartalomjegyzék 1. Bevezetés 4 2. A Gauss elimináció és az LU felbontás 4 2.1. Gauss elimináció 4 2.1.2. A Gauss elimináció mátrixos alakban
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Numerikus Analízis I.
Numerikus Analízis I. Sövegjártó András Jegyzet másodéves programozó és programtervező matematikus szakos hallgatóknak 2003. ,,A sikerhez és tudáshoz vezető út senki előtt sincs zárva, akiben van bátorság
Matematikai geodéziai számítások 8.
Matematikai geodéziai számítások 8 Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Matematikai geodéziai számítások 8: Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Lektor: Dr Benedek, Judit
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
Lineáris algebra numerikus módszerei
Bevezetés Szükségünk van a komplex elemű mátrixok és vektorok bevezetésére. A komplex elemű n-dimenziós oszlopvektorok halmazát C n -el jelöljük. Hasonlóképpen az m n méretű komplex elemű mátrixok halmazát
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek
1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Lineáris algebrai egyenletrendszerek iteratív megoldási módszerei
Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebrai egyenletrendszerek iteratív megoldási módszerei Szakdolgozat Készítette: Kis Ágnes Matematika Bsc. Matematikai elemző szakirány Témavezető:
Bevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
Numerikus Analízis. Király Balázs 2014.
Numerikus Analízis Király Balázs 2014. 2 Tartalomjegyzék 1. A hibaszámítás elemei 7 1.1. A matematika modellezés folyamata és a hibaforrások megjelenése.. 7 1.2. Lebegőpontos számábrázolás.......................
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
3. Lineáris egyenletrendszerek megoldása február 19.
3. Lineáris egyenletrendszerek megoldása 2018. február 19. Lineáris egyenletrendszer M darab egyenlet N változóval, az a ij és b j értékek ismertek: a 11 x 1 + a 12 x 2 +... + a 1N x N = b 1 a 21 x 1 +
Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26
Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő
LINEÁRIS ALGEBRAI EGYENLETRENDSZEREK
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR LINEÁRIS ALGEBRAI EGYENLETRENDSZEREK DIREKT ÉS ITERATÍV MEGOLDÁSI MÓDSZEREI BSc szakdolgozat Készítette: Várhegyi Bence Matematika BSc Matematikai elemző
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok
összeadjuk 0-t kapunk. Képletben:
814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
Numerikus módszerek példatár
Numerikus módszerek példatár Faragó István, Fekete Imre, Horváth Róbert 2013. július 5. Tartalomjegyzék Előszó 2 Feladatok 4 1. Előismeretek 4 1.1. Képletek, összefüggések............................ 4
II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés
II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
rank(a) == rank([a b])
Lineáris algebrai egyenletrendszerek megoldása a Matlabban Lineáris algebrai egyenletrendszerek a Matlabban igen egyszer en oldhatók meg. Legyen A az egyenletrendszer m-szer n-es együtthatómátrixa, és
2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0
Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Matematikai geodéziai számítások 8.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 8 MGS8 modul Szintezési hálózat kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
Matematikai geodéziai számítások 9.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Numerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Matematikai geodéziai számítások 9.
Matematikai geodéziai számítások 9 Szabad álláspont kiegyenlítése Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 9: Szabad álláspont kiegyenlítése Dr Bácsatyai,